Enhancing Reliability in Redundant Homogeneous Sensor Arrays with Self-X and Multidimensional Mapping
Abstract
:1. Introduction
- A novel, flexible experimental platform enabling precise injection of controlled mechanical faults (eccentricity, air gap variations, tilt, and rotor instability) and synthetic signal distortions (amplitude imbalance, phase shifts, offsets, and noise), providing a comprehensive benchmark environment for evaluating sensor calibration algorithms.
- Realistic synthetic datasets that closely mimic real TMR sensor data, facilitating robust validation of our proposed virtual sensor array calibration framework, achieving substantial accuracy improvements (over 80% reduction in MAE) compared to a single-sensor scenario.
- A generalizable calibration methodology, demonstrated on synthetic TMR sensor data, that can be readily adapted and applied to diverse sensor types and application domains.
2. Related Work
2.1. Historical Development of Self-X
2.2. Self-X in Sensory Electronics
- Redundancy-based methods: Integrate redundant sensor modules during initial design, allowing faulty components identified by self-tests to be autonomously replaced via reconfiguration. This ensures reliability until redundancy resources are depleted but increases system complexity, size, and cost [58,59]. Unlike biological systems, technical Self-X lacks regenerative capabilities to replenish redundancy resources.
- Soft-trimming methods: Adaptively adjust system parameters or fuse data from multiple sensors, even if they are imperfect or partially defective, using advanced adaptive fusion algorithms [32]. This paper utilizes such approaches, including DR techniques. Compensation, however, is limited by computational scheme constraints such as parameter range and resolution.
3. Materials and Methods
3.1. Proposed Self-X Architecture
3.2. Experimental Procedures
3.2.1. Error Sources and Their Effects on TMR Sensor Accuracy
- Induced eccentricity: Lateral displacement of the sensor or magnet relative to the axis of rotation to simulate non-concentric rotation.
- Air gap misalignment: Systematic variation in the distance (air gap) between the sensor and the permanent magnet along X, Y, or Z directions.
- Tilt/Angular misalignment: Adjustment of the sensor’s orientation to introduce tilt or angular offset with respect to the magnet.
- Rotor dynamic instability: Introduction of shaft wobble or vibrations by modifying the rotor balance or coupling.
3.2.2. Mechanical Failures
3.2.3. Measurement Failures
3.2.4. Circuit Failures
3.3. TMR Sensor Data Processing and Dimensionality Reduction
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TMR | Tunnel Magnetoresistance |
MAE | Mean Absolute Error |
DR | Dimensionality Reduction |
RUL | Remaining Useful Life |
ML | Machine Learning |
RMSE | Root Mean Square Error |
SD | Standard Deviation |
IoT | Internet of Things |
CPS | Cyber-Physical Systems |
FPGA | Field-Programmable Gate Array |
ADC | Analog-to-Digital Converter |
AIS | Artificial Immune System |
LDA | Linear Discriminant Analysis |
NCA | Neighborhood Component Analysis |
PLS | Partial Least Squares |
PCA | Principal Component Analysis |
FA | Factor Analysis |
ICA | Independent Component Analysis |
MR | Marcus Roos’ Method |
kPCA | Kernel Principal Component Analysis |
PCoA | Principal Coordinates Analysis |
LLE | Locally Linear Embedding |
t-SNE | t-Distributed Stochastic Neighbor Embedding |
Median AE | Median Absolute Error |
MaxAE | Maximum Absolute Error |
References
- Barcelo-Ordinas, J.; Doudou, M.; García-Vidal, J.; Badache, N. Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey. Ad Hoc Netw. 2019, 88, 142–159. [Google Scholar] [CrossRef]
