error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (201)

Search Parameters:
Keywords = sound pressure distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3659 KB  
Article
Laser Deflection Acoustic Field Quantification: A Non-Invasive Measurement Technique for Focused Ultrasound Field Characterization
by Yang Xu, Hongde Liu, Yaoan Ma, Xiaoxue Bai, Qiangwei Hu, Yunpiao Cai, Hui Zhang, Tao Huang, Mengmeng Liu, Jing Li, Mingyue Ding and Ming Yuchi
Bioengineering 2026, 13(1), 22; https://doi.org/10.3390/bioengineering13010022 - 26 Dec 2025
Viewed by 245
Abstract
Focused ultrasound (FU) technology is extensively employed in clinical applications such as tumor ablation, Parkinson’s disease treatment, and neuropathic pain management. The safety and efficacy of FU therapy critically depend on the accurate quantification of the acoustic field, particularly the high-pressure distribution in [...] Read more.
Focused ultrasound (FU) technology is extensively employed in clinical applications such as tumor ablation, Parkinson’s disease treatment, and neuropathic pain management. The safety and efficacy of FU therapy critically depend on the accurate quantification of the acoustic field, particularly the high-pressure distribution in focal region. To address the limitations of existing acoustic measurement techniques—including invasiveness, inability to measure high sound pressure, and system complexity—this study proposes a non-invasive method termed Laser Deflection Acoustic Field Quantification (LDAQ), based on the laser deflection principle. An experimental system was constructed utilizing the acousto-optic deflection effect, which incorporates precision displacement control, rotational scanning, and synchronized triggering. Through tomographic scanning, laser deflection images of the acoustic field were acquired at multiple orientations. An inversion algorithm using Radon transforms was proposed to reconstruct the refractive index gradient distributions from the variations of light intensity and spot displacement. An adaptive weighted fusion strategy was then employed to map these optical signals to the sound pressure field. To validate the LDAQ technique, an acoustic field generated by an FU transducer operating at 0.84 MHz was measured. The reconstructed results were compared with both hydrophone measurements and numerical simulations. The findings demonstrated high consistency among all three results within the focal zone. Full-field analysis yielded a root mean square error (RMSE) of 0.1102 between LDAQ and simulation, and an RMSE of 0.1422 between LDAQ and hydrophone measurements. These results confirm that LDAQ enables non-invasive and high-precision quantification of megapascal-level focused acoustic fields, offering a reliable methodology for acoustic field characterization to support FU treatment optimization and device standardization. Full article
Show Figures

Figure 1

21 pages, 12257 KB  
Article
The Characterization of the Installation Effects on the Flow and Sound Field of Automotive Cooling Modules
by Tayyab Akhtar, Safouane Tebib, Stéphane Moreau and Manuel Henner
Int. J. Turbomach. Propuls. Power 2026, 11(1), 1; https://doi.org/10.3390/ijtpp11010001 - 19 Dec 2025
Viewed by 192
Abstract
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to [...] Read more.
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to analyze noise generation mechanisms and flow characteristics across four configurations. The study highlights the challenges of adapting classical cooling module components to EV setups, emphasizing the influence of heat exchanger (HE) placement and duct geometry on noise levels and flow dynamics. The results show that the presence of the HE smooths the upstream flow, improves rotor loading distribution and disrupts long, coherent vortical structures, thereby reducing tonal noise. However, the additional resistance introduced by the HE leads to increased rotor loading and enhanced leakage flow through the shroud-rotor gap. Despite these effects, the overall sound pressure level (OASPL) remains largely unchanged, maintaining a similar magnitude and dipolar directivity pattern as the configuration without the HE. In EV modules, the inclusion of ducts introduces significant flow disturbances and localized pressure fluctuations, leading to regions of high flow rate and rotor loading. These non-uniform flow conditions excite duct modes, resulting in troughs and humps in the acoustic spectrum and potentially causing resonance at the blade-passing frequency, which increases the amplitude in the lower frequency range. Analysis of the loading force components reveals that rotor loading is primarily driven by thrust forces, while duct loading is dominated by lateral forces. Across all configurations, fluctuations at the leading and trailing edges of the rotor are observed, originating from the blade tip and extending to approximately mid-span. These fluctuations are more pronounced in the EV module, identifying it as the dominant source of pressure disturbances. The numerical results are validated against experimental data obtained in the anechoic chamber at the University of Sherbrooke and show good agreement. The relative trends are accurately predicted at lower frequencies, with slight over-prediction, and closely match the experimental data at mid-frequencies. Full article
(This article belongs to the Special Issue Advances in Industrial Fan Technologies)
Show Figures

