Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Cold Stress Treatment
2.2. Transcriptome Analysis
2.3. Metabolomics Analysis
2.4. Integrated Transcriptome and Metabolome Analysis
3. Results
3.1. Physiological Responses of X33 and W7 Sweet Potatoes to Low-Temperature Stress
3.2. Metabolic Profiling and DEMs Involved in Low-Temperature Responses Between Two Sweet Potato Varieties
3.3. Core Metabolites in Response to Low-Temperature Stress
3.4. General Description of Transcriptome Data
3.5. Functional and Enrichment Analysis of Common DEGs
3.6. Joint Analysis of DEMs and DEGs
3.7. Carbohydrate Metabolism in Response to Low Temperatures
3.8. Phenylalanine Metabolism in Response to Low Temperatures
3.9. Glutathione Metabolism in Response to Low Temperatures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Shi, Y.; Yang, S. Molecular Regulation of Plant Responses to Environmental Temperatures. Mol. Plant 2020, 13, 544–564. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Shi, Y.; Yang, S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019, 222, 1690–1704. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.J.; Parkin, I.A. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genom. 2008, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Kenchanmane Raju, S.K.; Barnes, A.C.; Schnable, J.C.; Roston, R.L. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? Plant Sci. 2018, 276, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, J.; Su, L.; Sun, K.; Li, D.; Liu, Y.; Wang, H.; Chen, Z.; Guo, T. Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. Plant Sci. 2019, 289, 110282. [Google Scholar] [CrossRef] [PubMed]
- El-Mahdy, M.T.; Ali, M.; Pisam, W.M.M.; Abeed, A.H.A. Physiological and molecular analysis of pitaya (Hylocereus polyrhizus) reveal up-regulation of secondary metabolites, nitric oxide, antioxidant defense system, and expression of responsive genes under low-temperature stress by the pre-treatment of hydrogen peroxide. Plant Physiol. Biochem. 2024, 213, 108840. [Google Scholar]
- Sheikh, M.; Vikas, S.; Meinaz, N.; Nida, Y.; Khalid, Z.M. Role of cold responsive gene (COR), late embryogenesis abundant (LEA) and anti freeze proteins (AFPs) in chilling stress tolerance. Eur. J. Biotechnol. Biosci. 2019, 7, 47–51. [Google Scholar]
- Ma, Y.; Dai, X.; Xu, Y.; Luo, W.; Zheng, X.; Zeng, D.; Pan, Y.; Lin, X.; Liu, H.; Zhang, D.; et al. COLD1 confers chilling tolerance in rice. Cell 2015, 160, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.Q.; Shen, C.; Wu, L.H.; Tang, K.X.; Lin, J. CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Crit. Rev. Biotechnol. 2011, 31, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wen, J.; Wang, S.; Chen, J.; Sun, Y.; Liu, Q.; Li, X.; Dong, S. Genome-wide identification, expression analysis, and potential roles under low-temperature stress of bHLH gene family in Prunus sibirica. Front. Plant Sci. 2023, 14, 1267107. [Google Scholar] [CrossRef] [PubMed]
- Diao, P.; Chen, C.; Zhang, Y.; Meng, Q.; Li, W.; Ma, N. The role of NAC transcription factor in plant cold response. Plant Signal Behav. 2020, 15, 1785668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hu, Z.; Zhang, Y.; Li, Y.; Zhou, S.; Chen, G. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor). Plant Cell Rep. 2012, 31, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; He, L.; Zhao, C.; Wang, F.; Yan, B.; Gao, Y.; Li, Z.; Yang, K.; Xu, J. Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature. Front. Plant Sci. 2017, 8, 2053. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhu, M.; Gao, S. Genetic and Genomic Research on Sweet Potato for Sustainable Food and Nutritional Security. Genes 2022, 13, 1833. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, D.; Moreira, B.; Marcelo, R.; Maeda, M. Sustainable management of sweet potatoes: A review on practices, strategies, and opportunities in nutrition-sensitive agriculture, energy security, and quality of life. Agric. Syst. 2023, 210, 11. [Google Scholar] [CrossRef]