- Bousdekis, A.; Lepenioti, K.; Apostolou, D.; Mentzas, G. A Review of Data-Driven Decision-Making Methods for Industry 4.0 Maintenance Applications. Electronics 2021, 10, 828. [Google Scholar] [CrossRef]
- Wang, L.; Tang, H.; Zhang, T.; Chen, Q.; Shi, J.; Niu, X. Improving the Navigation Performance of the MEMS IMU Array by Precise Calibration. IEEE Sens. J. 2021, 21, 26050–26058. [Google Scholar] [CrossRef]
- Stanković, M.S.; Stankovic, S.S.; Johansson, K.H. Distributed calibration for sensor networks under communication errors and measurement noise. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 1380–1385. [Google Scholar]
- Jafari, M. Optimal redundant sensor configuration for accuracy increasing in space inertial navigation system. Aerosp. Sci. Technol. 2015, 47, 467–472. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Li, C.F.; He, F.; Liang, Y. Research of high precision quartz temperature sensor system based on data fusion technology. In Proceedings of the 2013 2nd International Conference on Measurement, Information and Control, Harbin, China, 16–18 August 2013; Volume 2, pp. 1051–1054. [Google Scholar] [CrossRef]
- Hülsmann, J.; Traub, J.; Markl, V. Demand-based sensor data gathering with multi-query optimization. Proc. VLDB Endow. 2020, 13, 2801–2804. [Google Scholar] [CrossRef]
- Giordano, M.; Malings, C.; Pandis, S.; Presto, A.; McNeill, V.; Westervelt, D.; Beekmann, M. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Srokosz, P.E.; Daniszewska, E.; Banach, J.; Śmieja, M. In-Depth Analysis of Low-Cost Micro Electromechanical System (MEMS) Accelerometers in the Context of Low Frequencies and Vibration Amplitudes. Sensors 2024, 24, 6877. [Google Scholar] [CrossRef]
- Narayana, M.V.; Jalihal, D.; Nagendra, S.M.S. EEATC: A Novel Calibration Approach for Low-Cost Sensors. IEEE Sens. J. 2023, 23, 23500–23511. [Google Scholar] [CrossRef]
- Pereira, J.D. Pressure Sensors: Working Principles of Static and Dynamic Calibration. Sensors 2024, 24, 629. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, A.; Kerkhoff, H.G. Online digital offset voltage compensation method for AMR sensors. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, Italy, 11–14 May 2015; pp. 1512–1515. [Google Scholar] [CrossRef]
- Shaheen, B.; Kocsis, Á.; Németh, I. Data-driven failure prediction and RUL estimation of mechanical components using accumulative artificial neural networks. Eng. Appl. Artif. Intell. 2023, 119, 105749. [Google Scholar] [CrossRef]
- Wu, X.; Li, P.; Deng, Z.; Liu, Z.; Kurboniyon, M.S.; Xiang, S.; Yin, G. LDNet-RUL: Lightweight Deformable Neural Network for Remaining Useful Life Prognostics of Lithium-ion Batteries. IEEE Trans. Power Electron. 2025, 1–15. [Google Scholar] [CrossRef]
- Lin, T.; Song, L.; Cui, L.; Wang, H. Advancing RUL prediction in mechanical systems: A hybrid deep learning approach utilizing non-full lifecycle data. Adv. Eng. Inform. 2024, 61, 102524. [Google Scholar] [CrossRef]
- Koenig, A. Integrated Sensor Electronics with Self-X Capabilities for Advanced Sensory Systems as a Baseline for Industry 4.0. In Proceedings of the Sensors and Measuring Systems; 19th ITG/GMA-Symposium, Nuremberg, Germany, 26–27 June 2018; pp. 1–4. [Google Scholar]
- Gerken, E.; Zaman, Q.; Alraho, S.; König, A. Development of a Self-X Sensory Electronics for Anomaly Detection and its Conceptual Implementation on an XMR-based Angular Decoder Prototype. Tm-Tech. Mess. 2023, 90, 20–26. [Google Scholar] [CrossRef]
