A Virome Scanning of Saffron (Crocus sativus L.) at the National Scale in Iran Using High-Throughput Sequencing Technologies
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Virion-Associated Nucleic Acids—VANA
2.3. Rolling Circle Amplification—RCA
2.4. HTS Data Analysis and Genome Sequence Generation
2.5. Confirmation of Detection by Polymerase Chain Reaction (PCR) and Sanger Sequencing
2.6. Phylogenetic Analyses
2.7. Identification of SNPs in Each Pooled Sample and In-Depth Population Analyses
2.8. Visualization of the Virome Network
3. Results
3.1. Generation of HTS Data and Quality Control of the Sequencing
3.2. Contig Generation and Virus Identification
3.3. Confirmation of Detection by PCR and RT-PCR
3.4. Field Surveys and Virus Detection
3.5. Virome Network
3.6. Genome Reconstruction of Known Viruses and Alphasatellite Identified in Saffron
3.7. Genomic Characterization of the Newly Discovered Virus
3.8. Genome-Wide Analyses of Virus Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EAC | External Alien Control |
HTS | High-Throughput Sequencing |
IPC | Internal Positive Control |
RCA | Rolling Circle Amplification |
SaIRV | Saffron Iran Virus |
VANAs | Virion-Associated Nucleic Acids |
References
- Hill, T. The Contemporary Encyclopedia of Herbs & Spices: Seasonings for the Global Kitchen; Wiley: Hoboken, NJ, USA, 2004; 464p. [Google Scholar]
- Taheri-Dehkordi, A.; Naderi, R.; Martinelli, F.; Salami, S.A. A robust workflow for indirect somatic embryogenesis and cormlet production in saffron (Crocus sativus L.) and its wild allies; C. caspius and C. speciosus. Heliyon 2020, 6, e05841. [Google Scholar] [CrossRef]
- Lopez-Corcoles, H.; Brasa-Ramos, A.; Montero-Garcia, F.; Romero-Valverde, M.; Montero-Riquelme, F. Phenological growth stages of saffron plant (Crocus sativus L.) according to the BBCH Scale. Span. J. Agric. Res. 2015, 13, e09SC01. [Google Scholar] [CrossRef]
- Shahnoushi, N.; Abolhassani, L.; Kavakebi, V.; Reed, M.; Saghaian, S. Economic analysis of saffron production. In Saffron; Elsevier: Amsterdam, The Netherlands, 2020; pp. 337–356. [Google Scholar]
- Salehi, A.; Shariatifar, N.; Pirhadi, M.; Zeinali, T. An overview on different detection methods of saffron (Crocus sativus L.) adulterants. J. Food Meas. Charact. 2022, 16, 4996–5006. [Google Scholar] [CrossRef]
- Yousefi, M.; Shafaghi, K. Saffron in Persian traditional medicine. In Saffron; Elsevier: Amsterdam, The Netherlands, 2020; pp. 393–404. [Google Scholar]
- Fekrat, H. The application of crocin and saffron ethanol-extractable components in formulation of health care and beauty care products. In I International Symposium on Saffron Biology and Biotechnology 650; ISHS: Leuven, Belgium, 2003; pp. 365–368. [Google Scholar]
- Kyriakoudi, A.; Ordoudi, S.; Roldán-Medina, M.; Tsimidou, M. Saffron, a functional spice. Austin J. Nutr. Food Sci. 2015, 3, 1059. [Google Scholar]
- Jafari, S.-M.; Tsimidou, M.Z.; Rajabi, H.; Kyriakoudi, A. Bioactive ingredients of saffron: Extraction, analysis, applications. In Saffron; Woodhead Publishing–Elsevier: Duxford, UK, 2020; pp. 261–290. [Google Scholar]
- Vahedi, M.; Kabiri, M.; Salami, S.A.; Rezadoost, H.; Mirzaie, M.; Kanani, M.R. Quantitative HPLC-based metabolomics of some Iranian saffron (Crocus sativus L.) accessions. Ind. Crops Prod. 2018, 118, 26–29. [Google Scholar] [CrossRef]
