Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,288)

Search Parameters:
Keywords = species cluster

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7209 KiB  
Article
Evolutionary Analysis of the Land Plant-Specific TCP Interactor Containing EAR Motif Protein (TIE) Family of Transcriptional Corepressors
by Agustín Arce, Camila Schild, Delfina Maslein and Leandro Lucero
Plants 2025, 14(15), 2423; https://doi.org/10.3390/plants14152423 - 5 Aug 2025
Abstract
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin [...] Read more.
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin of the TIE family to the early evolution of the embryophyte, while an earlier diversification in algae cannot be ruled out. Strikingly, we found that the number of TIE members is highly constrained compared to the expansion of TCPs in angiosperms. We used co-expression data to identify potential TIE-TCP regulatory targets across Arabidopsis thaliana and rice. Notably, the expression pattern between these species is remarkably similar. TCP Class I and Class II genes formed two distinct clusters, and TIE genes cluster within the TCP Class I group. This study provides a comprehensive evolutionary analysis of the TIE family, shedding light on its conserved role in the regulation of gene transcription in flowering plant development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

23 pages, 2193 KiB  
Article
A Virome Scanning of Saffron (Crocus sativus L.) at the National Scale in Iran Using High-Throughput Sequencing Technologies
by Hajar Valouzi, Akbar Dizadji, Alireza Golnaraghi, Seyed Alireza Salami, Nuria Fontdevila Pareta, Serkan Önder, Ilhem Selmi, Johan Rollin, Chadi Berhal, Lucie Tamisier, François Maclot, Long Wang, Rui Zhang, Habibullah Bahlolzada, Pierre Lefeuvre and Sébastien Massart
Viruses 2025, 17(8), 1079; https://doi.org/10.3390/v17081079 - 4 Aug 2025
Abstract
Saffron (Crocus sativus L.) is a vegetatively propagated crop of high economic and cultural value, potentially affected by viral infections that may impact its productivity. Despite Iran’s dominance in global saffron production, knowledge of its virome remains limited. In this study, we [...] Read more.
Saffron (Crocus sativus L.) is a vegetatively propagated crop of high economic and cultural value, potentially affected by viral infections that may impact its productivity. Despite Iran’s dominance in global saffron production, knowledge of its virome remains limited. In this study, we conducted the first nationwide virome survey of saffron in Iran employing a high-throughput sequencing (HTS) approach on pooled samples obtained from eleven provinces in Iran and one location in Afghanistan. Members of three virus families were detected—Potyviridae (Potyvirus), Solemoviridae (Polerovirus), and Geminiviridae (Mastrevirus)—as well as one satellite from the family Alphasatellitidae (Clecrusatellite). A novel Potyvirus, tentatively named saffron Iran virus (SaIRV) and detected in three provinces, shares less than 68% nucleotide identity with known Potyvirus species, thus meeting the ICTV criteria for designation as a new species. Genetic diversity analyses revealed substantial intrapopulation SNP variation but no clear geographical clustering. Among the two wild Crocus species sampled, only Crocus speciosus harbored turnip mosaic virus. Virome network and phylogenetic analyses confirmed widespread viral circulation likely driven by corm-mediated propagation. Our findings highlight the need for targeted certification programs and biological characterization of key viruses to mitigate potential impacts on saffron yield and quality. Full article
(This article belongs to the Special Issue Emerging and Reemerging Plant Viruses in a Changing World)
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Genome-Wide Identification and Expression Pattern Analysis of the Late Embryogenesis Abundant (LEA) Family in Foxtail Millet (Setaria italica L.)
by Yingying Qin, Yiru Zhao, Xiaoyu Li, Ruifu Wang, Shuo Chang, Yu Zhang, Xuemei Ren and Hongying Li
