Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = spacer fabrics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4669 KB  
Article
Comparative Buffer and Spacer Layer Engineering in Co/Pt-Based Perpendicular Synthetic Antiferromagnets
by Mehmet Emre Aköz, Frowin Dörr, Ahmet Yavuz Oral and Yasser Shokr
Magnetochemistry 2026, 12(1), 13; https://doi.org/10.3390/magnetochemistry12010013 - 19 Jan 2026
Viewed by 214
Abstract
Perpendicular magnetic tunnel junctions (p-MTJs) rely on synthetic antiferromagnets (SAFs) as reference layers to achieve strong perpendicular magnetic anisotropy (PMA) together with stable interlayer exchange coupling. In this study, we present a comparative materials study of buffer and spacer layer engineering in Co/Pt-based [...] Read more.
Perpendicular magnetic tunnel junctions (p-MTJs) rely on synthetic antiferromagnets (SAFs) as reference layers to achieve strong perpendicular magnetic anisotropy (PMA) together with stable interlayer exchange coupling. In this study, we present a comparative materials study of buffer and spacer layer engineering in Co/Pt-based perpendicular synthetic antiferromagnets (p-SAFs). The influence of buffer layer selection, number of multilayer repeats, and annealing at 330 °C for 30 min on PMA and interlayer exchange coupling is systematically examined. Co/Pt multilayers with four and six repeats were grown on Ta/Ru and Ta/CuN buffer layers separately, followed by the fabrication of SAF structures incorporating Ru spacers with thickness between 0.60 and 0.80 nm. Magnetic measurements show that Ta/Ru-buffered structures exhibit squarer hysteresis loops, higher remanence, and greater tolerance to annealing at 330 °C for 30 min compared to Ta/CuN-buffered counterparts. The SAF structures display clear two-step magnetization reversal and robust antiferromagnetic coupling across the investigated Ru thickness range, with large exchange fields and bias fields in the deposited state. Although annealing reduces the absolute coupling strength, a Ru spacer thickness of 0.60 nm retains the strongest antiferromagnetic response within the studied thermal budget. These results underscore the importance of comparative buffer and spacer layer engineering and provide materials insights into the design of Co/Pt-based p-SAF reference stacks that may inform future p-MTJ structures. Full article
Show Figures

Figure 1

15 pages, 4220 KB  
Article
Influence of Connective Architectures of Inlaid Weft-Knitted Spacer Fabric on Compression, Impact Force Absorption, and Vibration Isolation
by Shu-Ning Yan, Yi-Lei Wang and Annie Yu
Polymers 2026, 18(2), 151; https://doi.org/10.3390/polym18020151 - 6 Jan 2026
Viewed by 186
Abstract
Spacer fabrics are a breathable material option for wearable cushioning, but the cushioning performance is still not comparable to that of traditional elastomeric cushioning materials. The polymer-based connective structure of spacer fabrics largely affects fabric properties, compression, and mechanical performance, and this is [...] Read more.
Spacer fabrics are a breathable material option for wearable cushioning, but the cushioning performance is still not comparable to that of traditional elastomeric cushioning materials. The polymer-based connective structure of spacer fabrics largely affects fabric properties, compression, and mechanical performance, and this is a research gap that calls for the development of spacer fabrics with enhanced cushioning functions. This study develops a new square-wave inlay pattern and investigates the effects of the inlay structure and spatial frequency of the spacer course, as well as the effects of the silicone inlay on compression, impact force absorption, and vibration isolation of the spacer fabric. Twelve samples are designed and evaluated. The results show that the square-wave inlaid spacer fabric has higher energy absorption during compression. The square-wave pattern with a shorter transition distance between the front and back tuck stitches could increase the inclination angle close to a right angle, and extra tuck stitches on the surface float could secure the square-wave structure to enhance the impact force absorption ability. The increment in the spatial frequency of spacer courses provides a less stiff fabric with lower impact force absorption but higher vibration isolation ability. This study shows the innovative development of spacer fabric for enhancing cushioning properties. Full article
(This article belongs to the Special Issue Polymer-Based Functional Fabrics for Advanced Applications)
Show Figures

