materials-logo

Journal Browser

Journal Browser

Functional Textiles: Fabrication, Processing and Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Smart Materials".

Deadline for manuscript submissions: 10 February 2026 | Viewed by 2061

Special Issue Editor

Special Issue Information

Dear Colleagues,

In recent years, the application of textiles has expanded dramatically beyond their conventional usage as apparels, which inspires a continuous emergence of new and advanced household and technical fabrics. At present, textile materials should overcome significant developmental hurdles to align with sustainability goals and meet stringent technical, legal, and specialized standards. The current market shows an increasing preference for multifunctional textiles that offer additional benefits beyond their basic purpose. Therefore, cutting-edge materials and technologies are being introduced to fabricate novel functional textile materials, which often include the utilization of enzymes and bio-based additives, advanced materials, nanoscale materials, etc., to alter the nature of fibres and polymers, as well as the application of coatings, plasma treatments, inkjet printing, ScCO2, etc.

This Special Issue aims to gather the most recent advancements and breakthroughs in the realm of multifunctional textiles. The articles featured will encompass a wide range of subjects related to innovative materials, technological applications, and manufacturing processes.

Dr. Yuyang Zhou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • textiles
  • fibres and polymers
  • functionality
  • modification
  • smart textile
  • bio-extracts
  • nanomaterials
  • flame retardant
  • enzyme
  • sustainability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 4105 KB  
Article
Reutilizing Flavonoids from Agricultural By-Products for In Situ Generation and Immobilization of AgNPs on Silk Towards Coloration, Antimicrobial and Anti-UV Functions
by Wei Chen, Yijie Yue, Xiaoqi Zhou, Jingyu Sun, Leyang Chen, Xiaoyan Hu and Yuyang Zhou
Materials 2025, 18(23), 5409; https://doi.org/10.3390/ma18235409 - 30 Nov 2025
Viewed by 134
Abstract
The utilization of agro-byproducts for textile dyeing and finishing is strongly suggested to meet sustainability and cost-efficiency objectives. Despite recently proliferating studies, three major issues hinder the industrialization of such a technique: identifying reasonable bio-resources, ensuring compatibility between agro-byproducts and textile substrates, and [...] Read more.
The utilization of agro-byproducts for textile dyeing and finishing is strongly suggested to meet sustainability and cost-efficiency objectives. Despite recently proliferating studies, three major issues hinder the industrialization of such a technique: identifying reasonable bio-resources, ensuring compatibility between agro-byproducts and textile substrates, and achieving satisfactory color depth, functionality, and durability. This research introduces an approach that forms and fixes silver nanoparticles (AgNPs) on silk using three representative flavonoids (FLs)—Quercetin (QUE), Baicalin (BAI), and Rutin (RUT)—through a single-step in situ bio-reduction. Results demonstrate that FLs-synthesized AgNPs@silk generates attractive spectra of hues, varying from pale cream-brown to deep golden-brown. Using an equivalent quantity of FLs, the color intensity of silk descends in QUE-Ag@silk > BAI-Ag@silk > RUR-Ag@silk, due to the decreasing reactivity and binding affinity of FLs to silk. SEM reveals uniformly distributed spherical AgNPs in dimensions between 20 and 40 nm on silk and the dimension inversely correlates with FLs concentration while being directly proportional to silver nitrate. The modified silk exhibits remarkable antimicrobial performance (>98% pathogen elimination) and exceptional wash resistance (>90% reduction both of E. coli and S. aureus after ten cycles of washing). Additionally, the FLs-synthesized AgNPs provide silk with superior UV shielding capability. This study stems from environmental awareness and sustainable production of AgNPs by FLs, ready for developing hygienic and therapeutic textile materials. Full article
(This article belongs to the Special Issue Functional Textiles: Fabrication, Processing and Applications)
Show Figures