- Yu, J.; Su, D.; Yang, D.; Dong, T.; Tang, Z.; Li, H.; Han, Y.; Li, Z.; Zhang, B. Chilling and Heat Stress-Induced Physiological Changes and MicroRNA-Related Mechanism in Sweetpotato (Ipomoea batatas L.). Front. Plant Sci. 2020, 11, 687. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Kim, B.H.; Ji, C.Y.; Kim, H.S.; Li, H.M.; Ma, D.F.; Kwak, S.S. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiol. Biochem. 2017, 118, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Kim, H.S.; Yu, T.; Zhang, A.; Yang, Y.; Liu, M.; Yu, W.; Zhao, P.; Zhang, Q.; Cao, Q.; et al. Identification and function analysis of bHLH genes in response to cold stress in sweetpotato. Plant Physiol. Biochem. 2021, 169, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Park, S.U.; Kim, S.E.; Lim, Y.H.; Ji, C.Y.; Kim, Y.H.; Kim, H.S.; Kwak, S.S. Overexpression of IbLfp in sweetpotato enhances the low-temperature storage ability of tuberous roots. Plant Physiol. Biochem. 2021, 167, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Kim, H.S.; Yu, T.; Liu, M.; Yu, W.; Zhao, P.; Zhang, A.; Zhang, Q.; Liu, Y.; Cao, Q.; et al. Overexpression of IbMPK3 increases low-temperature tolerance in transgenic sweetpotato. Plant Biotechnol. Rep. 2022, 16, 91–100. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, M.; Xu, G.; Yu, H.; Jia, C.; Zhu, F.; Meng, Q.; Xu, D.; Du, S.; Zhang, D.; et al. Comprehensive analysis of histophysiology, transcriptome and metabolome tolerance mechanisms in black porgy (Acanthopagrus schlegelii) under low temperature stress. Sci. Total Environ. 2024, 927, 172318. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, Y.; Hao, S.; Liu, Y.; Zhang, X.; Yang, P.; Zhang, X.; Luo, Y. Comparison of transcriptome and metabolome analysis revealed cold-resistant metabolic pathways in cucumber roots under low-temperature stress in root zone. Front. Plant Sci. 2024, 15, 1413716. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, H.A.; Knee, J.M.; Dennis, A.B.; Udaka, H.; Marshall, K.E.; Merritt, T.J.; Sinclair, B.J. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci. Rep. 2016, 6, 28999. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Seifert, S.; Lübbe, T.; Leuschner, C.; Finkeldey, R. De novo transcriptome assembly and analysis of differential gene expression in response to drought in European beech. PLoS ONE 2017, 12, e0184167. [Google Scholar] [CrossRef] [PubMed]
- Grete, F.P.; Simone, T.; Roberta, N.; Ferdinando, B.; Alfredo, P.; Angela, R.L.P.; Angelo, S. Comparative transcriptome analysis of B. oleracea L. var. italica and B. macrocarpa Guss. genotypes under drought stress: De novo vs reference genome assembly. Plant Stress 2024, 14, 100657. [Google Scholar] [CrossRef]
- Liu, L.; Si, L.; Zhang, L.; Guo, R.; Wang, R.; Dong, H.; Guo, C. Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline-alkali stress. Plant J. 2024, 119, 1900–1919. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Chen, S.; Jua, Z.; Yao, Y. Joint transcriptomic and metabolomic analysis reveals the mechanism of low-temperature tolerance in Hosta ventricosa. PLoS ONE 2021, 16, e0259455. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, H.; Jin, Y.L.; Zhu, J.C.; Ma, D.F. Analysis and perspectives of sweetpotato industry contributing to natio food security in China. Jiangsu J. Agric. Sci. (China) 2022, 38, 1484–1491. [Google Scholar]
