Comparative Buffer and Spacer Layer Engineering in Co/Pt-Based Perpendicular Synthetic Antiferromagnets
Abstract
1. Introduction
2. Experimental Setup
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thomas, L.; Jan, G.; Zhu, J.; Liu, H.; Lee, Y.J.; Le, S.; Tong, R.Y.; Pi, K.; Wang, Y.J.; Shen, D.; et al. Spin-transfer torque devices for magnetic random access memory. J. Appl. Phys. 2014, 115, 172615. [Google Scholar]
- Cai, H.; Kang, W.; Wang, Y.; De Barros Naviner, L.A.; Yang, J.; Zhao, W. High performance MRAM with spin-transfer-torque and voltage-controlled magnetic anisotropy effects. Appl. Sci. 2017, 7, 929. [Google Scholar]
- Endoh, T.; Honjo, H. A recent progress of spintronics devices for integrated circuit applications. J. Low Power Electron. Appl. 2018, 8, 44. [Google Scholar] [CrossRef]
- Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S.N. Spintronics based random access memory: A review. Mater. Today 2017, 20, 530–548. [Google Scholar] [CrossRef]
- Maciel, N.; Marques, E.; Navier, L.; Zhou, Y.; Cai, H. Magnetic Tunnel Junction Applications. Sensors 2020, 20, 121. [Google Scholar]
- Krizakova, V.; Perumkunnil, M.; Couet, S.; Gambardella, P.; Garello, K. Spin-orbit torque switching of magnetic tunnel junctions for memory applications. J. Magn. Magn. Mater. 2022, 562, 169692. [Google Scholar] [CrossRef]
- Peng, S.; Zhu, D.; Li, W.; Wu, H.; Grutter, A.J.; Gilbert, D.A.; Lu, J.; Xiong, D.; Cai, W.; Shafer, P.; et al. Exchange Bias Switching in an Antiferromagnet/Ferromagnet Bilayer Driven by Spin–Orbit Torque. Nat. Electron. 2020, 3, 757–764. [Google Scholar]
- Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic Spintronics. Nat. Nanotechnol. 2016, 11, 231–241. [Google Scholar] [CrossRef]
- Wadley, P.; Howells, B.; Zelezny, J.; Andrews, C.; Hills, V.; Campions, R.P.; Novak, V.; Olejnik, K.; Maccheerozzi, F.; Dhesi, S.S.; et al. Electrical Switching of an Antiferromagnet. Science 2016, 351, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.C.; Betto, D.; Rode, K.; Coey, J.M.D.; Stamenov, P. Spin–Orbit Torque Switching without An External Field Using Interlayer Exchange Coupling. Nat. Nanotechnol. 2016, 11, 758–762. [Google Scholar] [CrossRef]
- van der Brink, A.; Vermijs, G.; Solignac, A.; Koo, J.; Kohlhepp, J.T.; Swagten, H.J.M.; Koopmans, B. Field-Free Magnetization Reversal by Spin-Hall Effect and Exchange Bias. Nat. Commun. 2016, 7, 10854. [Google Scholar] [CrossRef]
- Huang, D.; Lattery, D.; Liu, J.; Wang, X. Materials Engineering Enabled by Time-Resolved Magneto-Optical Kerr Effect for Spintronic Applications. ACS Appl. Electron. Mater. 2020, 3, 119–127. [Google Scholar] [CrossRef]
- Sharma, B.; Bhutia, P.R.; Raj, R.K.; Chettri, B.; Kaushik, B.K.; Shreya, S. VCMA Gradient-Driven Skyrmion on a Trapezoidal Nanotrack for Racetrack Memory Application. IEEE Open J. Nanotechnol. 2025, 6, 44–50. [Google Scholar] [CrossRef]
- Thapa, A.; Chettri, B.; Pradhan, P.C.; Sharma, B. First-principle Study of CrO2-BNNT-CrO2 Based MTJ Device Using EHTB Model and Its Application in a MRAM Circuit. Mater. Today Commun. 2024, 39, 108841. [Google Scholar] [CrossRef]
- Razavi, S.A.; Wu, D.; Yu, G.; Lau, Y.-C.; Wong, K.L.; Zhu, W.; He, C.; Zhang, Z.; Coey, J.M.D.; Stamenov, P.; et al. Joule Heating Effect on Field-Free Magnetization Switching by Spin-Orbit Torque in Exchange-Biased Systems. Phys. Rev. Appl. 2017, 7, 024023. [Google Scholar] [CrossRef]