Graphical abstract

25 pages, 10505 KB  
Article
Towards Scalable Production of Liquid Crystal Elastomers: A Low-Cost Automated Manufacturing Framework
by Rocco Furferi, Andrea Profili, Monica Carfagni and Lapo Governi
Designs 2026, 10(1), 3; https://doi.org/10.3390/designs10010003 - 30 Dec 2025
Viewed by 346
Abstract
Liquid Crystal Elastomers combine the elasticity of polymer networks with the anisotropic ordering of liquid crystals, thus enabling reversible shape modifications and stimulus responsive actuation. Unfortunately, manual LCE fabrication remains limited by operator-dependent variability, which can lead to inconsistent film thickness and manufacturing [...] Read more.
Liquid Crystal Elastomers combine the elasticity of polymer networks with the anisotropic ordering of liquid crystals, thus enabling reversible shape modifications and stimulus responsive actuation. Unfortunately, manual LCE fabrication remains limited by operator-dependent variability, which can lead to inconsistent film thickness and manufacturing times inadequate for a mass production. This work presents a low-cost, automated manufacturing framework that redesigns the mechanical assembly steps of the traditional one-step LCE fabrication process. The design includes rubbing, slide alignment, spacer placement, and infiltration cell assembly to ensure consistent film quality and scalability. A customized Cartesian robot, built by adapting a modified X–Y core 3D printer, integrates specially designed manipulator systems, redesigned magnetic slide holders, automated rubbing tools, and supporting fixtures to assemble infiltration devices in an automated way. Validation tests demonstrate reproducible infiltration, improved mesogen alignment confirmed via polarized optical microscopy, and high geometric repeatability, although glass-slide thickness variability remains a significant contributor to deviations in final film thickness. By enabling parallelizable low-cost production, the designed hardware demonstrates its effectiveness in devising the scalable manufacturing of LCE films suited for advanced therapeutic and engineering applications. Full article
(This article belongs to the Section Smart Manufacturing System Design)
Show Figures

Figure 1

14 pages, 2219 KB  
Article
Chemisorption vs. Physisorption in Perfluorinated Zn(II) Porphyrin–SnO2 Hybrids for Acetone Chemoresistive Detection
by Manuel Minnucci, Sara Oregioni, Eleonora Pargoletti, Gabriele Di Carlo, Francesca Tessore, Gian Luca Chiarello, Rocco Martinazzo, Mario Italo Trioni and Giuseppe Cappelletti
Molecules 2025, 30(24), 4749; https://doi.org/10.3390/molecules30244749 - 12 Dec 2025
Viewed by 577
Abstract
In this study, the integration of SnO2 with a perfluorinated Zn(II) porphyrin derivative, namely ZnTPPF20CN, was explored as a strategy to enhance the performance of chemoresistive sensors toward gaseous acetone detection. The ZnTPPF20CN molecule was specifically designed with [...] Read more.
In this study, the integration of SnO2 with a perfluorinated Zn(II) porphyrin derivative, namely ZnTPPF20CN, was explored as a strategy to enhance the performance of chemoresistive sensors toward gaseous acetone detection. The ZnTPPF20CN molecule was specifically designed with an ethynylphenyl-cyanoacrylic anchoring group and a benzothiadiazole (BTD) spacer, enabling its chemisorption onto the SnO2 surface. Hybrid materials containing three different ZnTPPF20CN-to-SnO2 ratios (1:4, 1:32, 1:64) were fabricated and tested for acetone detection at 120 °C, both under dark conditions and LED illumination. The sensing behavior of these hybrids was compared with that of previously studied SnO2 composites, incorporating physisorbed, unsubstituted ZnTPPF20. Among the tested ratios, the 1:32 ZnTPPF20CN/SnO2 demonstrated superior acetone sensitivity compared to its unmodified counterpart, despite showing a lower intrinsic conductivity in air and a reduced electron transfer efficiency. Density functional theory (DFT) calculations provided insights into the possible anchoring modes and interfacial electronic interactions, helping to rationalize this counterintuitive observation. The enhanced sensing response was attributed to a more favorable balance between charge injection and the availability of SnO2 electronic states, facilitated by the chemisorbed anchoring of ZnTPPF20CN. Overall, our findings highlight the importance of molecular engineering, particularly in terms of molecular design, loading ratio, and anchoring mechanism, in modulating charge dynamics and optimizing the sensing efficiency of porphyrin/SnO2 nanocomposites. Full article
Show Figures

