Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = static safety factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3197 KiB  
Article
Experimental and Numerical Investigation of Seepage and Seismic Dynamics Behavior of Zoned Earth Dams with Subsurface Cavities
by Iman Hani Hameed, Abdul Hassan K. Al-Shukur and Hassnen Mosa Jafer
GeoHazards 2025, 6(3), 37; https://doi.org/10.3390/geohazards6030037 - 17 Jul 2025
Viewed by 263
Abstract
Earth fill dams are susceptible to internal erosion and instability when founded over cavity-prone formations such as gypsum or karstic limestone. Subsurface voids can significantly compromise dam performance, particularly under seismic loading, by altering seepage paths, raising pore pressures, and inducing structural deformation. [...] Read more.
Earth fill dams are susceptible to internal erosion and instability when founded over cavity-prone formations such as gypsum or karstic limestone. Subsurface voids can significantly compromise dam performance, particularly under seismic loading, by altering seepage paths, raising pore pressures, and inducing structural deformation. This study examines the influence of cavity presence, location, shape, and size on the behavior of zoned earth dams. A 1:25 scale physical model was tested on a uniaxial shake table under varying seismic intensities, and seepage behavior was observed under steady-state conditions. Numerical simulations using SEEP/W and QUAKE/W in GeoStudio complemented the experimental work. Results revealed that upstream and double-cavity configurations caused the greatest deformation, including crest displacements of up to 0.030 m and upstream subsidence of ~7 cm under 0.47 g shaking. Pore pressures increased markedly near cavities, with peaks exceeding 2.7 kPa. Irregularly shaped and larger cavities further amplified these effects and led to dynamic factors of safety falling below 0.6. In contrast, downstream cavities produced minimal impact. The excellent agreement between experimental and numerical results validates the modeling approach. Overall, the findings highlight that cavity geometry and location are critical determinants of dam safety under both static and seismic conditions. Full article
Show Figures

Figure 1

20 pages, 5875 KiB  
Article
Crashworthiness of Additively Manufactured Crash Boxes: A Comparative Analysis of Fused Deposition Modeling (FDM) Materials and Structural Configurations
by Ahmed Saber, A. M. Amer, A. I. Shehata, H. A. El-Gamal and A. Abd_Elsalam
Appl. Mech. 2025, 6(3), 52; https://doi.org/10.3390/applmech6030052 - 11 Jul 2025
Viewed by 425
Abstract
Crash boxes play a crucial role in automotive safety by absorbing impact energy during collisions. The advancement of additive manufacturing (AM), particularly Fused Deposition Modeling (FDM), has enabled the fabrication of geometrically complex and lightweight crash boxes. This study presents a comparative evaluation [...] Read more.
Crash boxes play a crucial role in automotive safety by absorbing impact energy during collisions. The advancement of additive manufacturing (AM), particularly Fused Deposition Modeling (FDM), has enabled the fabrication of geometrically complex and lightweight crash boxes. This study presents a comparative evaluation of the crashworthiness performance of five FDM materials, namely, PLA+, PLA-ST, PLA-LW, PLA-CF, and PETG, across four structural configurations: Single-Cell Circle (SCC), Multi-Cell Circle (MCC), Single-Cell Square (SCS), and Multi-Cell Square (MCS). Quasi-static axial compression tests are conducted to assess the specific energy absorption (SEA) and crush force efficiency (CFE) of each material–geometry combination. Among the materials, PLA-CF demonstrates superior performance, with the MCC configuration achieving an SEA of 22.378 ± 0.570 J/g and a CFE of 0.732 ± 0.016. Multi-cell configurations consistently outperformed single-cell designs across all materials. To statistically quantify the influence of material and geometry on crash performance, a two-factor ANOVA was performed, highlighting geometry as the most significant factor across all evaluated metrics. Additionally, a comparative test with aluminum 6063-T5 demonstrates that PLA-CF offers comparable crashworthiness, with advantages in mass reduction, reduced PCF, and enhanced design flexibility inherent in AM. These findings provide valuable guidance for material selection and structural optimization in FDM-based crash boxes. Full article
Show Figures