- Ahrazem, O.; Rubio-Moraga, A.; Castillo-López, R.; Trapero-Mozos, A.; Gómez-Gómez, L. Crocus sativus pathogens and defence responses. In Functional Plant Science and Biotechnology; Global Science Book: Isleworth, UK, 2010; pp. 81–90. [Google Scholar]
- Russo, M.; Martelli, G.; Cresti, M.; Ciampolini, F. Bean yellow mosaic virus in saffron/il virus del mosaico giallo del fagiolo in zafferano. Phytopathol. Mediterr. 1979, 18, 189–191. [Google Scholar]
- Chen, J. Occurrence and control of mosaic disease [turnip mosaic virus] in saffron (Crocus sativus). Zhejiang Nongye Kexue 2000, 3, 132–135. [Google Scholar]
- Liao, F.R.; Lin, W.Z.; Chen, X.H.; Chen, Q.; Chen, H.Y.; Huang, P.Y.; Fang, Z.P.; Wu, Y.; Shen, J.G.; Lin, S.M. Molecular identification and sequence analysis of Ornithogalum mosaic virus in saffron (Crocus sativus) corms. Sci. Agric. Sin. 2017, 50, 4046–4054. [Google Scholar]
- Parizad, S.; Dizadji, A.; Koohi Habibi, M.; Winter, S.; Kalantari, S.; Movi, S.; García-Arenal, F.; Ayllón, M.A. Description and genetic variation of a distinct species of Potyvirus infecting saffron (Crocus sativus L.) plants in major production regions in Iran. Ann. Appl. Biol. 2018, 173, 233–242. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, X.; Han, K.; Chen, Z.; Song, X.; Peng, J.; Lu, Y.; Lin, L.; Chen, J.; Yan, F. First Report of Beet western yellows virus Infecting Crocus sativus in China. Plant Dis. 2018, 102, 1471. [Google Scholar] [CrossRef]
- Tavoosi, M. Molecular Detection and Investigation of Irish severe mosaic virus in Saffron, Fields of Razavi and South Khorasan. J. Saffron Res. 2022, 9, 323–334. [Google Scholar]
- Tavoosi, M.; Moradi, Z.; Mehrvar, M. Virome analysis of potyvirus populations infecting saffron in Iran: The discovery of a novel potyvirus. Eur. J. Plant Pathol. 2024, 168, 453–466. [Google Scholar] [CrossRef]
- Ágoston, J.; Almási, A.; Pinczés, D.; Sáray, R.; Salánki, K.; Palkovics, L. First report of saffron latent virus in Crocus sativus from Hungary. Plant Dis. 2024, 108, 540. [Google Scholar] [CrossRef]
- Martinez-Fajardo, C.; Navarro-Simarro, P.; Morote, L.; Rubio-Moraga, Á.; Mondéjar-López, M.; Niza, E.; Argandoña, J.; Ahrazem, O.; Gómez-Gómez, L.; López-Jiménez, A.J. Exploring the viral landscape of saffron through metatranscriptomic analysis. Virus Res. 2024, 345, 199389. [Google Scholar] [CrossRef] [PubMed]
- Atefeh Hosseini, S.; Julian, C.; Galzi, S.; Filloux, D.; Roumagnac, P. First report of saffron-associated mastrevirus 1 from saffron in Iran. Plant Dis. 2025, 109, 513. [Google Scholar] [CrossRef]
- Valouzi, H.; Dizadji, A.; Golnaraghi, A.; Salami, S.; Selmi, I.; Fontdevila Pareta, N.; Önder, S.; Massart, S. First detection of saffron dwarf virus, wheat dwarf virus, wheat dwarf virus-associated alphasatellite and a new putative potyvirus species in saffron in Iran. New Dis. Rep. 2025, 51, 70022. [Google Scholar] [CrossRef]
- Tavoosi, M.; Moradi, Z.; Mehrvar, M.; Zakiaghl, M. First identification and complete genomic characterization of saffron dwarf virus from Iran, a novel mastrevirus infecting Crocus sativus. Eur. J. Plant Pathol. 2025, 163, 1–11. [Google Scholar] [CrossRef]
- Parizad, S.; Dizadji, A.; Habibi, M.K.; Winter, S.; Kalantari, S.; Movi, S.; Tendero, C.L.; Alonso, G.L.; Moratalla-Lopez, N. The effects of geographical origin and virus infection on the saffron (Crocus sativus L.) quality. Food Chem. 2019, 295, 387–394. [Google Scholar] [CrossRef]