Figure 1

18 pages, 3412 KB  
Article
Comfort During Motion: Analyzing the Pressure Profile of Auxetic Bra Pads
by Yin-ching Keung, Kit-lun Yick, Joanne Yip and Annie Yu
Materials 2025, 18(22), 5071; https://doi.org/10.3390/ma18225071 - 7 Nov 2025
Viewed by 539
Abstract
Auxetic structures, characterized by a negative Poisson’s ratio and unique form-fitting deformation, are adopted for designing a bra pad that would facilitate bras with a flexible and adaptive fit. This study compares the pressure distribution between auxetic and traditional molded bra pads, highlighting [...] Read more.
Auxetic structures, characterized by a negative Poisson’s ratio and unique form-fitting deformation, are adopted for designing a bra pad that would facilitate bras with a flexible and adaptive fit. This study compares the pressure distribution between auxetic and traditional molded bra pads, highlighting the advantages of auxetic materials in applying uniform pressure and addressing health concerns. Seven athletic female participants with a bra size of 75B comprise the study sample. Anthropometric data of naked breasts are collected by using three-dimensional (3D) scanning to obtain the underbust and full bust dimensions in the standing and leaning forward positions, while the pressure distribution is measured with the Novel Pliance® pressure measurement system in three poses: standing, static cycling, and dynamic cycling. The results show that the auxetic designs of bra pads consistently apply a more uniform pressure distribution compared to traditional foam pads, with mean pressures of 2.92 kPa for auxetic pads compared to 4.81 kPa for traditional foam pads during static cycling. Moreover, auxetic pads reduced maximum pressure by 25% compared to molded cups, and spatial variability was halved (SD 0.85 kPa vs. 1.70 kPa). Notably, at the bra neckline, auxetic pads exhibit increased pressure as the body leans forward, demonstrating their ability to adapt to changing breast shapes while maintaining adequate bra-breast contact. In contrast, in the lower breast area, the auxetic pads show a decrease in pressure, which indicates their capacity to accommodate variations in breast girth or volume without exerting excessive force. These findings highlight the superior adaptability and wear comfort provided by an auxetic structure, which shows its potential to address the dynamic support needs of active women. Overall, the auxetic designs of a bra pad in this study represent a significant advancement in sports bra technology and offer a promising alternative to traditional molded cups in activewear design. Full article
(This article belongs to the Special Issue Functional Textiles: Fabrication, Processing and Applications)
Show Figures

Figure 1

22 pages, 3551 KB  
Article
Behaviour of Knitted Materials in a Vibrating Environment
by Mirela Blaga, Neculai Eugen Seghedin, Mihăiță Horodincă, Cristina Grosu, Hassen Gaaloul, Amel Babay, Soufien Dhouib and Bechir Azouz
Materials 2025, 18(3), 479; https://doi.org/10.3390/ma18030479 - 21 Jan 2025
Cited by 1 | Viewed by 962
Abstract
The energy generated by the impact of vibrations from industrial tools or ongoing activities can be transmitted to humans and cause various injuries. Knitted materials can be considered as parts of anti-vibration equipment as they have proven their ability to absorb shocks. In [...] Read more.
The energy generated by the impact of vibrations from industrial tools or ongoing activities can be transmitted to humans and cause various injuries. Knitted materials can be considered as parts of anti-vibration equipment as they have proven their ability to absorb shocks. In this study, six spacer knitted fabrics consisting of two outer layers of cotton yarns (Nm 1/50 and Nm 1/40) and cashmere yarns (Nm 2/56) connected by PES monofilaments with a diameter of 0.08 mm were tested. To date, the use of natural yarns in the outer layers of spacer fabrics used in environments subject to vibration has been less studied. The first part of the experiments deals with the measurement of the natural frequencies of the materials, which were determined using the free vibration method. The results show that the direction of the experiment, the yarn count, the stitch density, and the thickness of the material influence the value of the natural frequencies. These values are relevant in order to avoid undesirable resonances that occur when the excitation frequency of an external system overlaps with the natural frequency of the material. In the second part, the vibration transmissibility was simulated using a vibration system with one degree of freedom. The fabrics composed of cotton yarns Nm 1/50 had the highest damping capacity and the highest specific damping coefficient and the lowest value for vibration transmission, which make them recommendable for protective materials. Full article
(This article belongs to the Special Issue Functional Textiles: Fabrication, Processing and Applications)
Show Figures

Figure 1

Back to TopTop