Figure 1

17 pages, 2290 KiB  
Article
Mechanical Response Analysis of High-Pile Wharf on Deep Soft Soil Foundation Under Complex Multi-Factor Interactions
by Kezheng Yang, Chenyue Cao, Rui Bai and Huihuan Ma
Buildings 2025, 15(13), 2379; https://doi.org/10.3390/buildings15132379 - 7 Jul 2025
Viewed by 231
Abstract
High-pile wharves are commonly used on deep soft soil foundations and are prone to the influence of complex environmental factors during long-term service. However, there is limited research on the spatiotemporal coupling effects of complex environmental factors within the integrated analysis system of [...] Read more.
High-pile wharves are commonly used on deep soft soil foundations and are prone to the influence of complex environmental factors during long-term service. However, there is limited research on the spatiotemporal coupling effects of complex environmental factors within the integrated analysis system of high-pile wharves. Therefore, this study, based on the engineering background of a bulk high-pile wharf in Zhanjiang, combined the finite element method with static and dynamic structural analysis to establish an integrated simulation model of the wharf structure and foundation. The structural response modes of the wharf under the coupling effects of multiple factors, such as soft soil softening, wave loading, and surface load distribution, were analyzed. The results show that, considering the softening characteristics of the soft soil, the safety factor of the structure decreased by up to 18.95%. Under wave loading, the maximum displacement and maximum bending moment of the wharf structure occurred in the region affected by the wave load. Under local surface loading, the structural deformation of the wharf was more pronounced than under global surface loading. In coupled conditions, surface loading had the most significant effect on deformation and internal forces, while wave loading and the soft foundation model mainly affected the maximum displacement, with little impact on the maximum bending moment. This study provides valuable insights for the optimization of service performance and safe operation and maintenance of high-pile wharves. Full article
(This article belongs to the Special Issue Non-linear Behavior and Design of Steel Structures)
Show Figures

Figure 1

20 pages, 6221 KiB  
Article
Structural Health Prediction Method for Pipelines Subjected to Seismic Liquefaction-Induced Displacement via FEM and AutoML
by Ning Shi, Tianwei Kong, Wancheng Ding, Xianbin Zheng, Hong Zhang and Xiaoben Liu
Processes 2025, 13(7), 2163; https://doi.org/10.3390/pr13072163 - 7 Jul 2025
Viewed by 334
Abstract
This study investigates the mechanical behavior and safety performance of buried natural gas pipelines crossing seismically active fault zones and liquefaction-prone areas, with particular application to the China–Russia East-Route Natural Gas Pipeline. The research combines experimental testing, numerical simulation, and machine learning to [...] Read more.
This study investigates the mechanical behavior and safety performance of buried natural gas pipelines crossing seismically active fault zones and liquefaction-prone areas, with particular application to the China–Russia East-Route Natural Gas Pipeline. The research combines experimental testing, numerical simulation, and machine learning to develop an advanced framework for pipeline safety assessment under seismic loading conditions. A series of large-scale pipe–soil interaction experiments were conducted under seismic-frequency cyclic loading, leading to the development of a modified soil spring model that accurately captures the nonlinear soil-resistance characteristics during seismic events. Unlike prior studies focusing on static or specific seismic conditions, this work uniquely integrates real cyclic loading test data to develop a frequency-dependent soil spring model, significantly enhancing the physical basis for dynamic soil–pipeline interaction simulation. Finite element analyses were systematically performed to evaluate pipeline response under liquefaction-induced ground displacement, considering key influencing factors including liquefaction zone length, seismic wave frequency content, operational pressure, and pipe wall thickness. An innovative machine learning-based predictive model was developed by integrating LightGBM, XGBoost, and CatBoost algorithms, achieving remarkable prediction accuracy for pipeline strain (R2 > 0.999, MAPE < 1%). This high accuracy represents a significant improvement over conventional analytical methods and enables rapid safety assessment. The findings provide robust theoretical support for pipeline routing and seismic design in high-risk zones, enhancing the safety and reliability of energy infrastructure. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