Genes 2025, 16(8), 932; https://doi.org/10.3390/genes16080932 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Late embryogenesis abundant (LEA) proteins regulate stress responses and contribute significantly to plant stress tolerance. As a model species for stress resistance studies, foxtail millet (Setaria italica) lacks comprehensive characterization of its LEA gene family. This study aimed to [...] Read more.
Background/Objectives: Late embryogenesis abundant (LEA) proteins regulate stress responses and contribute significantly to plant stress tolerance. As a model species for stress resistance studies, foxtail millet (Setaria italica) lacks comprehensive characterization of its LEA gene family. This study aimed to comprehensively identify SiLEA genes in foxtail millet and elucidate their functional roles and tissue-specific expression patterns. Methods: Genome-wide identification of SiLEA genes was conducted, followed by phylogenetic reconstruction, cis-acting element analysis of promoters, synteny analysis, and expression profiling. Results: Ninety-four SiLEA genes were identified and classified into nine structurally distinct subfamilies, which are unevenly distributed across all nine chromosomes. Phylogenetic analysis showed closer clustering of SiLEA genes with sorghum and rice orthologs than with Arabidopsis thaliana AtLEA genes. Synteny analysis indicated the LEA gene family expansion through tandem and segmental duplication. Promoter cis-element analysis linked SiLEA genes to plant growth regulation, stress responses, and hormone signaling. Transcriptome analysis revealed tissue-specific expression patterns among SiLEA members, while RT-qPCR verified ABA-induced transcriptional regulation of SiLEA genes. Conclusions: This study identified 94 SiLEA genes grouped into nine subfamilies with distinct spatial expression profiles. ABA treatment notably upregulated SiASR-2, SiASR-5, and SiASR-6 in both shoots and roots. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3086 KiB  
Article
Integrative Population Genomics Reveals Niche Differentiation and Gene Flow in Chinese Sclerophyllous Oaks (Quercus Sect. Ilex)
by Miao-Miao Ju, Ming Yue and Gui-Fang Zhao
Plants 2025, 14(15), 2403; https://doi.org/10.3390/plants14152403 - 3 Aug 2025
Viewed by 139
Abstract
Elucidating the coexistence mechanisms of rapidly diverging species has long been a challenge in evolutionary biology. Genome-wide polymorphic loci are expected to provide insights into the speciation processes of these closely related species. This study focused on seven Chinese sclerophyllous oaks, represented by [...] Read more.
Elucidating the coexistence mechanisms of rapidly diverging species has long been a challenge in evolutionary biology. Genome-wide polymorphic loci are expected to provide insights into the speciation processes of these closely related species. This study focused on seven Chinese sclerophyllous oaks, represented by Quercus spinosa, Quercus aquifolioides, Quercus rehderiana, Quercus guyavifolia, Quercus monimotricha, Quercus semecarpifolia, and Quercus senescens, employing 27,592 single-nucleotide polymorphisms to examine their phylogenetic relationships at the genomic level. Combined with genetic structure analysis, phylogenetic trees revealed that the genetic clustering of individuals was influenced by both geographic distance and ancestral genetic components. Furthermore, this study confirmed the existence of reticulate evolutionary relationships among the species. Frequent gene flow and introgression within the seven species were primarily responsible for the ambiguous interspecies boundaries, with hybridization serving as a major driver of reticulate evolution. Additionally, the seven species exhibited distinct differences in niche occupancy. By reconstructing the climatic adaptability of ancestral taxonomic units, we found that the climatic tolerance of each species displayed differential responses to 19 climatic factors. Consequently, ecological niche differentiation and variations in habitat adaptation contributed to the preservation of species boundaries. This study provides a comprehensive understanding of the speciation processes in rapidly diverging genera and underscores the significance of both genetic and ecological factors in the formation and maintenance of species boundaries. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