- Moratalla-López, N.; Parizad, S.; Habibi, M.K.; Winter, S.; Kalantari, S.; Bera, S.; Lorenzo, C.; García-Rodríguez, M.V.; Dizadji, A.; Alonso, G.L. Impact of two different dehydration methods on saffron quality, concerning the prevalence of Saffron latent virus (SaLV) in Iran. Food Chem. 2021, 337, 127786. [Google Scholar] [CrossRef]
- Shamshiri, M.; Sánchez, C.; Rico, S.; Mokhtassi-Bidgoli, A.; Ayyari, M.; Rezadoost, H.; Shams-Bakhsh, M. Molecular, Metabolic, and Physiological Responses to Progressive Biotic Stress Caused by Cucumber Mosaic Virus and Turnip Mosaic Virus in Saffron. Horticulturae 2025, 11, 96. [Google Scholar] [CrossRef]
- MacDiarmid, R.; Rodoni, B.; Melcher, U.; Ochoa-Corona, F.; Roossinck, M. Biosecurity implications of new technology and discovery in plant virus research. PLoS Pathog. 2013, 9, e1003337. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Massart, S.; Olmos, A.; Jijakli, H.; Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 2014, 188, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Al Rwahnih, M.; Daubert, S.; Golino, D.; Islas, C.; Rowhani, A. Comparison of next-generation sequencing versus biological indexing for the optimal detection of viral pathogens in grapevine. Phytopathology 2015, 105, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Li, S.; Massart, S. Is there a “biological desert” with the discovery of new plant viruses? A retrospective analysis for new fruit tree viruses. Front. Microbiol. 2020, 11, 592816. [Google Scholar] [CrossRef]
- Temple, C.; Blouin, A.G.; De Jonghe, K.; Foucart, Y.; Botermans, M.; Westenberg, M.; Schoen, R.; Gentit, P.; Visage, M.; Verdin, E. Biological and genetic characterization of Physostegia chlorotic mottle virus in Europe based on host range, location, and time. Plant Dis. 2022, 106, 2797–2807. [Google Scholar] [CrossRef]
- Rivarez, M.P.S.; Pecman, A.; Bačnik, K.; Maksimović, O.; Vučurović, A.; Seljak, G.; Mehle, N.; Gutiérrez-Aguirre, I.; Ravnikar, M.; Kutnjak, D. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. Microbiome 2023, 11, 60. [Google Scholar] [CrossRef]
- Roossinck, M.J.; Martin, D.P.; Roumagnac, P. Plant virus metagenomics: Advances in virus discovery. Phytopathology 2015, 105, 716–727. [Google Scholar] [CrossRef]
- Maclot, F.; Debue, V.; Malmstrom, C.M.; Filloux, D.; Roumagnac, P.; Eck, M.; Tamisier, L.; Blouin, A.G.; Candresse, T.; Massart, S. Long-term anthropogenic management and associated loss of plant diversity deeply impact virome richness and composition of Poaceae communities. Microbiol. Spectr. 2023, 11, e04850-22. [Google Scholar] [CrossRef]
- Olmos, A.; Boonham, N.; Candresse, T.; Gentit, P.; Giovani, B.; Kutnjak, D.; Liefting, L.; Maree, H.; Minafra, A.; Moreira, A. High-throughput sequencing technologies for plant pest diagnosis: Challenges and opportunities. EPPO Bull. 2018, 48, 219–224. [Google Scholar] [CrossRef]
- Licciardello, G.; Ferraro, R.; Scuderi, G.; Russo, M.; Catara, A.F. A simulation of the use of high throughput sequencing as pre-screening assay to enhance the surveillance of citrus viruses and viroids in the EPPO region. Agriculture 2021, 11, 400. [Google Scholar] [CrossRef]
- Claverie, S.; Varsani, A.; Hoareau, M.; Filloux, D.; Roumagnac, P.; Martin, D.P.; Lefeuvre, P.; Lett, J.-M. Sorghum mastrevirus-associated alphasatellites: New geminialphasatellites associated with an African streak mastrevirus infecting wild Poaceae plants on Reunion Island. Arch. Virol. 2020, 165, 1925–1928. [Google Scholar] [CrossRef]