17 pages, 7044 KiB  
Article
Analysis of Influence of Cable Injury on Static Performance of Cable-Stayed Bridge
by Shoushan Cheng, Tongning Wang, Xin Cui, Guoquan Hai, Yitao Zhang and Yongzheng Yu
Buildings 2025, 15(13), 2346; https://doi.org/10.3390/buildings15132346 - 4 Jul 2025
Viewed by 214
Abstract
Under prolonged loading and various environmental factors, the performance of stay cables gradually deteriorates, which impacts the safety of the bridge structure. To investigate the influence of cable damage on the static performance of cable-stayed bridges, a finite element model of a cable-stayed [...] Read more.
Under prolonged loading and various environmental factors, the performance of stay cables gradually deteriorates, which impacts the safety of the bridge structure. To investigate the influence of cable damage on the static performance of cable-stayed bridges, a finite element model of a cable-stayed bridge with damaged cables was established. The element death method is used to simulate cable damage, examining the impact of various damage scenarios on the static performance of the cable-stayed bridge. The objective is to identify cable locations that have a greater impact on the structure, providing a basis for assessing the bridge’s safety and developing cable replacement strategies. The research indicates that damage to long cables has a more significant impact on the static performance of the cable-stayed bridge compared to damage to short cables. Additionally, damage to the side span cables has a more pronounced effect on the structure than damage to the mid-span cables. The influence of cable damage on cable forces is primarily reflected on the same side of the cable plane within the same bridge tower as the damaged cable. Changes in cable forces result in variations in the deflection of the main girder and the displacement of the main tower. When multiple cables are damaged, the impact on the static performance of the structure is similar to that of single-cable damage. In instances of longitudinal symmetric damage and adjacent cable impairment, the cables transition into a critical state, resulting in more pronounced alterations in the deflection of the main girder and the displacement of the main tower. Original symmetric damage has a relatively small impact on the static performance of the entire bridge, so it is recommended to adopt a symmetric approach for cable replacement projects. Considering the impact of damage to a single cable and multiple cables on the static structure, it is possible to initially determine the location and extent of the cable damage. Based on the damage patterns, a cable replacement plan can be designed. It is recommended to use a symmetry-based approach for the cable replacement, as this method results in minimal impact on the overall static performance of the bridge, thereby ensuring the safety of the bridge structure. Full article
(This article belongs to the Special Issue Experimental and Theoretical Studies on Steel and Concrete Structures)
Show Figures

Figure 1

14 pages, 1776 KiB  
Article
Dynamic Obstacle Avoidance Approach Based on Integration of A-Star and APF Algorithms for Vehicles in Complex Mountainous Environments
by Changlong Chen, Yuejin Lin, Lulin Zhan, Yuling He, Yi Zhang, Xiqiang Chi and Menghu Chen
Vehicles 2025, 7(3), 65; https://doi.org/10.3390/vehicles7030065 - 29 Jun 2025
Viewed by 268
Abstract
Complex mountainous environments pose significant challenges for dynamic path planning and obstacle avoidance of transport vehicles. In response, this paper presents an innovative path planning approach that combines an enhanced A* algorithm with the artificial potential field (APF) method. Firstly, the heuristic function [...] Read more.
Complex mountainous environments pose significant challenges for dynamic path planning and obstacle avoidance of transport vehicles. In response, this paper presents an innovative path planning approach that combines an enhanced A* algorithm with the artificial potential field (APF) method. Firstly, the heuristic function of the A* algorithm was improved, and path inflection points were optimized to enhance global path-planning efficiency and smoothness. Secondly, a target distance factor was introduced to modify the APF algorithm’s repulsive field function, solving the traditional APF’s target-unreachable problem. The integrated algorithm uses the A*-optimized inflection points as sub-target points for the APF, meeting real-time obstacle avoidance requirements in dynamic environments and conducting secondary path planning to avoid local minima. Impressively, static environment simulations demonstrated the integrated algorithm’s outstanding path-planning capabilities in complex terrains. Moreover, dynamic obstacle avoidance experiments revealed its remarkable ability to not only detect and evade dynamic obstacles but also maintain a safe distance from static ones. The findings highlight that this method significantly boosts path-planning efficiency while ensuring safety and global optimality in dynamic settings. This breakthrough offers crucial theoretical support for enhancing the navigation of mountain transport vehicles in complex, real-world scenarios, potentially improving their operation. Full article
(This article belongs to the Special Issue Design and Control of Autonomous Driving Systems)
Show Figures