Graphical abstract

11 pages, 8725 KB  
Article
Nano-Silica-Modified Hydrophobic PDMS Encapsulation on CNT Thermoelectric Fibers for Waterproof Thermoelectric Textiles
by Boxuan Zhang, Mingyuan Ma, Shengyu Wang, Hanyu Cai, Dawei Li and Peng Gu
Textiles 2025, 5(4), 52; https://doi.org/10.3390/textiles5040052 - 22 Oct 2025
Viewed by 670
Abstract
Flexible and wearable thermoelectric devices can convert body waste heat into electricity, showing a new direction to solve the long-lasting issue of energy supply on portable devices. However, thermoelectric fibers are prone to short circuits and failure due to sweat stains and washing [...] Read more.
Flexible and wearable thermoelectric devices can convert body waste heat into electricity, showing a new direction to solve the long-lasting issue of energy supply on portable devices. However, thermoelectric fibers are prone to short circuits and failure due to sweat stains and washing practices. Therefore, it is quite necessary to solve this problem to realize the practical thermoelectric device. PDMS, with its excellent insulation and flexibility, can effectively address short-circuit issues by encapsulating the surface of thermoelectric fibers. In this work, hydrophilic nano-silica (H-SiO2)-modified PDMS that insulates materials was prepared and coated on the surfaces of polyethyleneimine (PEI)- and hydrochloric acid (HCl)-treated dual-surface-modified thermoelectric fibers. The encapsulated fibers were then woven into spacer fabric to prepare thermoelectric textiles (TETs). After 50 water washing cycles, the fibers retained 97% of their conductivity, and the textiles continued to function normally underwater, indicating that the thermoelectric fibers are effectively protected under PDMS encapsulation. Full article
Show Figures

Figure 1

11 pages, 4231 KB  
Article
Adaptive Sports Bra Design for Adolescents: A Flexible Fit Solution
by Mei-Ying Kwan, Zejun Zhong, Kit-Lun Yick, Joanne Yip, Nga Wun Li, Annie Yu and Ka-Wai Lo
Materials 2025, 18(17), 4161; https://doi.org/10.3390/ma18174161 - 4 Sep 2025
Viewed by 1431
Abstract
The development of adaptive and comfortable sports bras is essential for adolescents, who experience rapid changes in body morphology during growth. Traditional bras, often made with molded polyurethane bra pads, frequently fail to accommodate these variations, leading to discomfort and poor fit. This [...] Read more.
The development of adaptive and comfortable sports bras is essential for adolescents, who experience rapid changes in body morphology during growth. Traditional bras, often made with molded polyurethane bra pads, frequently fail to accommodate these variations, leading to discomfort and poor fit. This study investigates the design of a flexible-fit bra utilizing advanced knitting technology and bio-based materials, including organic cotton and renewable acetate, to enhance comfort and adaptability. The bra, crafted from bio-based yarns, offers stretchability, breathability, and fit, allowing it to adapt to various breast shapes and sizes. Such a bra design is particularly suitable for adolescents undergoing rapid growth. This study includes assessments of material properties and user feedback to evaluate the effectiveness of the design and identify areas for improvement. Positive results were reported from both material tests and subjective evaluations, confirming the effectiveness of the design. The seamless knitting minimizes irritation, while the inlay spacer fabric absorbs impact, and the pointelle structure improves moisture management. Adjustable components enhance adaptability and ensure a flexible fit. This study highlights the potential of knitted biomaterials for creating adaptive intimate apparel, offering a scalable solution for size-inclusive fashion. Full article
(This article belongs to the Special Issue Leather, Textiles and Bio-Based Materials)
Show Figures