31 pages, 5203 KiB  
Article
Projecting Extinction Risk and Assessing Conservation Effectiveness for Three Threatened Relict Ferns in the Western Mediterranean Basin
by Ángel Enrique Salvo-Tierra, Jaime Francisco Pereña-Ortiz and Ángel Ruiz-Valero
Plants 2025, 14(15), 2380; https://doi.org/10.3390/plants14152380 - 1 Aug 2025
Viewed by 418
Abstract
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. [...] Read more.
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. This study assesses the population trends and climate sensitivity of these species in Los Alcornocales Natural Park using annual abundance time series for a decade, empirical survival projections, and principal component analysis to identify key climatic drivers. Results reveal distinct climate response clusters among populations, though intra-specific variation highlights the importance of local conditions. Climate change is already impacting population viability, especially for P. incompleta, which shows high sensitivity to rising maximum temperatures and prolonged heatwaves. Climate-driven models forecast more severe declines than empirical ones, particularly for C. macrocarpa and P. incompleta, with the latter showing a projected collapse by the mid-century. In contrast, D. caudatum exhibits moderate vulnerability. Crucially, the divergence between models underscores the impact of conservation efforts: without reinforcement and reintroduction actions, projected declines would likely be more severe. These results project a decline in the populations of the studied ferns, highlighting the urgent need to continue implementing both in situ and ex situ conservation measures. Full article
(This article belongs to the Special Issue Plant Conservation Science and Practice)
Show Figures

Figure 1

16 pages, 1622 KiB  
Article
Simian Foamy Virus Prevalence and Evolutionary Relationships in Two Free-Living Lion Tamarin Populations from Rio de Janeiro, Brazil
by Déa Luiza Girardi, Thamiris Santos Miranda, Matheus Augusto Calvano Cosentino, Caroline Carvalho de Sá, Talitha Mayumi Francisco, Bianca Cardozo Afonso, Flávio Landim Soffiati, Suelen Sanches Ferreira, Silvia Bahadian Moreira, Alcides Pissinatti, Carlos Ramon Ruiz-Miranda, Valéria Romano, Marcelo Alves Soares, Mirela D’arc and André Felipe Santos
Viruses 2025, 17(8), 1072; https://doi.org/10.3390/v17081072 - 31 Jul 2025
Viewed by 226
Abstract
Simian foamy virus (SFV) is a retrovirus that infects primates. However, epidemiological studies of SFV are often limited to captive populations. The southeastern Brazilian Atlantic Forest is home to both an endemic, endangered species, Leontopithecus rosalia, and an introduced species, Leontopithecus chrysomelas [...] Read more.
Simian foamy virus (SFV) is a retrovirus that infects primates. However, epidemiological studies of SFV are often limited to captive populations. The southeastern Brazilian Atlantic Forest is home to both an endemic, endangered species, Leontopithecus rosalia, and an introduced species, Leontopithecus chrysomelas, to which no data on SFV exist. In this study, we assessed the molecular prevalence of SFV, their viral load, and their phylogenetic relationship in these two species of primates. Genomic DNA was extracted from 48 oral swab samples of L. chrysomelas and 102 of L. rosalia. Quantitative PCR (qPCR) was performed to diagnose SFV infection and quantify viral load. SFV prevalence was found to be 23% in L. chrysomelas and 33% in L. rosalia. No age-related differences in prevalence were observed; however, L. rosalia showed a higher mean viral load (3.27 log10/106 cells) compared to L. chrysomelas (3.03 log10/106 cells). The polymerase gene sequence (213 pb) of L. rosalia (SFVlro) was clustered within a distinct SFV lineage found in L. chrysomelas. The estimated origin of SFVlro dated back approximately 0.0836 million years ago. Our study provides the first molecular prevalence data for SFV in free-living Leontopithecus populations while offering insights into the complex evolutionary history of SFV in American primates. Full article
(This article belongs to the Special Issue Spumaretroviruses: Research and Applications)
Show Figures