- Liu, S.T.; Hou, Y.; Pan, J.Q.; Zhou, H.; Cui, L.; Wan, B.; Yu, T. Physiological response of sweetpotato to low temperature and evaluation of cold tolerance. Acta Agric. Zhejiangensis (China) 2025, 37, 767–778. [Google Scholar]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
- Hayes, W.B.; Mamano, N. SANA NetGO: A combinatorial approach to using Gene Ontology (GO) terms to score network alignments. Bioinformatics 2018, 34, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Cherry, J.M. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Mao, X.; Cai, T.; Luo, J.; Wei, L. KOBAS server: A web-based platform for automated annotation and pathway identification. Nucleic Acids Res. 2006, 34, W720–W724. [Google Scholar] [CrossRef] [PubMed]
- Guijas, C.; Montenegro-Burke, J.R.; Domingo-Almenara, X.; Palermo, A.; Warth, B.; Hermann, G.; Koellensperger, G.; Huan, T.; Uritboonthai, W.; Aisporna, A.E.; et al. METLIN: A Technology Platform for Identifying Knowns and Unknowns. Anal. Chem. 2018, 90, 3156–3164. [Google Scholar] [CrossRef] [PubMed]
- Sana, T.R.; Gordon, D.B.; Fischer, S.M.; Tichy, S.E.; Kitagawa, N.; Lai, C.; Gosnell, W.L.; Chang, S.P. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum. PLoS ONE 2013, 8, e60840. [Google Scholar] [CrossRef] [PubMed]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Cho, L.H.; Tun, W.; Jeon, J.S.; An, G. Sucrose signaling in higher plants. Plant Sci. 2021, 302, 110703. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Martinez, M.D.P.; Bouzid, M.; Balparda, M.; Sch warzländer, M.; Maurino, V.G. Regulation of plant glycolysis and the tricarboxylic acid cycle by posttranslational modifications. Plant J. 2025, 122, e70142. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Alvarado, G.P.; Sánchez-Nieto, S. Plant Hexokinases are Multifaceted Proteins. Plant Cell Physiol. 2017, 58, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Wang, X.; Huang, B.; Wu, X.; Shen, S.; Lin, Z.; Zhao, J.; Cai, Z. Comparative study on the intestinal absorption of three gastrodin analogues via the glucose transport pathway. Eur. J. Pharm. Sci. 2021, 163, 105839. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Misawa, N.; Harayama, S. Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids. Appl. Environ. Microbiol. 2003, 69, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Harper, J.F.; Weigand, C.; Hua, J. Resting cytosol Ca2+ level maintained by Ca2+ pumps affects environmental responses in Arabidopsis. Plant Physiol. 2023, 191, 2534–2550. [Google Scholar] [CrossRef] [PubMed]
- Bender, K.W.; Zielinski, R.E.; Huber, S.C. Revisiting paradigms of Ca2+ signaling protein kinase regulation in plants. Biochem. J. 2018, 475, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ding, S.; Zhang, H.; Du, H.; An, L. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 2011, 181, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Cheong, Y.H.; Grant, J.J.; Pandey, G.K.; Luan, S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 2003, 15, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Zhou, S.; Hu, W.; Feng, J.; Zhang, F.; Chen, L.; Huang, C.; Luo, Q.; He, Y.; Yang, G.; et al. Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol. Plant 2013, 149, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Song, J.; Tang, M.; Wang, L.; Yu, J.; Zhou, Y. CALMODULIN6 negatively regulates cold tolerance by attenuating ICE1-dependent stress responses in tomato. Plant Physiol. 