- Maclot, F.; Candresse, T.; Filloux, D.; Malmstrom, C.M.; Roumagnac, P.; Van der Vlugt, R.; Massart, S. Illuminating an ecological blackbox: Using high throughput sequencing to characterize the plant virome across scales. Front. Microbiol. 2020, 11, 578064. [Google Scholar] [CrossRef] [PubMed]
- Kutnjak, D.; Tamisier, L.; Adams, I.; Boonham, N.; Candresse, T.; Chiumenti, M.; De Jonghe, K.; Kreuze, J.F.; Lefebvre, M.; Silva, G. A primer on the analysis of high-throughput sequencing data for detection of plant viruses. Microorganisms 2021, 9, 841. [Google Scholar] [CrossRef]
- Moubset, O.; François, S.; Maclot, F.; Palanga, E.; Julian, C.; Claude, L.; Fernandez, E.; Rott, P.; Daugrois, J.-H.; Antoine-Lorquin, A. Virion-associated nucleic acid-based metagenomics: A decade of advances in molecular characterization of plant viruses. Phytopathology 2022, 112, 2253–2272. [Google Scholar] [CrossRef]
- Claverie, S.; Ouattara, A.; Hoareau, M.; Filloux, D.; Varsani, A.; Roumagnac, P.; Martin, D.P.; Lett, J.-M.; Lefeuvre, P. Exploring the diversity of Poaceae-infecting mastreviruses on Reunion Island using a viral metagenomics-based approach. Sci. Rep. 2019, 9, 12716. [Google Scholar] [CrossRef] [PubMed]
- Poutaraud, A.; Desbiez, C.; Lemaire, O.; Lecoq, H.; Herrbach, E. Characterisation of a new potyvirus species infecting meadow saffron Colchicum autumnale. Arch. Virol. 2004, 149, 1267–1277. [Google Scholar] [CrossRef]
- Massart, S.; Lebas, B.; Chabirand, A.; Chappé, A.M.; Dreo, T.; Faggioli, F.; Harrison, C.; Macarthur, R.; Mehle, N.; Mezzalama, M. Guidelines for improving statistical analyses of validation datasets for plant pest diagnostic tests. EPPO Bull. 2022, 52, 419–433. [Google Scholar] [CrossRef]
- Maclot, F.J.; Debue, V.; Blouin, A.G.; Pareta, N.F.; Tamisier, L.; Filloux, D.; Massart, S. Identification, molecular and biological characterization of two novel secovirids in wild grass species in Belgium. Virus Res. 2021, 298, 198397. [Google Scholar] [CrossRef]
- Rong, W.; Rollin, J.; Hanafi, M.; Roux, N.; Massart, S. Validation of high-throughput sequencing as virus indexing test for Musa germplasm: Performance criteria evaluation and contamination monitoring using an alien control. Phyto. Front. 2023, 3, 91–102. [Google Scholar] [CrossRef]
- Palanga, E.; Filloux, D.; Martin, D.P.; Fernandez, E.; Gargani, D.; Ferdinand, R.; Zabré, J.; Bouda, Z.; Neya, J.B.; Sawadogo, M. Metagenomic-based screening and molecular characterization of cowpea-infecting viruses in Burkina Faso. PLoS ONE 2016, 11, e0165188. [Google Scholar] [CrossRef]
- François, S.; Filloux, D.; Fernandez, E.; Ogliastro, M.; Roumagnac, P. Viral metagenomics approaches for high-resolution screening of multiplexed arthropod and plant viral communities. In Viral Metagenomics: Methods and Protocols; Springer: New York, NY, USA, 2018; pp. 77–95. [Google Scholar]
- Lebas, B.; Adams, I.; Al Rwahnih, M.; Baeyen, S.; Bilodeau, G.J.; Blouin, A.G.; Boonham, N.; Candresse, T.; Chandelier, A.; De Jonghe, K. Facilitating the adoption of high-throughput sequencing technologies as a plant pest diagnostic test in laboratories: A step-by-step description. EPPO Bull. 2022, 52, 394–418. [Google Scholar] [CrossRef]
- Rollin, J. Demultiplexing: Diagnostic Existing Demultiplexing Issue in Metagenomic Virus. GitHub. 2020. Available online: https://github.com/johrollin/demultiplexing (accessed on 22 August 2022).