Figure 1

18 pages, 3030 KiB  
Article
Morphometric and Molecular Insights into Hepatozoon spp. in Wild and Synanthropic Rodents from Southern and Southeastern Brazil
by Tatiana Pádua Tavares de Freitas, Bernardo Rodrigues Teixeira, Eduarda de Oliveira Silva Lima Machado, Isaac Leandro Lira Pinto, Laís da Silva de Oliveira, Karina Varella, Huarrisson Azevedo Santos, Fernando de Oliveira Santos, Liliani Marilia Tiepolo, Carlos Luiz Massard and Maristela Peckle
Pathogens 2025, 14(8), 756; https://doi.org/10.3390/pathogens14080756 (registering DOI) - 31 Jul 2025
Viewed by 163
Abstract
Small rodents are known hosts of various pathogens, including Hepatozoon, but until now, in Brazil, only Hepatozoon milleri has been described in these animals. In this study, liver samples and blood smears were obtained from 289 rodents belonging to 14 Cricetidae and [...] Read more.
Small rodents are known hosts of various pathogens, including Hepatozoon, but until now, in Brazil, only Hepatozoon milleri has been described in these animals. In this study, liver samples and blood smears were obtained from 289 rodents belonging to 14 Cricetidae and two Muridae species that had been captured in municipalities of the states of Paraná and Rio de Janeiro. Smears were stained with Giemsa, and gametocytes were detected via microscopy in 10.72% (n = 31/289) of samples, with these individuals representing three rodent species. Significant morphometric differences were observed in gametocyte measurements in Akodon rodents. Using conventional PCR, Hepatozoon spp. 18S rDNA fragments were amplified in 24.91% (n = 72/289) of samples, with those individuals representing seven rodent species. Phylogenetic analyses clustered 41 sequences from this study into a subclade with other sequences from small mammals in Brazil, identifying four distinct haplotypes, and, for the first time, a relationship between Hepatozoon haplotype and gametocyte length was observed. Based on phylogenetic analysis, this study reinforces the trophic relationship between rodents and reptiles as a possible link in the Hepatozoon transmission cycle in South America. Furthermore, our findings expand knowledge on Hepatozoon spp. hosts, describing Oxymycterus nasutus and Oxymycterus quaestor as new host species and identifying two novel circulating haplotypes in rodents from Paraná State, southern Brazil. Full article
(This article belongs to the Special Issue Vector Control and Parasitic Infection in Animals)
Show Figures

Graphical abstract

22 pages, 6878 KiB  
Article
Separate Versus Unified Ecological Networks: Validating a Dual Framework for Biodiversity Conservation in Anthropogenically Disturbed Freshwater–Terrestrial Ecosystems
by Tianyi Cai, Qie Shi, Tianle Luo, Yuechun Zheng, Xiaoming Shen and Yuting Xie
Land 2025, 14(8), 1562; https://doi.org/10.3390/land14081562 - 30 Jul 2025
Viewed by 333
Abstract
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual [...] Read more.
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual EN framework in the Yangtze River Delta’s Ecological Green Integration Demonstration Zone, constructing freshwater and terrestrial networks independently before merging them. Using InVEST Habitat Quality, MSPA, the MCR model, and Linkage Mapper, we delineated sources and corridors: freshwater sources combined NDWI-InVEST indicators with a modified, sluice-weighted resistance surface, producing 78 patches (mean 348.7 ha) clustered around major lakes and 456.4 km of corridors (42.50% primary). Terrestrial sources used NDVI-InVEST with a conventional resistance surface, yielding 100 smaller patches (mean 121.6 ha) dispersed across woodlands and agricultural belts and 658.8 km of corridors (36.45% primary). Unified models typically favor large sources from dominant ecosystems while overlooking small, high-value patches in non-dominant systems, generating corridors that span both freshwater and terrestrial habitats and mismatch species migration patterns. Our dual framework better reflects species migration characteristics, accurately captures dispersal paths, and successfully integrates key agroforestry-complex patches that unified models miss, providing a practical tool for biodiversity protection in disturbed freshwater–terrestrial landscapes. Full article
Show Figures