2023, 193, 2105–2121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, S. Mitogen-activated protein kinase cascades in plant signaling. J. Integr. Plant Biol. 2022, 64, 301–341. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, S.; He, W.D.; Shao, X.H.; Li, C.Y.; Wei, Y.R.; Deng, G.M.; Kuang, R.B.; Hu, C.H.; Yi, G.J.; et al. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network. Sci. Rep. 2017, 7, 40852. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Jin, Z.; Liu, D.; Yang, G.; Pei, Y. Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiol. Biochem. 2017, 120, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ding, Y.; Shi, Y.; Zhang, X.; Zhang, S.; Gong, Z.; Yang, S. MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis. Dev. Cell. 2017, 43, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, J.; He, M.; Zhang, C.; Liu, Y.; Li, X.; Wang, Z.; Jin, X.; Sui, J.; Zhou, W.; et al. OsMAPK6 positively regulates rice cold tolerance at seedling stage via phosphorylating and stabilizing OsICE1 and OsIPA1. Theor. Appl. Genet. 2023, 137, 10. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yang, L.; Li, A.; Guo, J.; Wang, H.; Qi, H.; Li, M.; Yang, P.; Song, S. An AP2/ERF transcription factor confers chilling tolerance in rice. Sci. Adv. 2024, 10, eado4788. [Google Scholar] [CrossRef] [PubMed]
- Gil, K.E.; Park, C.M. Thermal adaptation and plasticity of the plant circadian clock. New Phytol. 2019, 221, 1215–1229. [Google Scholar] [CrossRef] [PubMed]
- Maeda, A.E.; Matsuo, H.; Muranaka, T.; Nakamichi, N. Cold-induced degradation of core clock proteins implements temperature compensation in the Arabidopsis circadian clock. Sci. Adv. 2024, 10, eadq0187. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Q.; Liu, C.; Zhang, N.; Xu, W. Flavonoids as key players in cold tolerance: Molecular insights and applications in horticultural crops. Hortic. Res. 2025, 12, uhae366. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yao, L.; Pecoraro, L.; Liu, C.; Wang, J.; Huang, L.; Gao, W. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit. Rev. Biotechnol. 2023, 43, 680–697. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Wang, Z.; Li, X.; Li, J.; Zhu, Y.; Jones, A.; Song, Y. Regulation of spikelet developmental responses to chilling and freezing stress mediated by differential sugar metabolism in winter wheat. Environ. Exp. Bot. 2024, 226, 105936. [Google Scholar] [CrossRef]
- Kuete, V.; Ngameni, B.; Wiench, B.; Krusche, B.; Horwedel, C.; Ngadjui, B.T.; Efferth, T. Cytotoxicity and mode of action of four naturally occuring flavonoids from the genus Dorstenia: Gancaonin Q, 4-hydroxylonchocarpin, 6-prenylapigenin, and 6,8-diprenyleriodictyol. Planta Med. 2011, 77, 1984–1989. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, H.; Wang, L.; Zhao, Q.; Wang, D.; Zhang, T. Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves. Plant Signal Behav. 2022, 17, 2013638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fernie, A.R. Metabolite profiling of Arabidopsis mutants of lower glycolysis. Sci. Data 2022, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.C.; León, P.; Zhou, L.; Sheen, J. Hexokinase as a sugar sensor in higher plants. Plant Cell 1997, 9, 15–19. [Google Scholar] [PubMed]
- Wang, Y.; Zheng, Y.; Wang, L.; Ye, Y.; Shen, X.; Hao, X.; Ding, C.; Yang, Y.; Wang, X.; Li, N. Hexokinase gene CsHXK4 positively regulates cold resistance in tea plants (Camellia sinensis). Plant Physiol. Biochem. 2025, 221, 109603. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, M.; Nicolas, M.; Ogé, L.; Pérez-Garcia, M.D.; Crespel, L.; Li, G.; Ding, Y.; Le Gourrierec, J.; Grappin, P.; et al. Glucose-6-Phosphate Dehydrogenases: The Hidden Players of Plant Physiology. Int. J. Mol. Sci. 2022, 23, 16128. [Google Scholar] [CrossRef] [PubMed]