Figure 1

24 pages, 8345 KiB  
Article
Enhancing Reliability in Redundant Homogeneous Sensor Arrays with Self-X and Multidimensional Mapping
by Elena Gerken and Andreas König
Sensors 2025, 25(13), 3841; https://doi.org/10.3390/s25133841 - 20 Jun 2025
Viewed by 757
Abstract
Mechanical defects and sensor failures can substantially undermine the reliability of low-cost sensors, especially in applications where measurement inaccuracies or malfunctions may lead to critical outcomes, including system control disruptions, emergency scenarios, or safety hazards. To overcome these challenges, this paper presents a [...] Read more.
Mechanical defects and sensor failures can substantially undermine the reliability of low-cost sensors, especially in applications where measurement inaccuracies or malfunctions may lead to critical outcomes, including system control disruptions, emergency scenarios, or safety hazards. To overcome these challenges, this paper presents a novel Self-X architecture with sensor redundancy, which incorporates dynamic calibration based on multidimensional mapping. By extracting reliable sensor readings from imperfect or defective sensors, the system utilizes Self-X principles to dynamically adapt and optimize performance. The approach is initially validated on synthetic data from tunnel magnetoresistance (TMR) sensors to facilitate method analysis and comparison. Additionally, a physical measurement setup capable of controlled fault injection is described, highlighting practical validation scenarios and ensuring the realism of synthesized fault conditions. The study highlights a wide range of potential TMR sensor failures that compromise long-term system reliability and demonstrates how multidimensional mapping effectively mitigates both static and dynamic errors, including offset, amplitude imbalance, phase shift, mechanical misalignments, and other issues. Initially, four individual TMR sensors exhibited mean absolute error (MAE) of 4.709°, 5.632°, 2.956°, and 1.749°, respectively. To rigorously evaluate various dimensionality reduction (DR) methods, benchmark criteria were introduced, offering insights into the relative improvements in sensor array accuracy. On average, MAE was reduced by more than 80% across sensor combinations. A clear quantitative trend was observed: for instance, the MAE decreases from 4.7°–5.6° for single sensors to 0.111° when the factor analysis method was applied to four sensors. This demonstrates the concrete benefit of sensor redundancy and DR algorithms for creating robust, fault-tolerant measurement systems. Full article
Show Figures

Figure 1

31 pages, 5328 KiB  
Article
Towards a Digital Twin Approach for Structural Stiffness Assessment: A Case Study on the Cho’ponota L1 Bridge
by Fatih Yesevi Okur
Appl. Sci. 2025, 15(12), 6854; https://doi.org/10.3390/app15126854 - 18 Jun 2025
Viewed by 295
Abstract
In this study, a series of comprehensive experimental tests were conducted to assess the impact of permanent displacements observed during the construction of the Cho’ponota L1 Bridge in Uzbekistan and to evaluate the bridge’s structural suitability for service. The investigation included Operational Modal [...] Read more.
In this study, a series of comprehensive experimental tests were conducted to assess the impact of permanent displacements observed during the construction of the Cho’ponota L1 Bridge in Uzbekistan and to evaluate the bridge’s structural suitability for service. The investigation included Operational Modal Analysis and static and dynamic vehicular load tests, conducted using two trucks with different weights under varying loading scenarios and speeds. A total of 28 static and 24 dynamic load cases were tested across the bridge’s four spans. Displacement measurements were acquired using geodetic instruments during the static tests, while acceleration data were recorded during dynamic tests using high-sensitivity accelerometers, from which Dynamic Amplification Factors were calculated. The results indicated that all displacement values remained within permissible safety limits, and no visible damage or cracking was detected. Beyond conventional analysis, the study proposed a test-assisted digital twin framework in which high-fidelity field data were integrated into a finite-element model. The initial numerical model was calibrated using modal properties obtained from OMA, and discrepancies were minimized through iterative updates to material parameters, especially concrete stiffness. The resulting validated digital twin accurately reflects the bridge’s current structural condition and can be used for future predictive simulations and performance-based evaluations. The findings underscore the effectiveness of combining non-destructive testing with digital twin methodology in diagnosing structural behavior and offer a replicable model for assessing bridges experiencing construction-related anomalies. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 4810 KiB  
Article
Optimization Design and Dynamic Characteristics Analysis of Self-Responsive Anti-Falling Device for Inclined Shaft TBMs
by Han Peng, Can Yang, Linjian Shangguan, Lianhui Jia, Bing Li, Chuang Xu and Wenjuan Yang
Machines 2025, 13(6), 531; https://doi.org/10.3390/machines13060531 - 18 Jun 2025
Viewed by 351
Abstract
To address the frequent failure of anti-falling devices in inclined shaft tunnel boring machines caused by cyclic loading and fatigue during construction, this study proposes an optimized self-responsive anti-falling device design. Based on the operational conditions of the “Tianyue” tunnel boring machine, a [...] Read more.
To address the frequent failure of anti-falling devices in inclined shaft tunnel boring machines caused by cyclic loading and fatigue during construction, this study proposes an optimized self-responsive anti-falling device design. Based on the operational conditions of the “Tianyue” tunnel boring machine, a three-dimensional model was constructed using SolidWorks. Finite element static analysis was employed to validate structural integrity, revealing a maximum stress of 461.19 MPa with a safety factor of 1.71. Explicit dynamic simulations further demonstrated the dynamic penetration process of propellant-driven telescopic columns through concrete lining walls, achieving a penetration depth exceeding 500 mm. The results demonstrate that the device can respond to falling signals within 12 ms and activate mechanical locking. The Q690D steel structure exhibits a deformation of 5.543 mm with favorable stress distribution, meeting engineering safety requirements. The energy release characteristics of trinitrotoluene propellant and material compatibility were systematically verified. Compared to conventional hydraulic support systems, this design offers significant improvements in response speed, maintenance cost reduction, and environmental adaptability, providing an innovative solution for fall protection in complex geological environments. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