- Gerken, E.; Zaman, Q.; Alraho, S.; König, A. Advanced Self-X Architecture for Improved Angle Accuracy Restoration in TMR-Based Angular Decoders. In Proceedings of the GMA/ITG-Fachtagung Sensoren und Messsysteme 2024, Nuremberg, Germany, 11–12 June 2024; pp. 452–459. [Google Scholar] [CrossRef]
- Kok, G. The digital transformation and novel calibration approaches. Tm-Tech. Mess. 2022, 89, 214–223. [Google Scholar] [CrossRef]
- Abd, H.; Zaman, Q.; Alraho, S.; König, A. Neuromorphic Spiking Sensory System with Self-X Capabilities. IEEE Access 2024, 12, 97017–97038. [Google Scholar] [CrossRef]
- Singh, S.; Galar, D.P.; Baglee, D.; Björling, S.E. Self-maintenance techniques: A smart approach towards self-maintenance system. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 75–83. [Google Scholar] [CrossRef]
- Wang, X.; Ren, W.; Wang, K.; Liu, J.; Lin, J.; Feng, J.; Zheng, J.; Li, F. A Self-Calibration Method for Robot End-Effector Using Spherical Constraints. Appl. Sci. 2024, 14, 9824. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Calibration of a cluster of low-cost sensors for the measurement of air pollution in ambient air. In Proceedings of the SENSORS, 2014 IEEE, Valencia, Spain, 2–5 November 2014; pp. 21–24. [Google Scholar] [CrossRef]
- Kumar, V.; Sahu, M. Evaluation of nine machine learning regression algorithms for calibration of low-cost PM2.5 sensor. J. Aerosol Sci. 2021, 157, 105809. [Google Scholar] [CrossRef]
- Aranda Britez, D.; Tapia, A.; Millán Gata, P. A self-calibration algorithm for soil moisture sensors using deep learning. Appl. Intell. 2025, 55, 276. [Google Scholar] [CrossRef]
- Lee, J.; Ghaffari, M.; Elmeligy, S. Self-maintenance and engineering immune systems: Towards smarter machines and manufacturing systems. Annu. Rev. Control 2011, 35, 111–122. [Google Scholar] [CrossRef]
- Silberstein, J.; Wellbrook, M.; Hannigan, M. Utilization of a Low-Cost Sensor Array for Mobile Methane Monitoring. Sensors 2024, 24, 519. [Google Scholar] [CrossRef]
- Cocheteux, M.; Moreau, J.; Davoine, F. Uncertainty-Aware Online Extrinsic Calibration: A Conformal Prediction Approach. In Proceedings of the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Tucson, AZ, USA, 26 February–6 March 2025; pp. 6167–6176. [Google Scholar] [CrossRef]
- Song, Y.; Wong, K.T.; Chen, F. “Quasi-Blind” Calibration of an Array of Acoustic Vector-Sensors That Are Subject to Gain Errors/Mis-Location/Mis-Orientation. IEEE Trans. Signal Process. 2014, 62, 2330–2344. [Google Scholar] [CrossRef]
- Wang, J.; Lei, B.; Yang, Z.; Lei, S. A low-cost calibration method for the infrared sensor array for quantitative analysis of natural gas. Chemom. Intell. Lab. Syst. 2022, 230, 104675. [Google Scholar] [CrossRef]
- Nemec, D.; Andel, J.; Simak, V.; Hrbcek, J. Homogeneous Sensor Fusion Optimization for Low-Cost Inertial Sensors. Sensors 2023, 23, 6431. [Google Scholar] [CrossRef] [PubMed]
- Roos, M. System for Determining the Position of the Position Indicator of a Position Measuring System. U.S. Patent 10,557,722 B2, 11 February 2020. Available online: https://patents.google.com/patent/US10557722B2/en?oq=US+Patent+10%2c557%2c722 (accessed on 27 April 2024).
- Kammara, A.C.; Gräf, T.; König, A. CMOS-Integrated Sensor-Level Self-X-Feature Realization for XMR-Sensors and its Exploitation Potential for Higher-Level Intelligent Condition Monitoring and System Healing. In Proceedings of the 14th Symposium on Magnetoresistive Sensors and Magnetic Systems, Wetzlar, Germany, 21–22 March 2017. [Google Scholar]
- Melexis 3D Magnetic Design Platform. Available online: https://3dmagneticdesign.melexis.com/login/ (accessed on 6 March 2025).