- Wieloch, T.; Augusti, A.; Schleucher, J. Anaplerotic flux into the Calvin-Benson cycle: Hydrogen isotope evidence for in vivo occurrence in C3 metabolism. New Phytol. 2022, 234, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hou, S.; Zhang, Y.; Zhou, D.; Guo, L.; Zhao, S.; Ding, C. Dielectric Barrier Discharge Cold Plasma Improves Storage Stability in Paddy Rice by Activating the Phenylpropanoid Biosynthesis Pathway. J. Agric. Food Chem. 2024, 72, 25066–25077. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liang, X.X.; Yang, Z.Q. Effects of Low-Temperature Stress on Physiological Characteristics and Microstructure of Stems and Leaves of Pinus massoniana L. Plants 2024, 13, 2229. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Zhou, Q.; Du, Z.; Zhang, G.; Han, R.; Chen, L.; Tian, J.; Li, Y. Integrated Transcriptomics and Metabolomics Analysis of the Fructan Metabolism Response to Low-Temperature Stress in Garlic. Genes 2023, 14, 1290. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, Q.; Zhang, P.; Zhang, X.; Huang, T.; Guo, Y.; Liu, J.; Li, L.; Li, H.; Qin, P. Transcriptomic and Metabolomic Analysis of the Response of Quinoa Seedlings to Low Temperatures. Biomolecules 2022, 12, 977. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhang, P.; Jiang, C.; Wang, Q.; Guo, Y.; Zhang, X.; Huang, T.; Liu, J.; Li, L.; Li, H.; et al. Combined transcriptomic and metabolomic analyses of high temperature stress response of quinoa seedlings. BMC Plant Biol. 2023, 23, 292. [Google Scholar] [CrossRef] [PubMed]
- Khatri, P.; Chen, L.; Rajcan, I.; Dhaubhadel, S. Functional characterization of Cinnamate 4-hydroxylase gene family in soybean (Glycine max). PLoS ONE 2023, 18, e0285698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lewis, K.M.; Abril, A.; Davydov, D.R.; Vermerris, W.; Sattler, S.E.; Kang, C. Structure and Function of the Cytochrome P450 Monooxygenase Cinnamate 4-hydroxylase from Sorghum bicolor. Plant Physiol. 2020, 183, 957–973. [Google Scholar] [CrossRef] [PubMed]
- Karimzadegan, V.; Koirala, M.; Sobhanverdi, S.; Merindol, N.; Majhi, B.B.; Gélinas, S.E.; Timokhin, V.I.; Ralph, J.; Dastmalchi, M.; Desgagné-Penix, I. Characterization of cinnamate 4-hydroxylase (CYP73A) and p-coumaroyl 3’-hydroxylase (CYP98A) from Leucojum aestivum, a source of Amaryllidaceae alkaloids. Plant Physiol. Biochem. 2024, 210, 108612. [Google Scholar] [CrossRef] [PubMed]
- Millar, D.J.; Long, M.; Donovan, G.; Fraser, P.D.; Boudet, A.M.; Danoun, S.; Bramley, P.M.; Bolwell, G.P. Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids. Phytochemistry 2007, 68, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.Y.; Yan, J.P.; Meng, X.X.; Zhang, W.W.; Liao, Y.L.; Ye, J.B.; Xu, F. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba. Acta Physiologiae Plantarum 2018, 40, 7. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gul, N.; Ahmad, P.; Wani, T.A.; Tyagi, A.; Aslam, S. Glutathione improves low temperature stress tolerance in pusa sheetal cultivar of Solanum lycopersicum. Sci. Rep. 2022, 12, 12548. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Xu, Z.; Zhang, J.; Liang, L.; Xiao, J.; Liang, Z.; Yu, G.; Sun, B.; Huang, Z.; Tang, Y.; et al. NO and GSH Alleviate the Inhibition of Low-Temperature Stress on Cowpea Seedlings. Plants 2023, 12, 1317. [Google Scholar] [CrossRef] [PubMed]