- Kimata, M.; Chen, H.; Kondou, K.; Sugimoto, S.; Muduli, P.K.; Ikhlas, M.; Omori, Y.; Tomita, T.; MacDonald, A.H.; Nakatsuji, S.; et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 2019, 565, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-H.; Yang, B.-Y.; Tsai, M.-H.; Chen, P.-C.; Huang, K.-F.; Lin, H.-H.; Lai, C.-H. Manipulating exchange bias by spin–orbit torque. Nat. Mater. 2019, 18, 335–341. [Google Scholar] [CrossRef]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721–724. [Google Scholar] [CrossRef]
- Khanal, P.; Zhou, B.; Andrade, M.; Dang, Y.; Davydov, A.; Habiboglu, A.; Saidian, J.; Laurie, A.; Wang, J.P.; Gopman, D.B.; et al. Perpendicular magnetic tunnel junctions with multi-interface free layer. Appl. Phys. Lett. 2022, 563, 169914. [Google Scholar] [CrossRef]
- Palin, V.; Guillemard, C.; de Melo, C.; Migot, S.; Gargiani, P.; Valvidares, M.; Bertran, F.; Andrieu, S. Engineering of perpendicular magnetic anisotropy in half-metallic magnetic Heusler epitaxial thin films. Phys. Rev. Appl. 2023, 20, 054017. [Google Scholar] [CrossRef]
- Lou, K.; Xie, T.; Zhao, Q.; Jiang, B.; Xia, C.; Zhang, H.; Yao, Z.; Bi, C. Perpendicular magnetic anisotropy in as-deposited CoFeB/MgO thin films. Appl. Phys. Lett. 2022, 121, 122401. [Google Scholar] [CrossRef]
- Devolder, T.; Couet, S.; Swerts, J.; Liu, E.; Lin, T.; Mertens, S.; Kar, G.; Furnemont, A. Annealing stability of magnetic tunnel junctions based on dual MgO free layers and [Co/Ni] based thin synthetic antiferromagnet fixed system. J. Appl. Phys. 2017, 121, 113904. [Google Scholar] [CrossRef]
- Law, W.C.; Jin, T.L.; Zhu, X.T.; Nistala, R.R.; Thiyagarajah, N.; Seet, C.S.; Lew, W.S. Perpendicular magnetic anisotropy in Co/Pt multilayers induced by hcp-Ho at 400 °C. J. Magn. Magn. Mater. 2019, 477, 124–130. [Google Scholar] [CrossRef]
- Garzón, E.; De Rose, R.; Crupi, F.; Trojman, L.; Teman, A.; Lanuzza, M. Adjusting thermal stability in double-barrier MTJ for energy improvement in cryogenic STT-MRAMs. Solid-State Electron. 2022, 194, 108315. [Google Scholar] [CrossRef]
- Sun, Y.; Meng, F.; Gong, J.; Gao, Y.; Chen, R.; Zhao, L.; Zeng, D.; Fu, T.; He, W.; Wang, Y. Optimization of bifurcated switching by enhanced synthetic antiferromagnetic layer. Electronics 2024, 13, 4771. [Google Scholar] [CrossRef]
- Verbeno, C.H.; Zázvorka, J.; Nowak, L.; Veis, M. Magnetic coercivity control via buffer layer roughness in Pt/Co multilayers. J. Magn. Magn. Mater. 2023, 585, 171124. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, D.; Kim, Y.; Wang, J.-P.; Wang, X. Magnetization dynamics in synthetic antiferromagnets with perpendicular magnetic anisotropy. Phys. Rev. B 2023, 107, 214438. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Bhadra, R.; Roche, K.P. Oscillatory magnetic exchange coupling through thin copper layers. Phys. Rev. Lett. 1991, 66, 2152. [Google Scholar] [CrossRef]
- Chatterjee, J.; Auffret, S.; Sousa, R.; Coelho, P.; Prejbeanu, I.L.; Dieny, B. Novel multifunctional RKKY coupling layer for ultrathin perpendicular synthetic antiferromagnet. Nat. Sci. Rep. 2018, 8, 11724. [Google Scholar] [CrossRef]
- Parkin, S.S.P. Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys. Rev. Lett. 1991, 67, 3598. [Google Scholar] [CrossRef]
- Stiles, M.D. Interlayer exchange coupling. J. Magn. Magn. Mater. 1999, 200, 322–337. [Google Scholar] [CrossRef]
- Bloemen, P.J.H.; van Kesteren, H.W.; Swagten, H.J.M.; de Jonge, W.J.M. Oscillatory interlayer exchange coupling in Co/Ru multilayers and bilayers. Phys. Rev. B 1994, 50, 13505. [Google Scholar] [CrossRef]