Figure 1

13 pages, 3645 KiB  
Article
Assessment of Genetic Diversity in Elite Stevia Genotypes Utilizing Distinguishability, Homogeneity and Stability (DHS) Through Morphological Descriptors
by Fellipe Celestino de Castro, Fábio Gelape Faleiro, Renato Fernando Amabile, Jamile da Silva Oliveira, Adriana Lopes da Luz, João Victor Pinheiro Melo, Arlini Rodrigues Fialho, Kelly Cristina dos Santos Soares, Gustavo Barbosa Cobalchini Santos and Lorena Portilho Bruno
Agronomy 2025, 15(8), 1836; https://doi.org/10.3390/agronomy15081836 - 29 Jul 2025
Viewed by 213
Abstract
Stevia rebaudiana Bertoni, a semi-perennial herb from the Asteraceae family, is native to the Paraguay–Brazil border region. The growing industrial interest in this species is due to its natural sweetening properties, such as steviol and its derivatives, which offer sweetness without adding calories. [...] Read more.
Stevia rebaudiana Bertoni, a semi-perennial herb from the Asteraceae family, is native to the Paraguay–Brazil border region. The growing industrial interest in this species is due to its natural sweetening properties, such as steviol and its derivatives, which offer sweetness without adding calories. Morphological traits are crucial for assessing genetic variability and ensuring distinctness, homogeneity, and stability (DHS) for cultivar protection. This study characterized 19 elite Stevia genotypes from Embrapa Cerrados’ Active Germplasm Bank (BAG) using 21 morphological descriptors from Brazil’s Ministry of Agriculture, Livestock, and Supply (MAPA). Genetic distances were calculated using the simple coincidence index complement method, and clustering was performed via the Unweighted Pair-Group Method with Arithmetic Mean (UPGMA). The results showed that 17 of the 21 descriptors (>80%) effectively differentiated the genotypes, revealing significant genetic variability. Dendrogram analysis identified at least four major similarity groups, highlighting the potential of these genotypes for Stevia breeding programs. These findings underscore the suitability of these elite genotypes for developing superior varieties adapted to Cerrado conditions, supporting future cultivation and genetic improvement efforts. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

15 pages, 2519 KiB  
Article
Genetic Variability Related Behavioral Plasticity in Pikeperch (Sander lucioperca L.) Fingerlings
by Ildikó Benedek, Béla Urbányi, Balázs Kovács, István Lehoczky, Attila Zsolnai and Tamás Molnár
Animals 2025, 15(15), 2229; https://doi.org/10.3390/ani15152229 - 29 Jul 2025
Viewed by 165
Abstract
Background: The relationship between genetic diversity and fitness is well understood, but few studies have investigated how behavior influences genetic diversity, or vice versa. We investigated the relationship between feeding behavior (on a pelleted diet) and genetic diversity in pikeperch, a piscivorous species. [...] Read more.
Background: The relationship between genetic diversity and fitness is well understood, but few studies have investigated how behavior influences genetic diversity, or vice versa. We investigated the relationship between feeding behavior (on a pelleted diet) and genetic diversity in pikeperch, a piscivorous species. Methods: A total of 135 juvenile pikeperch from the same stock were grouped into three behavioral groups: pellet consuming, pellet refusing, and cannibalistic. Eighteen microsatellite markers were used to characterize the genetic diversity and structure of individuals. Results: The juveniles were classified into two genetic clusters: one dominated by pellet-consuming individuals and the other by pellet-refusing individuals containing equal proportions of cannibal individuals. Three of the microsatellite markers were under selection, but only one showed significant genetic segregation between the groups. For this marker, the pellet consumption was associated with low fragment length. Individual multilocus heterozygosity was significantly higher in the pellet-refusing group. Conclusions: These results suggest that pellet consumption acts as an uncontrolled selective force during domestication, influencing the genetic variability of domesticated populations. The ability to habituate to pellets has a significant genetic basis. Cannibalism does not affect genetic variability, and the emergence of the trait is independent of the propensity to consume pellets. Full article
(This article belongs to the Special Issue Fish Cognition and Behaviour)
Show Figures