Metabolite ID | Metabolite Name | CAS ID | Molecular Formula | Molecular Weight (g mol−1) | Regulation in X33 | Regulation in W7 | KEGG | HMDB | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X0_vs_X3 | X0_vs_X24 | X3_vs_X24 | W0_vs_W3 | W0_vs_W24 | W3_vs_W24 | Annotation | ko ID | ID | Taxonomy | |||||
neg_1840 | Cistanoside A | N/A | C36H48O20 | 800.8 | down | down | down | down | down | down | N/A | N/A | N/A | N/A |
neg_2935 | S-(5′-Adenosyl)-L-methionine | 485-80-3 | C15H23N6O5S+ | 399.4 | up | up | up | down | up | up | N/A | N/A | HMDB0001185 | 5′-deoxyribonucleosides |
neg_3962 | 4-Hydroxy-2,2′-bipyrrole-5-methanol | N/A | C9H7NO2 | 178.19 | down | down | down | down | down | down | C21568 | ko01100; ko01110 | N/A | N/A |
neg_4623 | Oxprenolol | 6452-71-7 | C15H24NO3 | 265.35 | down | down | down | down | down | down | N/A | N/A | HMDB0015520 | Phenol ethers |
neg_5034 | Digoxigenin | N/A | C41H64O14 | 390.51 | down | up | up | down | up | up | N/A | N/A | HMDB0060731 | Steroids and steroid derivatives |
neg_5512 | Decanoyl-L-carnitine | 1492-27-9 | C17H33NO4 | 390.5 | up | up | up | up | up | up | N/A | N/A | HMDB0000651 | Fatty Acyls |
neg_6852 | 1-Oleoyl-sn-glycero-3-phosphocholine | 19420-56-5 | C26H52NO7P | 521.7 | down | down | down | down | down | down | C03916 | N/A | HMDB0002815 | Glycerophospholipids |
neg_6879 | sesquicannabigerol | N/A | C26H40O2 | 384.6 | up | down | down | up | up | down | N/A | N/A | N/A | N/A |
neg_6937 | (S)-N-Methylcoclaurine | N/A | C18H21NO3 | 299.4 | down | down | down | down | down | down | C05176 | ko00950; ko01100; ko01110 | HMDB0060319 | Isoquinolines and derivatives |
neg_6983 | yibeissine | N/A | C27H41NO4 | 443.6 | down | down | down | down | down | down | N/A | N/A | N/A | N/A |
pos_2008 | N-Acetyldemethylphosphinothricin | N/A | C6H12NO5P | 208.13 | up | up | up | down | up | up | C17949 | ko00440; ko01110 | N/A | N/A |
pos_2127 | Taxifolin | N/A | C15H12O7 | 304.25 | up | up | up | down | up | up | C01617 | ko00941; ko01100; ko01110 | HMDB0242509 | Flavonoids |
pos_2130 | Delphinidin 3-sophoroside | 59212-40-7 | C27H31O17+ | 627.5 | up | up | up | down | up | up | N/A | N/A | HMDB0038007 | Flavonoids |
pos_2764 | Serratanidine | N/A | C16H25NO4 | 295.37 | down | down | down | down | down | down | C09899 | N/A | N/A | N/A |
pos_3752 | Gancaonin Q | 134958-52-4 | C25H26O5 | 406.5 | down | down | down | down | down | down | N/A | N/A | HMDB0038875 | Flavonoids |
pos_3982 | Cimicifugamide | N/A | C25H31NO10 | 505.5 | down | down | down | down | down | down | N/A | N/A | N/A | N/A |
pos_4068 | Emindole SB | N/A | C28H39NO | 405.6 | down | down | down | up | down | down | C20527 | ko01100; ko01110 | N/A | N/A |
pos_4232 | Nicotianamine | N/A | C12H21N3O6 | 303.31 | down | down | down | up | down | down | C05324 | ko00270; ko00999; ko01100; ko01110 | HMDB0255025 | Carboxylic acids and derivatives |
pos_5482 | LysoPE 20:2 | N/A | C25H48NO7P | 505.6 | down | down | down | down | down | down | N/A | N/A | N/A | N/A |
pos_5703 | 5-Methoxyindoleacetate | 3471-31-6 | C11H11NO3 | 205.21 | down | down | down | down | down | down | C05660 | ko00380 | HMDB0004096 | Indoles and derivatives |
pos_5743 | Choline | 62-49-7 | C5H14NO+ | 104.17 | down | down | down | down | down | down | C00114 | ko00260; ko00564; ko01100; ko02010 | HMDB0000097 | Organonitrogen compounds |
pos_6068 | DG(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)/0:0) | N/A | C39H60O5 | 608.9 | up | up | up | down | up | up | N/A | N/A | HMDB0007338 | Fatty Acyls |