- Karayev, S.; Murray, P.D.; Khadka, D.; Thapaliya, T.R.; Liu, K.; Huang, S.X. Interlayer exchange coupling in Pt/Co/Ru and Pt/Co/Ir superlattices. Phys. Rev. Mater. 2019, 3, 041401. [Google Scholar] [CrossRef]
- Zhang, D.L.; Sun, C.; Lv, Y.; Schliep, K.B.; Zhao, Z.; Chen, J.Y.; Voyles, P.M.; Wang, J.P. L 10 Fe−Pd Synthetic Antiferromagnet through an fcc Ru spacer utilized for perpendicular magnetic tunnel junctions. Phys. Rev. Appl. 2018, 9, 044028. [Google Scholar] [CrossRef]
- Haoran Xu, H.; Chen, F.; Chen, B.; Jin, F.; Ma, C.; Xu, L.; Guo, Z.; Qu, L.; Lan, D.; Wu, W. Synthetic Antiferromagnets with Steplike Hysteresis Loops and High-TC Based on All-Perovskite La0.7Sr0.3MnO3 Superlattices. Phys. Rev. Appl. 2018, 10, 024035. [Google Scholar]
- Almasi, H.; Sun, C.L.; Li, X.; Newhouse-Illige, T.; Bi, C.; Price, K.C.; Nahar, S.; Grezes, C.; Hu, Q.; Khalili Amiri, P.; et al. Perpendicular magnetic tunnel junction with W seed and capping layers. J. Appl. Phys. 2017, 121, 153902. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S.; Lee, S.; Song, B.; Lee, B.K.; Lee, D.; Lee, J.S.; Lee, M.H.; Kim, Y.K.; Park, B.G. The influence of capping layers on tunneling magnetoresistance and microstructure in CoFeB/MgO/CoFeB magnetic tunnel junctions upon annealing. Nanomaterials 2023, 13, 2591. [Google Scholar] [CrossRef]
- Frankowski, M.; Żywczak, A.; Czapkiewicz, M.; Ziętek, S.; Kanak, J.; Banasik, M.; Powroźnik, W.; Skowroński, W.; Chęciński, J.; Wrona, J.; et al. Buffer influence on magnetic dead layer, critical current, and thermal stability in magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Appl. Phys. 2015, 117, 223908. [Google Scholar] [CrossRef]
- Ghemes, C.; Tibu, M.; Dragos-Pinzaru, O.-G.; Ababei, G.; Stoian, G.; Lupu, N.; Chiriac, H. Optimization of magnetic tunnel junction structure through component analysis and deposition parameters adjustment. Materials 2024, 17, 2554. [Google Scholar] [CrossRef]
- Liu, E.; Swerts, J.; Devolder, T.; Couet, S.; Mertens, S.; Lin, T.; Spampinato, V.; Franquet, A.; Conard, T.; van Elshocht, S.; et al. Seed layer impact on structural and magnetic properties of [Co/Ni] multilayers with perpendicular magnetic anisotropy. J. Appl. Phys. 2017, 121, 043905. [Google Scholar] [CrossRef]
- Won, Y.C.; Lim, S.H. Interfacial properties of [Pt/Co/Pt] trilayers probed through magnetometry. Sci. Rep. 2021, 11, 10779. [Google Scholar] [CrossRef]
- Ma, M.; Wu, J.; Liu, B.; Wang, L.; Li, Z.; Ruan, X.; Hu, Z.; Wang, F.; Lu, X.; Liu, T.; et al. Optical Control of RKKY Coupling and Perpendicular Magnetic Anisotropy in A Synthetic Antiferromagnet. Nat. Commun. 2025, 16, 4401. [Google Scholar] [CrossRef] [PubMed]
- Cuchet, L.; Rodmacq, B.; Auffret, S.; Sousa, R.C.; Prejbeanu, I.L.; Dieny, B. Perpendicular Magnetic Tunnel Junctions with A Synthetic Storage or Reference Layer: A New Route towards Pt- and Pd-Free Junctions. Sci. Rep. 2016, 6, 21246. [Google Scholar] [CrossRef]
- Cho, J.; Kim, J.-S. Introduction of RKKY-pMTJ-Based Ultrafast Magnetic Sensor Architecture and Magnetic Multilayer Optimization. Sensors 2025, 25, 6793. [Google Scholar] [CrossRef]
- Liu, X.; Mazumdar, D.; Shen, W.; Schrag, B.D.; Xiao, G. Thermal Stability of Magnetic Tunneling Junctions with MgO barriers for High Temperature Spintronics. Appl. Phys. Lett. 2006, 89, 023504. [Google Scholar] [CrossRef]