Figure 1

13 pages, 2423 KB  
Article
A Stepped-Spacer FinFET Design for Enhanced Device Performance in FPGA Applications
by Meysam Zareiee, Mahsa Mehrad and Abdulkarim Tawfik
Micromachines 2025, 16(8), 867; https://doi.org/10.3390/mi16080867 - 27 Jul 2025
Cited by 1 | Viewed by 1040
Abstract
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled [...] Read more.
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled nodes. In this work, we propose a novel Stepped-Spacer Structured FinFET (S3-FinFET) that incorporates a three-layer HfO2/Si3N4/HfO2 spacer configuration designed to enhance electrostatics and suppress parasitic effects. Using 2D TCAD simulations, the S3-FinFET is evaluated in terms of key performance metrics, including transfer/output characteristics, ON/OFF current ratio, subthreshold swing (SS), drain-induced barrier lowering (DIBL), gate capacitance, and cut-off frequency. The results show significant improvements in leakage control and high-frequency behavior. These enhancements make the S3-FinFET particularly well-suited for Field-Programmable Gate Arrays (FPGAs), where power efficiency, speed, and signal integrity are critical to performance in reconfigurable logic environments. Full article
Show Figures

Figure 1

16 pages, 5026 KB  
Article
Insulation Ability and Morphological Effect of ZrO2 Spacer Layer in Carbon-Based Multiporous Layered Electrode Perovskite Solar Cells
by Takaya Shioki, Naonari Izumoto, Fumitaka Iwakura, Ryuki Tsuji and Seigo Ito
Processes 2025, 13(7), 2264; https://doi.org/10.3390/pr13072264 - 16 Jul 2025
Cited by 1 | Viewed by 1206
Abstract
Fully printable carbon-based multiporous layered electrode perovskite solar cells (MPLE−PSCs) are close to being commercialized due to their excellent stability, their ability to easily be scaled up, and their amenability to mass production via non-vacuum fabrication processes. To improve their efficiency, it is [...] Read more.
Fully printable carbon-based multiporous layered electrode perovskite solar cells (MPLE−PSCs) are close to being commercialized due to their excellent stability, their ability to easily be scaled up, and their amenability to mass production via non-vacuum fabrication processes. To improve their efficiency, it is important that detailed studies of the morphologies of mesoporous electrodes be carried out. In this study, we prepared five types of ZrO2 spacer layers for MPLE−PSCs, and the morphology of ZrO2 and device performance were evaluated using a scanning electron microscope, nitrogen adsorption/desorption measurements, electrode resistance measurements, UV-visible light reflectance measurements, and current density–voltage measurements. The results reveal that the adequate specific surface area and pore size distribution of mesoporous ZrO2 provided high insulation ability when used as spacers between electrodes and light absorbance, resulting in a 10.92% photoelectric conversion efficiency with a 23.22 mA cm−2 short-circuit current density. This information can serve as a guideline for designing morphologies useful for producing high-efficiency devices. Full article
(This article belongs to the Special Issue Sustainability of Perovskite Solar Cells)
Show Figures

Figure 1

14 pages, 1417 KB  
Article
Surface and Antimicrobial Properties of Ester-Based Gemini Surfactants
by Iwona Kowalczyk, Adrianna Szulc, Anna Koziróg, Anna Komasa and Bogumił Brycki
Molecules 2025, 30(12), 2648; https://doi.org/10.3390/molecules30122648 - 19 Jun 2025
Cited by 3 | Viewed by 1560
Abstract
Cationic surfactants, accounting for approximately 7% of the global surfactant market, are widely used in applications such as fabric softeners, biocides, and corrosion inhibitors. Recently, gemini surfactants—comprising two amphiphilic units linked by a spacer—have attracted significant interest due to their superior surface activity, [...] Read more.
Cationic surfactants, accounting for approximately 7% of the global surfactant market, are widely used in applications such as fabric softeners, biocides, and corrosion inhibitors. Recently, gemini surfactants—comprising two amphiphilic units linked by a spacer—have attracted significant interest due to their superior surface activity, lower critical micelle concentrations, and strong antimicrobial properties. However, their poor biodegradability, resulting from their complex molecular structure, has raised environmental concerns. To address this, researchers have developed ester-based gemini surfactants incorporating biodegradable bonds. This study aimed to investigate the relationship between the structure of ester-based gemini surfactants (hydrophobic chain length and spacer type) and their antimicrobial activity against bacteria and fungi. Three series of compounds featuring different functional groups in the spacer were synthesized, along with a trimeric surfactant for comparative purposes. The results demonstrated that both the hydrophobic chain length and the presence of additional cationic groups significantly influence the CMC and antimicrobial performance. Quantum mechanical calculations were also performed to search for correlations between electronic properties and chemical reactivity of compounds. These findings highlight that ester-based gemini surfactants combine high surface and antimicrobial activity with the potential for improved biodegradability, making them promising candidates for use in environmentally friendly applications. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