19 pages, 9718 KiB  
Article
Structural Safety Assessment Based on Stress-Life Fatigue Analysis for T/C Nozzle Ring Blade
by Woo-Seok Jeon and Haechang Jeong
J. Mar. Sci. Eng. 2025, 13(6), 1174; https://doi.org/10.3390/jmse13061174 - 15 Jun 2025
Viewed by 908
Abstract
The performance of the turbocharger nozzle ring is a key factor in the overall operation of the main engine of the ship. Minimizing failure and damage caused by high exhaust gas temperature and pressure is essential. As a first step toward improving turbocharger [...] Read more.
The performance of the turbocharger nozzle ring is a key factor in the overall operation of the main engine of the ship. Minimizing failure and damage caused by high exhaust gas temperature and pressure is essential. As a first step toward improving turbocharger safety, this study performed 3D scanning of an aged nozzle ring to obtain its precise geometry and developed a corresponding numerical model. The boundary conditions of the numerical model were defined by the exhaust gas temperature and pressure at various engine output loads. Structural safety was assessed using static structural and stress-life fatigue analyses. A sharp increase in maximum equivalent stress and strain was observed at output loads of 85% and higher. At 25% load, the maximum fatigue life indicated 1.76 × 108 cycles, while at 100% load, the maximum damage index reached 1. A field performance test conducted at 85% of the main engine’s output load revealed severe damage under high-load conditions. Specifically, damage occurred at the contact area between the outer hoop and the tip of the blade’s trailing edge. This observed damage pattern closely aligned with the results predicted by the fatigue life analysis. The validity of the present study was confirmed through a comparative analysis of the fatigue life predictions and the field test results. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 1266 KiB  
Article
Research on Aircraft Control System Fault Risk Assessment Based on Composite Framework
by Tongyu Shi, Yi Gao, Long Xu and Yantao Wang
Aerospace 2025, 12(6), 532; https://doi.org/10.3390/aerospace12060532 - 12 Jun 2025
Viewed by 422
Abstract
The air transportation system is composed of multiple elements and belongs to a complex socio-technical system. It is difficult to assess the risk of an aircraft fault because it could constantly change during operation and is influenced by numerous factors. Although traditional methods [...] Read more.
The air transportation system is composed of multiple elements and belongs to a complex socio-technical system. It is difficult to assess the risk of an aircraft fault because it could constantly change during operation and is influenced by numerous factors. Although traditional methods such as Failure Mode, Effects, and Criticality Analysis (FMECA) and Fault Tree Analysis (FTA) can reflect the degree of fault risk to a certain extent, they cannot accurately quantify and evaluate the fault risk under the multiple influences of human factors, random faults, and external environment. In order to solve these problems, this article proposes a fault risk assessment method for aircraft control systems based on a fault risk composite assessment framework using the Improved Risk Priority Number (IRPN) as the basis for the fault risk assessment. Firstly, a Bayesian network (BN) and Gated Recurrent Unit (GRU) are introduced into the traditional evaluation framework, and a hybrid prediction model combining static and dynamic failure probability is constructed. Subsequently, this paper uses the functional resonance analysis method (FRAM) by introducing a risk damping coefficient to analyze the propagation and evolution of fault risks and accurately evaluate the coupling effects between different functional modules in the system. Finally, taking the fault of a jammed flap/slat drive mechanism as an example, the risk of the fault is evaluated by calculating the IRPN. The calculation results show that the comprehensive failure probability of the aircraft control system in this case is 3.503 × 10−4. Taking into account the severity, the detection, and the risk damping coefficient, the calculation result of IRPN is 158.00. According to the classification standard of the risk level, the failure risk level of the aircraft belongs to a controlled risk, and emergency measures need to be taken, which is consistent with the actual disposal decision in this case. Therefore, the evaluation framework proposed in this article not only supports a quantitative assessment of system safety and provides a new method for fault risk assessments in aviation safety management but also provides a theoretical basis and practical guidance for optimizing fault response strategies. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Research on Path Planning for Mobile Charging Robots Based on Improved A* and DWA Algorithms
by Wenliang Zhu and Zhufan Chen
Electronics 2025, 14(12), 2318; https://doi.org/10.3390/electronics14122318 - 6 Jun 2025
Viewed by 368
Abstract
Driven by rapid growth in the new-energy vehicle (NEV) market and advances in automation, mobile charging robots are increasingly deployed in parking facilities. In complex environments featuring both static and dynamic obstacles, conventional trajectory plans often exhibit insufficient safety margins and poor smoothness. [...] Read more.
Driven by rapid growth in the new-energy vehicle (NEV) market and advances in automation, mobile charging robots are increasingly deployed in parking facilities. In complex environments featuring both static and dynamic obstacles, conventional trajectory plans often exhibit insufficient safety margins and poor smoothness. This paper proposes a hybrid path-planning strategy that combines an improved A* algorithm with an enhanced dynamic window approach (DWA). The enhanced A* algorithm incorporates obstacle influence factors and adaptive weighting during global search, enabling proactive avoidance of obstacle-dense regions and employing segmented Bezier curves for path smoothing. In local planning, the modified DWA integrates a global guidance term and distance-dependent heading weights to mitigate issues of local minima and target loss. Simulation results indicate that the proposed method substantially improves path safety, continuity, and adaptability to complex scenarios while maintaining computational efficiency. Specifically, under high-obstacle-density conditions (e.g., a 20 × 20 grid map), the collision rate is reduced by 66.7% compared to the standard A* algorithm (from 30% to 10%), and the minimum safety distance increases to 0.5 m. Current validation is conducted in simulations; future work will involve real-robot experiments to evaluate real-time performance and robustness in practical environments. Full article
Show Figures