- Cavalcante, A.L.; Pereira, C.E.; Barata, J. Component-Based Approach to the Development of Self-X Automation Systems. IFAC Proc. Vol. 2010, 43, 222–227. [Google Scholar] [CrossRef]
- Garg, R.; Sharma, A.; Sexana, A.; Kaur, H.; Bijlwan, S. Growth and Application of Intelligent Systems in Various Fields. In Proceedings of the 2023 3rd Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 25–27 August 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, J.; Abbod, M.; Shieh, J.S. Integrations between Autonomous Systems and Modern Computing Techniques: A Mini Review. Sensors 2019, 19, 3897. [Google Scholar] [CrossRef]
- Kok, C.L.; Heng, J.B.; Koh, Y.Y.; Teo, T.H. Energy-, Cost-, and Resource-Efficient IoT Hazard Detection System with Adaptive Monitoring. Sensors 2025, 25, 1761. [Google Scholar] [CrossRef] [PubMed]
- Bissell, C.; Williams, T.J.; Hasegawa, Y. Historical Perspective of Automation. In Springer Handbook of Automation; Nof, S.Y., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 39–59. [Google Scholar] [CrossRef]
- Brooks, S.; Roy, R. A Complexity Framework for Self-Engineering Systems. Smart Sustain. Manuf. Syst. 2020, 4, 254–259. [Google Scholar] [CrossRef]
- Lakshmanan, S.K.; Tawdross, P.; Konig, A. Towards Organic Sensing System-First Measurement Result of Self-x Sensor Signal Amplifier. In Proceedings of the 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS’06), Rio de Janeiro, Brazil, 13–15 December 2006; p. 62. [Google Scholar] [CrossRef]
- Würtz, R.P. Introduction: Organic Computing. In Organic Computing; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Güdemann, M.; Nafz, F.; Ortmeier, F.; Seebach, H.; Reif, W. A Specification and Construction Paradigm for Organic Computing Systems. In Proceedings of the 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Venice, Italy, 20–24 October 2008; pp. 233–242. [Google Scholar] [CrossRef]
- Wikipedia. Autonomic Computing. Available online: https://en.wikipedia.org/wiki/Autonomic_computing (accessed on 17 June 2025).
- Chiang, F.; Braun, R. A nature inspired multi-agent framework for autonomic service management in ubiquitous computing environments. In Proceedings of the 2005 ICSC Congress on Computational Intelligence Methods and Applications, Istanbul, Turkey, 15–17 December 2005; p. 5. [Google Scholar] [CrossRef]
- Abd, H.; König, A. Design of a CMOS memristor emulator-based, self-adaptive spiking analog-to-digital data conversion as the lowest level of a self-x hierarchy. J. Sens. Sens. Syst. 2022, 11, 233–262. [Google Scholar] [CrossRef]
- Berdan, R.; Vasilaki, E.; Khiat, A.; Indiveri, G.; Serb, A.; Prodromakis, P. Emulating short-term synaptic dynamics with memristive devices. Sci. Rep. 2016, 6, 18639. [Google Scholar] [CrossRef]
- Covi, E.; Lin, Y.H.; Wang, W.; Stecconi, T.; Milo, V.; Bricalli, A.; Ambrosi, E.; Pedretti, G.; Tseng, T.Y.; Ielmini, D. A Volatile RRAM Synapse for Neuromorphic Computing. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; pp. 903–906. [Google Scholar] [CrossRef]
- Singh, T.; Kumar, A. Survey on Characteristics of Autonomous System. Int. J. Comput. Sci. Inf. Technol. 2016, 8, 121–128. [Google Scholar] [CrossRef]
- Alraho, S.; Zaman, Q.; Abd, H.; Andreas König, A. Integrated Sensor Electronic Front-Ends with Self-X Capabilities. Chips 2022, 1, 83–120. [Google Scholar] [CrossRef]
- Brooks, S.; Roy, R. An overview of self-engineering systems. J. Eng. Des. 2021, 32, 397–447. [Google Scholar] [CrossRef]
- Zheng, P.; Xia, L.; Li, C.; Li, X.; Liu, B. Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach. J. Manuf. Syst. 2021, 61, 16–26. [Google Scholar] [CrossRef]
- Delaine, F.; Lebental, B.; Rivano, H. In Situ Calibration Algorithms for Environmental Sensor Networks: A Review. IEEE Sens. J. 2019, 19, 5968–5978. [Google Scholar] [CrossRef]
- Thongpull, K. Advancing the Automated Design of Integrated Intelligent Multi-Sensory Systems with Self-X Properties. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 2016. [Google Scholar]
- Moreno-Ramírez, C.; Iniesta, C.; González, A.; Olazagoitia, J.L. Development and Characterization of a Low-Cost Sensors System for an Acoustic Test Bench. Sensors 2020, 20, 6663. [Google Scholar] [CrossRef]