Figure 1

18 pages, 4697 KiB  
Article
Audouin’s Gull Colony Itinerancy: Breeding Districts as Units for Monitoring and Conservation
by Massimo Sacchi, Barbara Amadesi, Adriano De Faveri, Gilles Faggio, Camilla Gotti, Arnaud Ledru, Sergio Nissardi, Bernard Recorbet, Marco Zenatello and Nicola Baccetti
Diversity 2025, 17(8), 526; https://doi.org/10.3390/d17080526 - 28 Jul 2025
Viewed by 366
Abstract
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we [...] Read more.
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we identified five spatial breeding units of increasing hierarchical scale—Breeding Sites, Colonies, Districts, Regions and Marine Sectors—which reflect biologically meaningful boundaries beyond simple geographic proximity. To determine the most appropriate scale for monitoring local populations, we applied multievent capture–recapture models and examined variation in survival and site fidelity across these units. Audouin’s gulls frequently change their location at the Breeding Site and Colony levels from one year to another, without apparent survival costs. In contrast, dispersal beyond Districts boundaries was found to be rare and associated with reduced survival rates, indicating that breeding Districts represent the most relevant biological unit for identifying local populations. The survival disadvantage observed in individuals leaving their District likely reflects increased extrinsic mortality in unfamiliar environments and the selective dispersal of lower-quality individuals. Within breeding Districts, birds may benefit from local knowledge and social information, supporting demographic stability and higher fitness. Our findings highlight the value of adopting a District-based framework for long-term monitoring and conservation of this endangered species. At this scale, demographic trends such as population growth or decline emerge more clearly than when assessed at the level of singular colonies. This approach can enhance our understanding of population dynamics in other mobile species and support more effective conservation strategies aligned with natural population structure. Full article
(This article belongs to the Special Issue Ecology, Diversity and Conservation of Seabirds—2nd Edition)
Show Figures

Graphical abstract

17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 184
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

28 pages, 5315 KiB  
Article
Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.)
by Zhenlei Liu, Jiaquan Pan, Sitong Liu, Zitong Yang, Huan Zhang, Tao Yu and Shaozhen He
Genes 2025, 16(8), 899; https://doi.org/10.3390/genes16080899 - 28 Jul 2025
Viewed by 326
Abstract
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed [...] Read more.
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed to investigate the low-temperature responses of two sweet potato cultivars, namely, the low-temperature-resistant cultivar “X33” and the low-temperature-sensitive cultivar “W7”. Results: The differentially expressed metabolites (DEMs) of X33 at different time stages clustered in five profiles, while they clustered in four profiles of W7 with significant differences. Differentially expressed genes (DEGs) in X33 and W7 at different time points clustered in five profiles. More DEGs exhibited continuous or persistent positive responses to low-temperature stress in X33 than in W7. There were 1918 continuously upregulated genes and 6410 persistent upregulated genes in X33, whereas 1781 and 5804 were found in W7, respectively. Core genes involved in Ca2+ signaling, MAPK cascades, the reactive oxygen species (ROS) signaling pathway, and transcription factor families (including bHLH, NAC, and WRKY) may play significant roles in response to low temperature in sweet potato. Thirty-one common differentially expressed metabolites (DEMs) were identified in the two cultivars in response to low temperature. The KEGG analysis of these common DEMs mainly belonged to isoquinoline alkaloid biosynthesis, phosphonate and phosphinate metabolism, flavonoid biosynthesis, cysteine and methionine metabolism, glycine, serine, and threonine metabolism, ABC transporters, and glycerophospholipid metabolism. Five DEMs with identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected for correlation analysis. KEGG enrichment analysis showed that the carbohydrate metabolism, phenylpropanoid metabolism, and glutathione metabolism pathways were significantly enriched and played vital roles in low-temperature resistance in sweet potato. Conclusions: These findings contribute to a deeper understanding of the molecular mechanisms underlying plant cold tolerance and offer targets for molecular breeding efforts to enhance low-temperature resistance. Full article
Show Figures