Figure 1

19 pages, 8986 KiB  
Article
Stability Assessment of the Tepehan Landslide: Before and After the 2023 Kahramanmaras Earthquakes
by Katherine Nieto, Noha I. Medhat, Aimaiti Yusupujiang, Vasit Sagan and Tugce Baser
Geosciences 2025, 15(5), 181; https://doi.org/10.3390/geosciences15050181 - 17 May 2025
Viewed by 457
Abstract
This study focuses on the investigation of the Tepehan landslide triggered by the 6 February 2023, Kahramanmaraş earthquake in Türkiye. The overall goal of this study is to understand the slope condition and simulate the failure considering pre- and post-event geometry. Topographic variations [...] Read more.
This study focuses on the investigation of the Tepehan landslide triggered by the 6 February 2023, Kahramanmaraş earthquake in Türkiye. The overall goal of this study is to understand the slope condition and simulate the failure considering pre- and post-event geometry. Topographic variations in the landslide area were analyzed using digital elevation models (DEMs) derived from the Sentinel-1 Synthetic Aperture Radar (SAR) satellite data and geospatial analysis. Slope stability analyses were conducted over a representative alignment, including assessments of soil structure, geological history, and field features. A limit equilibrium back-analysis was performed under both static and pseudo-static conditions, where an earthquake load coefficient was considered in the analyses. A total of five scenarios were evaluated to determine factors of safety (FoS) based on fully softened and residual strength parameters. The resulting critical slip surfaces from the simulations were compared with the geomorphometric analysis, necessitating the adjustment of the subsurface hard clay layer for residual conditions. The analyses revealed that the slope behaves as a delayed first-time landslide, with bedding planes acting as localized weak layers, reducing mobilized shear strength. This integrated remote sensing–geotechnical approach advances landslide hazard evaluation by enhancing the precision of slip surface identification and post-seismic slope behavior modeling, offering a valuable framework for similar post-disaster geohazard assessments. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