13 pages, 6774 KB  
Article
Predictive Modeling of Textile Heat Sinks for Enhanced Thermal Management in Space and Military Applications
by Michal Frydrysiak and Piotr Kosobudzki
Energies 2025, 18(7), 1744; https://doi.org/10.3390/en18071744 - 31 Mar 2025
Cited by 1 | Viewed by 952
Abstract
This paper presents the research and numerical modeling of heat flow through a textile heat sink (THS). The aim of this research is to create a numerical model of a THS that not only simulates the thermal behavior of knitted fabrics, which are [...] Read more.
This paper presents the research and numerical modeling of heat flow through a textile heat sink (THS). The aim of this research is to create a numerical model of a THS that not only simulates the thermal behavior of knitted fabrics, which are used to construct a THS, but also serves as a predictive tool for the heat flow coming from different devices, thus increasing thermal management safety. By integrating modeling tools with textile engineering, this study contributes valuable insights to the development of effective passive cooling solutions for textronics applications, e.g., in thermal management in the military or air space sectors. THS is a support tool for multilayer insulation (MLI) blankets in space satellites, used to maintain the insulation performance of MLI to retain the extremely low temperature of satellite sensors or fuel tanks. The textile radiator made of spacer knitted 3D fabric consists of monofilament yarns covered with aluminum. THS samples were made on the HD 6/20-65 EL machine of Karl Mayer, with the calibration number E12. Numerical modeling was performed using ANSYS software. The numerical simulations of the temperature gradient presented the heat flow for source temperatures of 50 °C and 70 °C for different values of air velocity. Full article
Show Figures

Figure 1

15 pages, 3309 KB  
Article
Emission Enhancement of ZnO Thin Films in Ultraviolet Wavelength Region Using Au Nano-Hemisphere on Al Mirror Structures
by Shogo Tokimori, Kai Funato, Kenji Wada, Tetsuya Matsuyama and Koichi Okamoto
Nanomaterials 2025, 15(5), 400; https://doi.org/10.3390/nano15050400 - 6 Mar 2025
Cited by 4 | Viewed by 1632
Abstract
Using a heterogeneous metal Nano Hemisphere on Mirror (NHoM) structure, composed of an Al2O3 thin film and Au nano-hemispheres formed on a thick Al film, we successfully generated two distinct surface plasmon resonance (SPR) peaks: one in the ultraviolet (UV) [...] Read more.
Using a heterogeneous metal Nano Hemisphere on Mirror (NHoM) structure, composed of an Al2O3 thin film and Au nano-hemispheres formed on a thick Al film, we successfully generated two distinct surface plasmon resonance (SPR) peaks: one in the ultraviolet (UV) wavelength range below 400 nm and another in the visible range between 600 and 700 nm. This NHoM structure can be fabricated through a straightforward process involving deposition, sputtering, and annealing, enabling rapid, large-area formation. By adjusting the thickness of the Al2O3 spacer layer in the NHoM structure, we precisely controlled the localized surface plasmon resonance (LSPR) wavelength, spanning a wide range from the UV to the visible spectrum. Through this tuning, we enhanced the band-edge UV emission of the ZnO thin film by a factor of 35. Temperature-dependent measurements of emission intensity revealed that the NHoM structure increased the internal quantum efficiency (IQE) of the ZnO thin film from 8% to 19%. The heterometallic NHoM structure proposed in this study enables wide-ranging control of SPR wavelengths and demonstrates significant potential for applications in enhancing luminescence in the deep ultraviolet (DUV) region, where luminescence efficiency is typically low. Full article
Show Figures