neg_4060 | 8-Demethyl-8-alpha-L-rhamnosyltetracenomycin C | N/A | C28H28O15 | 604.5 | up | up | up | down | up | up | C20974 | ko01100; ko01110 | N/A | N/A |
pos_2595 | Aurachin B epoxide | N/A | C25H33NO3 | 395.5 | up | up | down | up | up | down | C21874 | ko01100; ko01110 | N/A | N/A |
pos_3724 | 6-Hydroxytryprostatin B | N/A | C21H25N3O3 | 367.4 | down | down | down | down | down | down | C20513 | ko01100; ko01110 | N/A | N/A |
pos_3802 | Met His Phe | N/A | N/A | N/A | down | down | down | down | down | down | N/A | N/A | N/A | N/A |
pos_5744 | PC(18:1(9E)/0:0)[U] | N/A | N/A | N/A | down | down | down | down | down | down | N/A | N/A | N/A | N/A |
pos_4028 | Thr Cys Asn Ala | N/A | N/A | N/A | down | down | down | down | down | down | N/A | N/A | N/A | N/A |
pos_4082 | Glu Glu Glu | N/A | N/A | N/A | down | down | down | down | down | down | N/A | N/A | N/A | N/A |
pos_4112 | Asn Ser His Ser | N/A | N/A | N/A | down | down | down | up | down | down | N/A | N/A | N/A | N/A |
neg_1665 | 2-Methyl-3-n-amyl-dihydropyrrole | N/A | N/A | N/A | up | up | down | up | up | down | C21571 | ko01100; ko01110 | N/A | N/A |
Function Classification 1 | Function Classification 2 | Function Predication | Gene Numbers | Xu33 | W7 | ||||
---|---|---|---|---|---|---|---|---|---|
X0 vs. X3 | X0 vs. X24 | X3 vs. X24 | W0 vs. W3 | W0 vs. W24 | W3 vs. W24 | ||||
Signal transduction mechanisms | Ca2+ signaling | calcium-binding protein KRP1-like | 4 | up | up | up | up | up | up |
calmodulin-binding protein 60 C-like isoform X1 | 1 | up | up | up | up | up | up | ||
calmodulin-like protein 1 | 2 | up | up | up | up | up | up | ||
putative calcium-binding protein CML19 | 3 | up | up | up | up | up | up | ||
Kinases and Phosphatases | mitogen-activated protein kinase | 3 | up | up | up | up | up | up | |
mitogen-activated protein kinase 3-like | 6 | up | up | up | up | up | up | ||
mitogen-activated protein kinase 9-like isoform X1 | 1 | up | up | up | up | up | up | ||
mitogen-activated protein kinase kinase kinase 17-like | 2 | up | up | up | up | up | up | ||
probable protein phosphatase 2C 25 | 7 | up | up | up | up | up | up | ||
ATP-dependent 6-phosphofructokinase 6-like | 2 | up | up | up | up | up | up | ||
serine/threonine-protein phosphatase 2A 57 kDa regulatory subunit B’ theta isoform-like | 2 | up | up | up | up | up | up | ||
serine/threonine-protein kinase AtPK2/AtPK19-like isoform X2 | 1 | up | up | up | up | up | up | ||
G-type lectin S-receptor-like serine/threonine-protein kinase At4g27290 isoform X1 | 2 | up | up | up | up | up | up | ||
inositol oxygenase 2-like | 1 | up | up | up | up | up | up | ||
inositol-3-phosphate synthase | 2 | up | up | up | up | up | up | ||
inositol-tetrakisphosphate 1-kinase 3-like | 4 | up | up | up | up | up | up | ||
probable inactive receptor kinase At5g10020 | 1 | down | up | up | down | up | up | ||
probable LRR receptor-like serine/threonine-protein kinase At3g47570 isoform X1 | 1 | down | down | down | down | down | up | ||
probable serine/threonine-protein kinase WNK11 isoform X2 | 1 | up | up | up | up | up | up | ||
protein LYK5-like | 1 | up | up | up | up | up | up | ||
protein STRUBBELIG-RECEPTOR FAMILY 7-like | 1 | up | up | up | up | up | up | ||
rust resistance kinase Lr10-like isoform X1 | 1 | up | up | up | up | up | up | ||
Hormone-related | / | abscisic acid 8′-hydroxylase CYP707A2 [Ipomoea triloba] | 6 | up | up | up | up | up | up |
JA-domain [Ipomoea batatas] | 1 | up | up | up | up | up | up | ||
ethylene-responsive transcription factor 5 [Ipomoea triloba] | 5 | up | up | up | up | up | up | ||