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [PubMed]
- Afgan, E.; Baker, D.; Batut, B.; Van Den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Nyirakanani, C.; Tamisier, L.; Bizimana, J.P.; Rollin, J.; Nduwumuremyi, A.; Bigirimana, V.d.P.; Selmi, I.; Lasois, L.; Vanderschuren, H.; Massart, S. Going beyond consensus genome sequences: An innovative SNP-based methodology reconstructs different Ugandan cassava brown streak virus haplotypes at a nationwide scale in Rwanda. Virus Evol. 2023, 9, vead053. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.W.; Moncla, L.H.; Hughes, A.L. SNPGenie: Estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data. Bioinformatics 2015, 31, 3709–3711. [Google Scholar] [CrossRef]
- Farzadfar, S.; Tomitaka, Y.; Ikematsu, M.; Golnaraghi, A.R.; Pourrahim, R.; Ohshima, K. Molecular characterisation of Turnip mosaic virus isolates from Brassicaceae weeds. Eur. J. Plant Pathol. 2009, 124, 45–55. [Google Scholar] [CrossRef]
- Parizad, S.; Dizadji, A.; Habibi, M.K.; Winter, S.; Kalantari, S.; Garcıa-Arenal, F.; Ayllón, M. Prevalence of saffron latent virus (SaLV), a new Potyvirus species, in saffron fields of Iran. J. Plant Pathol. 2017, 99, 799–818. [Google Scholar]
- Keremane, M.; Singh, K.; Ramadugu, C.; Krueger, R.R.; Skaggs, T.H. Next generation sequencing, and development of a pipeline as a tool for the detection and discovery of citrus pathogens to facilitate safer germplasm exchange. Plants 2024, 13, 411. [Google Scholar] [CrossRef]
- Parizipour, M.H.G.; Schubert, J.; Behjatnia, S.A.A.; Afsharifar, A.; Habekuß, A.; Wu, B. Phylogenetic analysis of Wheat dwarf virus isolates from Iran. Virus Genes 2017, 53, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Köklü, G.; Ramsell, J.N.; Kvarnheden, A. The complete genome sequence for a Turkish isolate of Wheat dwarf virus (WDV) from barley confirms the presence of two distinct WDV strains. Virus Genes 2007, 34, 359–366. [Google Scholar] [CrossRef]
- Huang, A.; Svanella-Dumas, L.; Vitry, C.; Marais, A.; Faure, C.; Candresse, T. A new geminialphasatellite associated with wheat dwarf virus identified in winter barley in France. Arch. Virol. 2024, 169, 162. [Google Scholar] [CrossRef]
- Briddon, R.W.; Martin, D.P.; Roumagnac, P.; Navas-Castillo, J.; Fiallo-Olivé, E.; Moriones, E.; Lett, J.-M.; Zerbini, F.M.; Varsani, A. Alphasatellitidae: A new family with two subfamilies for the classification of geminivirus-and nanovirus-associated alphasatellites. Arch. Virol. 2018, 163, 2587–2600. [Google Scholar] [CrossRef]
- Inoue-Nagata, A.K.; Jordan, R.; Kreuze, J.; Li, F.; López-Moya, J.J.; Mäkinen, K.; Ohshima, K.; Wylie, S.J.; Consortium, I.R. ICTV virus taxonomy profile: Potyviridae 2022. J. Gen. Virol. 2022, 103, 001738. [Google Scholar] [CrossRef]
- Ho, S.; Fukagawa, H.; Gibbs, A.; Golnaraghi, A.; Ikematsu, M.; Katis, N.; Korkmaz, S.; Ohshima, K.; Soda, H.; Yasaka, R. The Timescale of Emergence and Spread of Turnip Mosaic Potyvirus. Sci. Rep. 2017, 7, 4240. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, K.; Mitoma, S.; Gibbs, A.J. The genetic diversity of narcissus viruses related to turnip mosaic virus blur arbitrary boundaries used to discriminate potyvirus species. PLoS ONE 2018, 13, e0190511. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Hu, J.; Zhang, L.; Dong, X.; Ji, P.; Dong, J. Complete genome sequence analysis of a new potyvirus isolated from Paris polyphylla var. yunnanensis. Arch. Virol. 2023, 168, 43. [Google Scholar] [CrossRef]