- Nalakurthi, N.V.S.R.; Abimbola, I.; Ahmed, T.; Anton, I.; Riaz, K.; Ibrahim, Q.; Banerjee, A.; Tiwari, A.; Gharbia, S. Challenges and Opportunities in Calibrating Low-Cost Environmental Sensors. Sensors 2024, 24, 3650. [Google Scholar] [CrossRef] [PubMed]
- Stock, D.; Bauernhansl, T.; Weyrich, M.; Feurer, M.; Wutzke, R. System Architectures for Cyber-Physical Production Systems enabling Self-X and Autonomy. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Volume 1, pp. 148–155. [Google Scholar] [CrossRef]
- Wu, Q.M.J.; Yin, G. Minimizing cost of redundant sensor-systems with an artificial immune algorithm. In Proceedings of the Sixth International Conference of Information Fusion, Cairns, QLD, Australia, 8–11 July 2003; Volume 2, pp. 1473–1477. [Google Scholar] [CrossRef]
- Cheng, B.; Cheng, X.; Song, S.; Wu, H.; Hu, Y.; Zhou, R.; Deng, S. Active Disturbance Rejection Control in Magnetic Bearing Rotor Systems with Redundant Structures. Sensors 2022, 22, 3012. [Google Scholar] [CrossRef] [PubMed]
- Alraho, S.; Zaman, Q.; König, A. Reconfigurable Wide Input Range, Fully-Differential Indirect Current-Feedback Instrumentation Amplifier with Digital Offset Calibration for Self-X Measurement Systems. Tm-Tech. Mess. 2020, 87, s85–s90. [Google Scholar] [CrossRef]
- Algabroun, H.; Iftikhar, M.U.; Al-Najjar, B.; Weyns, D. Maintenance 4.0 Framework Using Self-Adaptive Software Architecture. In Proceedings of the 2nd International Conference on Maintenance Engineering, IncoME-II 2017, Manchester, UK, 5–6 September 2017. [Google Scholar] [CrossRef]
- Elsadig, M.; Abduallah, A. Biological Intrusion Prevention and Self-Healing Model for Network Security. In Proceedings of the 2010 Second International Conference on Future Networks, Sanya, China, 22–24 January 2010; pp. 337–342. [Google Scholar] [CrossRef]
- Alaparthy, V.T.; Morgera, S.D.; Fellow, L. A Multi-Level Intrusion Detection System for Wireless Sensor Networks based on Immune Theory. IEEE Access 2018, 6, 47364–47373. [Google Scholar] [CrossRef]
- Alizadeh, E.; Meskin, N.; Khorasani, K. A Dendritic Cell Immune System Inspired Scheme for Sensor Fault Detection and Isolation of Wind Turbines. IEEE Trans. Ind. Inform. 2018, 14, 545–555. [Google Scholar] [CrossRef]
- Ji, Z.; Dasgupta, D. Real-Valued Negative Selection Algorithm with Variable-Sized Detectors. In Genetic and Evolutionary Computation—GECCO 2004, Proceedings of the Genetic and Evolutionary Computation Conference Seattle, WA, USA, 26–30 June 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 287–298. [Google Scholar] [CrossRef]
- Pradeu, T.; Thomma, B.; Girardin, S.; Lemaitre, B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024, 57, 613–631. [Google Scholar] [CrossRef]
- Gerken, E.; König, A. Concept of a Self-X Sensory System and its first implementation on an XMR-based Angular Decoder Demonstrator. In Proceedings of the SMSI 2023 Lectures: A4—Smart Sensors, London, UK, 2–21 May 2023; pp. 57–58. [Google Scholar] [CrossRef]
- Nandapurkar, K.B.; Sreekantan, A.C.; Dutta, P.K. Performance Investigation of a Simplified TMR-Based Rotary Position Sensing System. IEEE Trans. Instrum. Meas. 2021, 70, 9505408. [Google Scholar] [CrossRef]
- Hu, X.; Duan, X.; Zhang, W.; Fu, Y.; Li, Y.; Zhao, P.; Deng, X.; Yu, C.; Wang, J. Design and Optimization of Multi-Stage TMR Sensors for Power Equipment AC/DC Leakage Current Detection. Sensors 2023, 23, 4749. [Google Scholar] [CrossRef]
- Bhaskarrao, N.K.; Sreekantan, A.C.; Dutta, P.K. Analysis of a Linearizing Direct Digitizer with Phase-Error Compensation for TMR Angular Position Sensor. IEEE Trans. Instrum. Meas. 2018, 67, 1795–1803. [Google Scholar] [CrossRef]
- Kurashima, K.; Kataoka, M.; Nakano, T.; Fujiwara, K.; Kato, S.; Nakamura, T.; Yuzawa, M.; Masuda, M.; Ichimura, K.; Okatake, S.; et al. Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors. Sensors 2023, 23, 646. [Google Scholar] [CrossRef]
- Sensitec GmbH. TA903 TMR Angle Sensor Datasheet. 2025. Available online: https://www.sensitec.com/wp-content/uploads/2025/02/Sensitec_TA903_DSE_09.pdf (accessed on 9 June 2025).