stress-related | pathogenesis-related | pathogenesis-related protein PR-4 [Ipomoea triloba] | 2 | up | up | up | up | up | down |
ROS-related | peroxiredoxin-2E-1, chloroplastic [Ipomoea triloba] | 1 | down | down | down | down | down | up | |
peroxisomal (S)-2-hydroxy-acid oxidase [Ipomoea triloba] | 1 | down | down | down | down | down | up | ||
anionic peroxidase-like [Ipomoea triloba] | 1 | up | up | down | up | up | down | ||
cold-related | cold-responsive protein kinase 2-like [Ipomoea triloba] | 1 | up | up | up | up | up | up | |
dehydration-responsive element-binding protein 1E-like | 10 | up | up | up | up | up | up | ||
aquaporin | aquaporin PIP1-2 | 6 | down | down | down | down | down | down | |
aquaporin PIP1 | 1 | down | down | down | down | down | down | ||
Transcription | AP2 domain | ethylene-responsive transcription factor 5 | 5 | up | up | up | up | up | up |
dehydration-responsive element-binding protein 1E-like | 10 | up | up | up | up | up | up | ||
B3 DNA-binding domain | AP2/ERF and B3 domain-containing transcription repressor RAV2-like | 1 | up | up | up | up | up | up | |
B-box zinc finger | zinc finger protein CONSTANS-LIKE 16 | 1 | down | down | down | down | down | up | |
bZIP transcription factor | bZIP transcription factor 53 | 1 | up | up | up | up | up | up | |
CCAAT-binding | nuclear transcription factor Y subunit A-1-like | 1 | up | up | up | up | up | up | |
CCT motif | zinc finger protein CONSTANS-LIKE 16 | 6 | up | up | up | up | up | up | |
Dof domain, zinc finger | cyclic dof factor 2-like | 5 | up | up | up | up | up | up | |
GRAS domain family | scarecrow-like protein 21 | 2 | up | up | up | up | up | up | |
Helix-loop-helix | transcription factor bHLH130-like | 1 | up | up | up | up | up | up | |
HSF-type DNA-binding | heat shock factor protein HSF30 | 3 | up | up | up | up | up | up | |
mTERF | transcription termination factor MTEF1, chloroplastic | 1 | down | down | down | down | down | down | |
Myb-like | protein CCA1-like isoform X1 | 2 | up | up | up | up | up | up | |
transcription factor HHO3-like | 5 | up | up | up | up | up | up | ||
No apical meristem (NAM) protein | NAC domain-containing protein 90-like | 1 | up | up | up | up | up | up | |
NAC1-like protein | 1 | up | up | up | up | up | up | ||
two-component | two-component response regulator-like APRR5 | 2 | up | up | up | up | up | up | |
TAZ zinc finger | BTB/POZ and TAZ domain-containing protein 4 | 1 | up | up | up | up | up | up | |
TCP family | transcription factor TCP15-like | 1 | up | down | down | up | down | down | |
WRKY | WRKY DNA-binding transcription factor 70-like | 1 | down | up | up | up | up | up | |
probable WRKY transcription factor 40 | 2 | up | up | up | up | up | up | ||
probable WRKY transcription factor 26 isoform X2 | 6 | up | up | up | up | up | up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Pan, J.; Liu, S.; Yang, Z.; Zhang, H.; Yu, T.; He, S. Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.). Genes 2025, 16, 899. https://doi.org/10.3390/genes16080899
Liu Z, Pan J, Liu S, Yang Z, Zhang H, Yu T, He S. Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.). Genes. 2025; 16(8):899. https://doi.org/10.3390/genes16080899
Chicago/Turabian StyleLiu, Zhenlei, Jiaquan Pan, Sitong Liu, Zitong Yang, Huan Zhang, Tao Yu, and Shaozhen He. 2025. "Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.)" Genes 16, no. 8: 899. https://doi.org/10.3390/genes16080899
APA StyleLiu, Z., Pan, J., Liu, S., Yang, Z., Zhang, H., Yu, T., & He, S. (2025). Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.). Genes, 16(8), 899. https://doi.org/10.3390/genes16080899