- Schnitzspan, L.; Cramer, J.; Kubik, J.; Tarequzzaman, M.; Jakob, G.; Klaui, M. Impact of Annealing Temperature on Tunneling Magnetoresistance Multilayer Stacks. IEEE Magn. Lett. 2020, 11, 4503705. [Google Scholar] [CrossRef]
- Parlak, U.; Aköz, M.E.; Tokdemir Öztürk, S.; Erkovan, M. Thickness Dependent Magnetic Properties of Polycrystalline Nickel Thin Films. Acta Phys. Pol. A 2015, 127, 995–997. [Google Scholar] [CrossRef]
- Parlak UAköz, M.E.; Erkovan, M. Coexistence of Perpendicular and Parallel Exchange Bias Effects on Ni/CoO Bilayer. J. Supercond. Nov. Magn. 2016, 29, 1851–1854. [Google Scholar] [CrossRef]
- Erkovan, M.; Aköz, M.E.; Parlak, U.; Öztürk, O. The Study of Exchange Bias Effect in PtxCo1−x/CoO Bilayers. J. Supercond. Nov. Magn. 2017, 30, 2909–2913. [Google Scholar] [CrossRef]
- Alpaslan Kösemen, Z.; Kösemen, A.; Öztürk, S.; Canımkurbey, B.; Erkovan, M.; Yerli, Y. Performance improvement in photosensitive organic field effect transistor by using multi-layer structure. Thin Solid Film. 2019, 672, 90–99. [Google Scholar] [CrossRef]
- Kang, B.; Hwang, Y.H.; Kim, Y.J.; Lee, J.S.; Song, S.H.; Lee, S.; Lee, J.; Lee, O.; Park, S.Y.; Ju, B.K. Effects of buffer and capping layers on thermal stability of CoFeB/MgO frames at various temperatures. Appl. Sci. 2024, 14, 2394. [Google Scholar] [CrossRef]
- Czapkiewicz, M.; Kanak, J.; Stobiecki, T.; Kachiel, M.; Zoladz, M.; Sveklo, I.; Maziewski, A.; van Dijken, S. Micromagnetic Properties of Co/Pt Multilayers Deposited on Various Buffer Layers. Mater. Sci.-Pol. 2008, 26, 839–849. [Google Scholar]
- Emori, S.; Beach, G.S.D. Optimization of Out-of-Plane Magnetized Co/Pt Multilayers with Resistive Buffer Layers. J. Appl. Phys. 2011, 110, 033919. [Google Scholar] [CrossRef]
- Yang, C.L.; Lai, C.H. High thermal durability of Ru-based synthetic antiferromagnet by interfacial engineering with Re insertion. Nat. Sci. Rep. 2021, 11, 15214. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.T.; Tran, M.; Chenchen, J.W.; Ying, J.F.; Han, G. Effect of different seed layers with varying Co and Pt thicknesses on the magnetic properties of Co/Pt multilayers. J. Appl. Phys. 2015, 117, 17A731. [Google Scholar] [CrossRef]






| Buffer Layer | NoR | Before Annealing | After Annealing at 330 °C |
|---|---|---|---|
| [Ta(5)/Ru(10)]x3 | 4 | 943 Oe | 1041 Oe |
| 6 | 943 Oe | 1050 Oe | |
| [Ta(5)/CuN(15)]x3 | 4 | 540 Oe | 528 Oe |
| 6 | 595 Oe | 924 Oe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Aköz, M.E.; Dörr, F.; Oral, A.Y.; Shokr, Y. Comparative Buffer and Spacer Layer Engineering in Co/Pt-Based Perpendicular Synthetic Antiferromagnets. Magnetochemistry 2026, 12, 13. https://doi.org/10.3390/magnetochemistry12010013
Aköz ME, Dörr F, Oral AY, Shokr Y. Comparative Buffer and Spacer Layer Engineering in Co/Pt-Based Perpendicular Synthetic Antiferromagnets. Magnetochemistry. 2026; 12(1):13. https://doi.org/10.3390/magnetochemistry12010013
Chicago/Turabian StyleAköz, Mehmet Emre, Frowin Dörr, Ahmet Yavuz Oral, and Yasser Shokr. 2026. "Comparative Buffer and Spacer Layer Engineering in Co/Pt-Based Perpendicular Synthetic Antiferromagnets" Magnetochemistry 12, no. 1: 13. https://doi.org/10.3390/magnetochemistry12010013
APA StyleAköz, M. E., Dörr, F., Oral, A. Y., & Shokr, Y. (2026). Comparative Buffer and Spacer Layer Engineering in Co/Pt-Based Perpendicular Synthetic Antiferromagnets. Magnetochemistry, 12(1), 13. https://doi.org/10.3390/magnetochemistry12010013