- de Vries, J.J.; Brown, J.R.; Couto, N.; Beer, M.; Le Mercier, P.; Sidorov, I.; Papa, A.; Fischer, N.; Oude Munnink, B.B.; Rodriquez, C. Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: Bioinformatic analysis and reporting. J. Clin. Virol. 2021, 138, 104812. [Google Scholar] [CrossRef] [PubMed]
- López-Labrador, F.X.; Brown, J.R.; Fischer, N.; Harvala, H.; Van Boheemen, S.; Cinek, O.; Sayiner, A.; Madsen, T.V.; Auvinen, E.; Kufner, V. Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure. J. Clin. Virol. 2021, 134, 104691. [Google Scholar] [CrossRef]
- Nizamani, M.M.; Zhang, Q.; Muhae-Ud-Din, G.; Wang, Y. High-throughput sequencing in plant disease management: A comprehensive review of benefits, challenges, and future perspectives. Phytopathol. Res. 2023, 5, 44. [Google Scholar] [CrossRef]
- François, S.; Bernardo, P.; Filloux, D.; Roumagnac, P.; Yaverkovski, N.; Froissart, R.; Ogliastro, M. A novel itera-like densovirus isolated by viral metagenomics from the sea barley Hordeum marinum. Genome Announc. 2014, 2, e01196-14. [Google Scholar] [CrossRef]
- Filloux, D.; Fernandez, E.; Comstock, J.C.; Mollov, D.; Roumagnac, P.; Rott, P. Viral metagenomic-based screening of sugarcane from Florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis. 2018, 102, 2317–2323. [Google Scholar] [CrossRef]
- Schönegger, D.; Moubset, O.; Margaria, P.; Menzel, W.; Winter, S.; Roumagnac, P.; Marais, A.; Candresse, T. Benchmarking of virome metagenomic analysis approaches using a large, 60+ members, viral synthetic community. J. Virol. 2023, 97, e01300–e01323. [Google Scholar] [CrossRef]
- Bernardo, P.; Charles-Dominique, T.; Barakat, M.; Ortet, P.; Fernandez, E.; Filloux, D.; Hartnady, P.; Rebelo, T.A.; Cousins, S.R.; Mesleard, F. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J. 2018, 12, 173–184. [Google Scholar] [CrossRef]
- Ma, Y.; Marais, A.; Lefebvre, M.; Theil, S.; Svanella-Dumas, L.; Faure, C.; Candresse, T. Phytovirome analysis of wild plant populations: Comparison of double-stranded RNA and virion-associated nucleic acid metagenomic approaches. J. Virol. 2019, 94, e01462-19. [Google Scholar] [CrossRef] [PubMed]
- Masangwa, J.I.G.; Pareta, N.F.; Moses, P.; Hřibová, E.; Doležel, J.; Fandika, I.; Massart, S. Surveillance and molecular characterization of banana viruses and their association with Musa germplasm in Malawi. bioRxiv 2024. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, Y.; Lee, W.M.; Di Bisceglie, A.M.; Fan, X. In-depth serum virome analysis in patients with acute liver failure with indeterminate etiology. Arch. Virol. 2020, 165, 127–135. [Google Scholar] [CrossRef]
- Gorbalenya, A.E.; Lauber, C.; Siddell, S.G. Taxonomy of Viruses. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Futschik, A.; Schlötterer, C. The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics 2010, 186, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Technow, F.; Gerke, J. Parent-progeny imputation from pooled samples for cost-efficient genotyping in plant breeding. PLoS ONE 2017, 12, e0190271. [Google Scholar] [CrossRef] [PubMed]