- Instruments, T. TMAG6180-Q1, Automotive Grade 3D Hall-Effect Sensor. 2024. Available online: https://www.ti.com/lit/ds/symlink/tmag6180-q1.pdf (accessed on 14 August 2024).
- Instruments, T. Error Sources in Capacitive Sensing Systems. 2024. Available online: https://www.ti.com/lit/an/sbaa539a/sbaa539a.pdf (accessed on 14 August 2024).
- Asahi Kasei Microdevices Corporation. Rotation Angle Sensor: Angular Error. 2024. Available online: https://www.akm.com/us/en/products/rotation-angle-sensor/tutorial/angular-error/ (accessed on 14 August 2024).
- Sreevidya, P.V.; Borole, U.P.; Kadam, R.; Khan, J.; Barshilia, H.C.; Chowdhury, P. A novel AMR based angle sensor with reduced harmonic errors for automotive applications. Sens. Actuators A Phys. 2021, 324, 112573. [Google Scholar] [CrossRef]
- Paul, S.; Chang, J. A New Approach to Detect Mover Position in Linear Motors Using Magnetic Sensors. Sensors 2015, 15, 26694–26708. [Google Scholar] [CrossRef]
- Reig, C.; Cardoso, S.; Mukhopadhyay, S. Giant Magnetoresistance (GMR) Sensors: From Basis to State-of-the-Art Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wu, Y.; Cai, M.; Li, J. Multi-sensor adaptive data fusion with colored measurement noise. In Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 6102–6107. [Google Scholar]
- Oweiss, K. Data fusion in wireless sensor array networks with signal and noise correlation mismatch. In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004; Volume 2, p. ii-281. [Google Scholar] [CrossRef]
- Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [Google Scholar] [CrossRef]
- Hou, C.K.J.; Behdinan, K. Dimensionality Reduction in Surrogate Modeling: A Review of Combined Methods. Data Sci. Eng. 2022, 7, 402–427. [Google Scholar] [CrossRef]
- Ayesha, S.; Hanif, M.K.; Talib, R. Overview and comparative study of dimensionality reduction techniques for high dimensional data. Inf. Fusion 2020, 59, 44–58. [Google Scholar] [CrossRef]
- Finch, H. A Comparison of Methods for Determining the Number of Factors to Retain in Exploratory Factor Analysis for Categorical Indicator Variables. Psychol. Int. 2025, 7, 3. [Google Scholar] [CrossRef]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T.; The scikit-image contributors. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef] [PubMed]
Benchmark | PCA | kPCA | FA | ICA | Sammon | PCoA | MR |
---|---|---|---|---|---|---|---|
Reconstruction Error | Low | Low | Medium | Low | Medium | Medium | Low |
Computational Complexity | Low | Medium | Medium | Medium | High | High | Medium |
Scalability | High | Medium | Medium | Medium | Low | Low | High |
Memory Usage | Low | Medium | Medium | Medium | High | High | Medium |
Robustness to Systematic Errors | High | Medium | Medium | Medium | Medium | Medium | High |
Sensitivity to Outliers | Low | Medium | Medium | Low | Medium | Medium | Low |
Interpretability | Medium | Low | Medium | Low | Medium | Medium | High |