11 pages, 3056 KiB  
Communication
Metallography Specimen Mounting Device Suitable for Industrial or Educational Purposes
by Alfredo Márquez-Herrera
Appl. Mech. 2025, 6(2), 36; https://doi.org/10.3390/applmech6020036 - 11 May 2025
Viewed by 441
Abstract
This work presents a novel, compact (six pieces), low-cost (<$500 USD), and easy-to-manufacture metallography mounting device. The device is designed to produce high-quality polymer encapsulated samples that rival those obtained from commercial equipment ($5000–$10,000 USD). Utilizing the House of Quality (HoQ) framework within [...] Read more.
This work presents a novel, compact (six pieces), low-cost (<$500 USD), and easy-to-manufacture metallography mounting device. The device is designed to produce high-quality polymer encapsulated samples that rival those obtained from commercial equipment ($5000–$10,000 USD). Utilizing the House of Quality (HoQ) framework within Quality Function Deployment (QFD), the device prioritizes critical customer requirements, including safety (validated via finite element method, FEM), affordability, and compatibility with standard hydraulic presses. FEM analysis under 29 MPa pressure revealed a maximum Von Mises stress of 80 MPa, well below the AISI 304 stainless steel yield strength of 170 MPa, yielding a static safety factor of 2.1. Fatigue analysis under cyclic loading (mean stress σm = 40 MPa, amplitude stress σa = 40 MPa) using the Modified Goodman Criterion demonstrated a fatigue safety factor of 3.75, ensuring infinite cycle durability. The device was validated at 140 °C (413.15 K) with a 5-min dwell time, encapsulating samples in a cylindrical configuration (31.75 mm diameter) using a 200 W heating band. Benchmarking confirmed performance parity with commercial systems in edge retention and surface uniformity, while reducing manufacturing complexity (vs. conventional 100-piece systems). This solution democratizes access to metallography, particularly in resource-constrained settings, fostering education and industrial innovation. Full article
Show Figures

Figure 1

31 pages, 8398 KiB  
Article
Structural and Topological Optimization of a Novel Elephant Trunk Mechanism for Morphing Wing Applications
by Mir Hossein Negahban, Alexandre Hallonet, Marie Noupoussi Woumeni, Constance Nguyen and Ruxandra Mihaela Botez
Aerospace 2025, 12(5), 381; https://doi.org/10.3390/aerospace12050381 - 28 Apr 2025
Cited by 1 | Viewed by 473
Abstract
A novel mechanism for seamless morphing trailing edge flaps is presented in this paper. This bio-inspired morphing concept is derived from an elephant’s trunk and is called the Elephant Trunk Mechanism (ETM). The structural flexibility of an elephant’s trunk and its ability to [...] Read more.
A novel mechanism for seamless morphing trailing edge flaps is presented in this paper. This bio-inspired morphing concept is derived from an elephant’s trunk and is called the Elephant Trunk Mechanism (ETM). The structural flexibility of an elephant’s trunk and its ability to perform various types of deformations make it a promising choice in morphing technology for increasing the performance of continuous and smooth downward bending deformation at a trailing edge. This mechanism consists of a number of tooth-like elements attached to a solid wing box; the contractions of these tooth-like elements by external actuation forces change the trailing edge shape in the downwards direction. The main actuation forces are applied through wire ropes passing through tooth-like elements to generate the desired contractions on the flexible teeth. A static structural analysis using the Finite Element Method (FEM) is performed to examine this novel morphing concept and ensure its structural feasibility and stability. Topology optimization is also performed to find the optimum configuration with the objective of reducing the structural weight. The optimized mechanism is then attached to the flap section of a UAS-S45 wing. Finally, a skin analysis is performed to find its optimum skin material, which corresponds to the requirements of the morphing flap. The results of structural analysis and topology optimization reveal the reliability and stability of the proposed mechanism for application in the Seamless Morphing Trailing Edge (SMTE) flap. The optimization results led to significant improvements in the structural parameters, in addition to the desired weight reduction. The ETM maximum vertical displacement increased by 8.6%, while the von Mises stress decreased by 10.43%. Furthermore, the factor of safety improved from 1.3 to 1.5, thus indicating a safer design. The mass of the structure was reduced by 35.5%, achieving the primary goal of topology optimization. Full article
(This article belongs to the Special Issue Aircraft Design and System Optimization)
Show Figures

Figure 1

Back to TopTop