Figure 1

16 pages, 6673 KB  
Article
Simulated Microfluidic Device Constructed Using Terahertz Metamaterial for Sensing and Switching Applications
by Mei Zhu, Xiuxiu Fu, Hongfang Yang, Qianqian Song, Hai-Lung Wang and Shengqian Ma
Photonics 2025, 12(3), 194; https://doi.org/10.3390/photonics12030194 - 25 Feb 2025
Cited by 1 | Viewed by 848
Abstract
We propose a microfluidic device that incorporates two layers of planar split-ring resonator (SRR)-based terahertz (THz) metamaterials and study its optical performance through simulation. The device features a concise design and leverages mature and straightforward fabrication processes. Our simulations reveal its remarkable sensing [...] Read more.
We propose a microfluidic device that incorporates two layers of planar split-ring resonator (SRR)-based terahertz (THz) metamaterials and study its optical performance through simulation. The device features a concise design and leverages mature and straightforward fabrication processes. Our simulations reveal its remarkable sensing capabilities, with a sensitivity of up to 507.7 GHz/RIU for refractive index (RI) sensing and 16.03 GHz/μm for pressure sensing. Moreover, the device enables real-time monitoring, as it allows for a continuous flow of liquid between the layers. It can also function as an optical switch with a straightforward controlling method involving injecting and evacuating liquid. The maximum modulation depth (MD) achieved is 64.5%. The influence of fabrication errors during assembly of the two layers was studied in detail through simulation. The device demonstrates great robustness against fabrication imperfections, such as layer misalignment and spacer thickness variations, for most of the applications. Strict alignment is only necessary when targeting high-sensitivity RI sensing using the second resonance. The device’s unique combination of sensitivity, tunability, and compact design paves the way for potential applications in diverse fields, including biosensing, environmental monitoring, and optical communications. Full article
Show Figures

Figure 1

13 pages, 6068 KB  
Article
Fabrication and Characterization of a Flexible Polyurethane-Based Triboelectric Nanogenerator for a Harvesting Energy System
by Saba Ejaz, Imran Shah, Shahid Aziz, Gul Hassan, Ahmed Shuja, Muhammad Asif Khan and Dong-Won Jung
Micromachines 2025, 16(2), 230; https://doi.org/10.3390/mi16020230 - 17 Feb 2025
Cited by 6 | Viewed by 2458
Abstract
Powering wearable and portable devices, triboelectric nanogenerators (TENGs) are a considerably promising technology. Low-cost production, ease of fabrication, optimal efficiency, and high output performance are always key concerns in developing energy harvesting technologies. Optimum efficiency and high output are always key concerns. This [...] Read more.
Powering wearable and portable devices, triboelectric nanogenerators (TENGs) are a considerably promising technology. Low-cost production, ease of fabrication, optimal efficiency, and high output performance are always key concerns in developing energy harvesting technologies. Optimum efficiency and high output are always key concerns. This research addresses the ongoing challenge of raising efficient, flexible, and lightweight energy harvesting systems for recent wearable technologies. In this research, a triboelectric nanogenerator is proposed for harvesting the triboelectric effect. Using polyurethane (PU), a bendable TENG that is in the vertical contact separation mode was developed. UV-curable PU forms the basis of TENGs. A sponge, repurposed from landfill waste, acts by means of a spacer to maintain a consistent air gap between the tribo-layers for enhanced triboelectrification. The triboelectric nanogenerators formed a Voc approaching 500 V and a current of ~2 µA and also showed high performance with a power density of 8.53 W/m2. In addition, the triboelectric nanogenerator can light LEDs and charge capacitors, making it a self-powered energy source for portable devices, Wi-Fi, and monitoring systems. The proposed TENG provides a capable solution for sustainable, self-powered wearable electronics and has the potential for further development in energy-efficient and eco-friendly applications. Full article
(This article belongs to the Special Issue Piezoelectric Devices and System in Micromachines)
Show Figures