Figure 1

24 pages, 14323 KiB  
Article
GTDR-YOLOv12: Optimizing YOLO for Efficient and Accurate Weed Detection in Agriculture
by Zhaofeng Yang, Zohaib Khan, Yue Shen and Hui Liu
Agronomy 2025, 15(8), 1824; https://doi.org/10.3390/agronomy15081824 - 28 Jul 2025
Viewed by 375
Abstract
Weed infestation contributes significantly to global agricultural yield loss and increases the reliance on herbicides, raising both economic and environmental concerns. Effective weed detection in agriculture requires high accuracy and architectural efficiency. This is particularly important under challenging field conditions, including densely clustered [...] Read more.
Weed infestation contributes significantly to global agricultural yield loss and increases the reliance on herbicides, raising both economic and environmental concerns. Effective weed detection in agriculture requires high accuracy and architectural efficiency. This is particularly important under challenging field conditions, including densely clustered targets, small weed instances, and low visual contrast between vegetation and soil. In this study, we propose GTDR-YOLOv12, an improved object detection framework based on YOLOv12, tailored for real-time weed identification in complex agricultural environments. The model is evaluated on the publicly available Weeds Detection dataset, which contains a wide range of weed species and challenging visual scenarios. To achieve better accuracy and efficiency, GTDR-YOLOv12 introduces several targeted structural enhancements. The backbone incorporates GDR-Conv, which integrates Ghost convolution and Dynamic ReLU (DyReLU) to improve early-stage feature representation while reducing redundancy. The GTDR-C3 module combines GDR-Conv with Task-Dependent Attention Mechanisms (TDAMs), allowing the network to adaptively refine spatial features critical for accurate weed identification and localization. In addition, the Lookahead optimizer is employed during training to improve convergence efficiency and reduce computational overhead, thereby contributing to the model’s lightweight design. GTDR-YOLOv12 outperforms several representative detectors, including YOLOv7, YOLOv9, YOLOv10, YOLOv11, YOLOv12, ATSS, RTMDet and Double-Head. Compared with YOLOv12, GTDR-YOLOv12 achieves notable improvements across multiple evaluation metrics. Precision increases from 85.0% to 88.0%, recall from 79.7% to 83.9%, and F1-score from 82.3% to 85.9%. In terms of detection accuracy, mAP:0.5 improves from 87.0% to 90.0%, while mAP:0.5:0.95 rises from 58.0% to 63.8%. Furthermore, the model reduces computational complexity. GFLOPs drop from 5.8 to 4.8, and the number of parameters is reduced from 2.51 M to 2.23 M. These reductions reflect a more efficient network design that not only lowers model complexity but also enhances detection performance. With a throughput of 58 FPS on the NVIDIA Jetson AGX Xavier, GTDR-YOLOv12 proves both resource-efficient and deployable for practical, real-time weeding tasks in agricultural settings. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

20 pages, 2063 KiB  
Article
Chemometric Evaluation of 16 Priority PAHs in Soil and Roots of Syringa vulgaris and Ficus carica from the Bor Region (Serbia): An Insight into the Natural Plant Potential for Soil Phytomonitoring and Phytoremediation
by Aleksandra D. Papludis, Slađana Č. Alagić, Snežana M. Milić, Jelena S. Nikolić, Snežana Č. Jevtović, Vesna P. Stankov Jovanović and Gordana S. Stojanović
Environments 2025, 12(8), 256; https://doi.org/10.3390/environments12080256 - 28 Jul 2025
Viewed by 277
Abstract
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location [...] Read more.
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location in the Bor region. PAHs in roots and the corresponding soils were analyzed using the QuEChERS (Quick, Effective, Cheap, Easy, Rugged, Safe) method with some new modifications, gas chromatography/mass spectrometry, Pearson’s correlation study, hierarchical cluster analysis, and BCFs. Several central conclusions are as follows: Each plant species developed its own specific capability for PAH management, and root concentrations ranged from not detected (for several compounds) to 5592 μg/kg (for fluorene in S. vulgaris). In some cases, especially regarding benzo(a)pyrene and chrysene, both plants had a similar tactic—the total avoidance of assimilation (probably due to their high toxicity). Both plants retained significant quantities of different PAHs in their roots (many calculated BCFs were higher than 1 or were even extremely high), which recommends them for PAH phytostabilization (especially fluorene, benzo(b)fluoranthene, and benzo(k)fluoranthene). In soil monitoring, neither of the plants are helpful because their roots do not reflect the actual situation found in soil. Finally, the analysis of the corresponding soils provided useful monitoring information. Full article
Show Figures

Graphical abstract

Back to TopTop