- Ko, B.; Van Raamsdonk, J.M. RNA sequencing of pooled samples effectively identifies differentially expressed genes. Biology 2023, 12, 812. [Google Scholar] [CrossRef] [PubMed]
- Matthews, A.E.; Boves, T.J.; Percy, K.L.; Schelsky, W.M.; Wijeratne, A.J. Population Genomics of Pooled Samples: Unveiling Symbiont Infrapopulation Diversity and Host–Symbiont Coevolution. Life 2023, 13, 2054. [Google Scholar] [CrossRef]
- Tabasi, M.; Mehrabian, A.; Sayadi, S. Distribution patterns and conservation status of Crocus species in Iran, one of the diversity centers of Crocus in the Middle East. Folia Oecologica 2021, 48, 156–168. [Google Scholar] [CrossRef]
- Movi, S.; Dizadji, A.; Parizad, S.; Zarghani, S.N. Biological characteristics and genetic variation analyses of saffron latent virus (SaLV) based on genomic P1-Pro and P3 regions. Eur. J. Plant Pathol. 2022, 164, 299–312. [Google Scholar] [CrossRef]
- Maachi, A.; Donaire, L.; Hernando, Y.; Aranda, M.A. Genetic differentiation and migration fluxes of viruses from melon crops and crop edge weeds. J. Virol. 2022, 96, e00421–e00422. [Google Scholar] [CrossRef]
- Schönegger, D.; Marais, A.; Babalola, B.M.; Faure, C.; Lefebvre, M.; Svanella-Dumas, L.; Brázdová, S.; Candresse, T. Carrot populations in France and Spain host a complex virome rich in previously uncharacterized viruses. PLoS ONE 2023, 18, e0290108. [Google Scholar] [CrossRef]
- Tavoosi, M.; Moradi, Z.; Mehrvar, M. First report of Turnip mosaic virus infecting saffron in Iran. Virus Dis. 2022, 33, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Tatineni, S.; Hein, G.L. Plant viruses of agricultural importance: Current and future perspectives of virus disease management strategies. Phytopathology 2023, 113, 117–141. [Google Scholar] [CrossRef]
- Khatun, M.F.; Kwak, M.; Kwon, M.; Hossain, M.M.; Kil, E.-J. New insights into viral threats in soybean (Glycine max) crops from Bangladesh, including a novel crinivirus. Front. Microbiol. 2025, 16, 1523767. [Google Scholar] [CrossRef]
- Fontdevila Pareta, N.; Khalili, M.; Maachi, A.; Rivarez, M.P.S.; Rollin, J.; Salavert, F.; Temple, C.; Aranda, M.A.; Boonham, N.; Botermans, M. Managing the deluge of newly discovered plant viruses and viroids: An optimized scientific and regulatory framework for their characterization and risk analysis. Front. Microbiol. 2023, 14, 1181562. [Google Scholar] [CrossRef]
- Lorenzo, C.; Shadmani, G.; Valouzi, H.; Moratalla-López, N.; Bahlolzada, H.; Sánchez-Gómez, R.; Dizadji, A.; Alonso, G.L. Saffron Stigmas Apocarotenoid Contents from Saffron Latent Virus (SaLV)-Infected Plants with Different Origins and Dehydration Temperatures. Horticulturae 2023, 9, 933. [Google Scholar] [CrossRef]
- Navalinskienė, M.; Samuitienė, M. Viruses affecting some bulb and corm flower crops. Biologija 2001, 47, 84–86. [Google Scholar]
- Alavi-Siney, S.M.; Saba, J.; Siahpirani, A.F.; Nasiri, J. ISSR-assisted spatial genetic structure, population admixture, and biodiversity estimates across locally adopted saffron ecotypes from 18 different provenances of Iran. J. Appl. Res. Med. Aromat. Plants 2023, 35, 100467. [Google Scholar] [CrossRef]