Figure 1

18 pages, 3111 KB  
Article
Enhancement of Roll-to-Roll Gravure-Printed Cantilever Touch Sensors via a Transferring and Bonding Method
by Sang Hoon Lee, Jae Hak Shin and Sangyoon Lee
Sensors 2025, 25(3), 629; https://doi.org/10.3390/s25030629 - 22 Jan 2025
Cited by 3 | Viewed by 3492
Abstract
Sensor miniaturization offers significant advantages, including enhanced SoC integration efficiency, reduced cost, and lightweight design. While the roll-to-roll printed electronics fabrication process is advantageous for the mass production of sensors compared to the traditional MEMS technology, producing sensors that require air gap-based 3D [...] Read more.
Sensor miniaturization offers significant advantages, including enhanced SoC integration efficiency, reduced cost, and lightweight design. While the roll-to-roll printed electronics fabrication process is advantageous for the mass production of sensors compared to the traditional MEMS technology, producing sensors that require air gap-based 3D structures remains challenging. This study proposes an integration of roll-to-roll gravure printing with a transferring and bonding method for touch sensor fabrication. Unlike previously reported methods for sacrificial layer removal, this approach prevents stiction issues, thus enabling sensor miniaturization and providing the flexibility to select materials that minimize sensitivity degradation during scaling. For the lower part of the sensor, Ag and BaSO4 were roll-to-roll gravure-printed on a flexible PET substrate to form the bottom electrode and dielectric layer, followed by BaSO4 spin coating on the sensor’s anchor area to form a spacer. For the upper part, a water-soluble PVP sacrificial layer was roll-to-roll gravure-printed on another flexible PET substrate, followed by spin coating Ag and SU-8 to form the top electrode and the structural layer, respectively. The sacrificial layer of the upper part was removed with water to delaminate the top electrode and structural layer from the substrate, then transferred and bonded onto the spacer of the lower part. Touch sensors of three different sizes were fabricated, and their performances were comparatively analyzed along with that of an epoxy resin-based sensor, demonstrating that our sensor attained miniaturization while achieving relatively high sensitivity. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Graphical abstract

22 pages, 3551 KB  
Article
Behaviour of Knitted Materials in a Vibrating Environment
by Mirela Blaga, Neculai Eugen Seghedin, Mihăiță Horodincă, Cristina Grosu, Hassen Gaaloul, Amel Babay, Soufien Dhouib and Bechir Azouz
Materials 2025, 18(3), 479; https://doi.org/10.3390/ma18030479 - 21 Jan 2025
Cited by 1 | Viewed by 1071
Abstract
The energy generated by the impact of vibrations from industrial tools or ongoing activities can be transmitted to humans and cause various injuries. Knitted materials can be considered as parts of anti-vibration equipment as they have proven their ability to absorb shocks. In [...] Read more.
The energy generated by the impact of vibrations from industrial tools or ongoing activities can be transmitted to humans and cause various injuries. Knitted materials can be considered as parts of anti-vibration equipment as they have proven their ability to absorb shocks. In this study, six spacer knitted fabrics consisting of two outer layers of cotton yarns (Nm 1/50 and Nm 1/40) and cashmere yarns (Nm 2/56) connected by PES monofilaments with a diameter of 0.08 mm were tested. To date, the use of natural yarns in the outer layers of spacer fabrics used in environments subject to vibration has been less studied. The first part of the experiments deals with the measurement of the natural frequencies of the materials, which were determined using the free vibration method. The results show that the direction of the experiment, the yarn count, the stitch density, and the thickness of the material influence the value of the natural frequencies. These values are relevant in order to avoid undesirable resonances that occur when the excitation frequency of an external system overlaps with the natural frequency of the material. In the second part, the vibration transmissibility was simulated using a vibration system with one degree of freedom. The fabrics composed of cotton yarns Nm 1/50 had the highest damping capacity and the highest specific damping coefficient and the lowest value for vibration transmission, which make them recommendable for protective materials. Full article
(This article belongs to the Special Issue Functional Textiles: Fabrication, Processing and Applications)
Show Figures

Figure 1

Back to TopTop