Implementation Complexity | Easy | Complex | Medium | Medium | Complex | Complex | Medium |
Parameter Tuning | Low | Medium | Medium | Medium | High | High | Low |
Real-Time Suitability | High | Medium | Medium | Medium | Low | Low | High |
Parameter | TMR 1 | TMR 2 | TMR 3 | TMR 4 | ||||
---|---|---|---|---|---|---|---|---|
Sine | Cosine | Sine | Cosine | Sine | Cosine | Sine | Cosine | |
Amplitude Bias | 0.1 | 0.1 | 0.015 | 0.05 | 0.02 | 0.01 | 0.0 | 0.01 |
Phase Shift [°] | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 2.0 | 1.5 |
Offset [mV] | 100.0 | −100.0 | −100.0 | 120.0 | 80.0 | −20.0 | 0.0 | −10.0 |
Noise Amplitude [mV] | 5.0 | 5.0 | 5.0 | 3.0 | 1.0 | 4.0 | 0.0 | 0.0 |
MAE [°] | 4.709 | 5.632 | 2.956 | 1.749 | ||||
RMSE [°] | 5.266 | 6.234 | 3.290 | 1.814 | ||||
Median AE [°] | 5.101 | 6.274 | 3.250 | 1.890 | ||||
MaxAE [°] | 8.389 | 9.769 | 4.986 | 2.437 | ||||
SD [°] | 5.247 | 6.219 | 3.293 | 0.484 |
Method/Errors | MAE [°] | RMSE [°] | Median AE [°] | Max Error [°] | SD [°] |
---|---|---|---|---|---|
PCA | 0.212 | 0.245 | 0.207 | 0.538 | 0.586 |
FA | 0.111 | 0.111 | 0.111 | 0.139 | 0.179 |
ICA | 0.162 | 0.185 | 0.155 | 0.495 | 0.176 |
kPCA | 0.344 | 0.411 | 0.312 | 0.894 | 0.627 |
MR | 0.212 | 0.245 | 0.207 | 0.538 | 0.550 |
Sammon | 0.346 | 0.416 | 0.328 | 0.852 | 0.369 |
PCoA | 0.346 | 0.416 | 0.328 | 0.852 | 0.369 |
Method/Configuration | 2 TMR | 3 TMR | 4 TMR | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
PCA | 0.385 | 0.476 | 0.313 | 0.388 | 0.212 | 0.245 |
FA | 0.642 | 0.662 | 0.349 | 0.361 | 0.111 | 0.111 |
ICA | 0.439 | 0.468 | 0.426 | 0.444 | 0.162 | 0.185 |
kPCA | 0.154 | 0.192 | 0.496 | 0.549 | 0.344 | 0.411 |
MR | 0.386 | 0.463 | 0.299 | 0.362 | 0.212 | 0.245 |
Sammon | 0.883 | 0.966 | 0.731 | 0.780 | 0.346 | 0.416 |
PCoA | 0.883 | 0.966 | 0.731 | 0.780 | 0.346 | 0.416 |
Sensor | MAE [°] | RMSE [°] | Median AE [°] | Max Error [°] | STD [°] |
---|---|---|---|---|---|
TMR Sensor 1 | 0.358 | 0.425 | 0.335 | 1.288 | 0.425 |
TMR Sensor 2 | 0.715 | 0.810 | 0.745 | 1.633 | 0.810 |
TMR Sensor 3 | 0.210 | 0.258 | 0.180 | 0.841 | 0.258 |
TMR Sensor 4 | 0.241 | 0.268 | 0.268 | 0.388 | 0.268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerken, E.; König, A. Enhancing Reliability in Redundant Homogeneous Sensor Arrays with Self-X and Multidimensional Mapping. Sensors 2025, 25, 3841. https://doi.org/10.3390/s25133841
Gerken E, König A. Enhancing Reliability in Redundant Homogeneous Sensor Arrays with Self-X and Multidimensional Mapping. Sensors. 2025; 25(13):3841. https://doi.org/10.3390/s25133841
Chicago/Turabian StyleGerken, Elena, and Andreas König. 2025. "Enhancing Reliability in Redundant Homogeneous Sensor Arrays with Self-X and Multidimensional Mapping" Sensors 25, no. 13: 3841. https://doi.org/10.3390/s25133841
APA StyleGerken, E., & König, A. (2025). Enhancing Reliability in Redundant Homogeneous Sensor Arrays with Self-X and Multidimensional Mapping. Sensors, 25(13), 3841. https://doi.org/10.3390/s25133841