- Bazoobandi, M.; Rahimi, H.; Karimi-Shahri, M.R. Saffron crop protection. In Saffron; Koocheki, A., Khajeh-Hosseini, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 169–185. [Google Scholar]
- Nigam, D.; LaTourrette, K.; Souza, P.F.; Garcia-Ruiz, H. Genome-wide variation in potyviruses. Front. Plant Sci. 2019, 10, 1439. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Wang, A. Research advances in potyviruses: From the laboratory bench to the field. Annu. Rev. Phytopathol. 2021, 59, 1–29. [Google Scholar] [CrossRef]
Sample | Province | BWYV | SaDV | SaIRV | SaLV | SYMV | TuMV | WDV | WDVaA |
---|---|---|---|---|---|---|---|---|---|
H01 | East Azerbaijan | 1089 | 3603 | 41,434 | |||||
H08 | Fars | 10,880 | 32,298 | 54,888 | 11,244 | 2646 | |||
H11 | Kerman | 829 | 1811 | 164,841 | 16,382 | 2121 | 626 | ||
H16 | 632 | 22,497 | 138,300 | ||||||
H19 | 3080 | 24,058 | 99,195 | 586 | |||||
H10 | Razavi Khorasan | 14,216 | 56,464 | 556,476 | |||||
H12 | 1220 | 8738 | 29,611 | 88,026 | 5291 | 1288 | |||
H13 | 2522 | 3828 | 101,407 | 243,496 | 4210 | ||||
H14 | South Khorasan | 370 | 31,722 | 111,194 | 1383 | ||||
H15 | 1419 | 14,725 | 119,088 | ||||||
H18 | 2270 | 20,086 | 283,666 | 5660 | 4340 | ||||
H07 | Isfahan | 1661 | 30,914 | 69,878 | 2367 | ||||
H04 | Markazi | 2088 | 39,189 | 296 | |||||
H02 | Qom | 7459 | 101,737 | ||||||
H05 | Semnan | 546 | 96,586 | ||||||
H20 | 3036 | 115,447 | 116,671 | ||||||
H06 | Tehran | 4796 | 2024 | 50,412 | 33,469 | 8676 | |||
H03 | Yazd | 201 | 3842 | 102,213 | 608 | ||||
H17 | 4632 | 98,318 | 299,031 | 1187 | |||||
H09 | Afghanistan | 4782 | 44,518 | 11,586 | 927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valouzi, H.; Dizadji, A.; Golnaraghi, A.; Salami, S.A.; Fontdevila Pareta, N.; Önder, S.; Selmi, I.; Rollin, J.; Berhal, C.; Tamisier, L.; et al. A Virome Scanning of Saffron (Crocus sativus L.) at the National Scale in Iran Using High-Throughput Sequencing Technologies. Viruses 2025, 17, 1079. https://doi.org/10.3390/v17081079
Valouzi H, Dizadji A, Golnaraghi A, Salami SA, Fontdevila Pareta N, Önder S, Selmi I, Rollin J, Berhal C, Tamisier L, et al. A Virome Scanning of Saffron (Crocus sativus L.) at the National Scale in Iran Using High-Throughput Sequencing Technologies. Viruses. 2025; 17(8):1079. https://doi.org/10.3390/v17081079
Chicago/Turabian StyleValouzi, Hajar, Akbar Dizadji, Alireza Golnaraghi, Seyed Alireza Salami, Nuria Fontdevila Pareta, Serkan Önder, Ilhem Selmi, Johan Rollin, Chadi Berhal, Lucie Tamisier, and et al. 2025. "A Virome Scanning of Saffron (Crocus sativus L.) at the National Scale in Iran Using High-Throughput Sequencing Technologies" Viruses 17, no. 8: 1079. https://doi.org/10.3390/v17081079
APA StyleValouzi, H., Dizadji, A., Golnaraghi, A., Salami, S. A., Fontdevila Pareta, N., Önder, S., Selmi, I., Rollin, J., Berhal, C., Tamisier, L., Maclot, F., Wang, L., Zhang, R., Bahlolzada, H., Lefeuvre, P., & Massart, S. (2025). A Virome Scanning of Saffron (Crocus sativus L.) at the National Scale in Iran Using High-Throughput Sequencing Technologies. Viruses, 17(8), 1079. https://doi.org/10.3390/v17081079