Figure 1

28 pages, 29103 KB  
Article
How Land-Use Planning Deeply Affects the Spatial Distribution of Composite Soundscapes
by Li-Yi Feng, Fangbing Hu, Bin-Yan Liu, Dan-Yin Zhang, Lian-Huan Guo, Shanshan Yu and Xin-Chen Hong
Sustainability 2025, 17(24), 10948; https://doi.org/10.3390/su172410948 - 7 Dec 2025
Viewed by 273
Abstract
Urban noise pollution poses a significant obstacle to sustainable development by compromising public health and well-being. Within this context, the soundscape emerges as a critical component in creating healthier and more livable cities. To further investigate the relationship between urban land-use planning characteristics [...] Read more.
Urban noise pollution poses a significant obstacle to sustainable development by compromising public health and well-being. Within this context, the soundscape emerges as a critical component in creating healthier and more livable cities. To further investigate the relationship between urban land-use planning characteristics and soundscape distribution, this study examines the spatial distribution of urban soundscapes and urban spatial functions. It explores the influence of urban land-use types on both the acoustic environment and soundscape perception and evaluation, aiming to better understand the influencing factors and dynamics of composite soundscapes in urban environments. The results show that (a) acoustic environment characteristics and soundscape perception evaluations are influenced by urban land-use function, exhibit a spatial aggregation effect, and are affected by the surrounding environment. (b) The key acoustic indices affecting the perception and evaluation of urban soundscapes are the equivalent continuous A-weighted sound pressure level (LAeq), the background sound level (L90), the difference between C-weighted and A-weighted levels (LC–LA), and loudness. People perceive quiet environments more positively and report strong discomfort in noisy environments. (c) Urban land-use planning significantly impacts the urban soundscape, with significant differences observed in both the acoustic environment and soundscape perception evaluations across different land-use types. This study deepens the understanding of the acoustic environment and demonstrates that soundscape-oriented land-use planning can function as an effective tool for fostering inclusive, healthy, and socially sustainable communities. Full article
Show Figures

Figure 1

21 pages, 5733 KB  
Article
Salinity Distribution as a Hydrogeological Limit in a Karstic Watershed in Yucatan
by Iris Neri-Flores, Ojilve Ramón Medrano-Pérez, Flor Arcega-Cabrera, Ismael Mariño-Tapia, César Canul-Macario and Pedro Agustín Robledo-Ardila
J. Mar. Sci. Eng. 2025, 13(12), 2317; https://doi.org/10.3390/jmse13122317 - 6 Dec 2025
Viewed by 454
Abstract
In coastal regions, the interaction between freshwater and seawater creates a dynamic system in which the spatial distribution of salinity critically constrains the use of freshwater for human consumption. Although saline intrusion is a globally widespread phenomenon, its inland extent varies significantly with [...] Read more.
In coastal regions, the interaction between freshwater and seawater creates a dynamic system in which the spatial distribution of salinity critically constrains the use of freshwater for human consumption. Although saline intrusion is a globally widespread phenomenon, its inland extent varies significantly with hydrological conditions, posing a persistent threat to groundwater quality and sustainability. This study aimed to characterize salinity distribution using an integrated karst-watershed approach, thereby enabling the identification of both lateral and vertical salinity gradients. The study area is in the northwestern Yucatan Peninsula. Available hydrogeological data were analyzed to determine aquifer type, soil texture, evidence of saline intrusion, seawater fraction, vadose zone thickness, and field measurements. These included sampling from 42 groundwater sites (open sinkholes and dug wells), which indicated a fringe zone approximately 5 km in size influenced by seawater interaction, in mangrove areas and in three key zones of salinity patterns: west of Mérida (Celestun and Chunchumil), and northern Yucatan (Sierra Papacal, Motul, San Felipe). Vertical Electrical Sounding (VES) and conductivity profiling in two piezometers indicated an apparent seawater influence. The interface was detected at a depth of 28 m in Celestun and 18 m in Chunchumil. These depths may serve as hydrogeological thresholds for freshwater abstraction. Results indicate that saltwater can extend several kilometers inland, a factor to consider when evaluating freshwater availability. This issue is particularly critical within the first 20 km from the coastline, where increasing tourism exerts substantial pressure on groundwater reserves. A coastal-to-inland salinity was identified, and an empirical equation was proposed to estimate the seawater fraction (fsea%) as a function of distance from the shoreline in the Cenote Ring trajectory. Vertically, a four-layer model was identified in this study through VES in the western watershed: an unsaturated zone approximately 2.6 m thick, a confined layer in the coastal Celestun profile about 9 m thick, a freshwater lens floating above a brackish layer between 8 and 25 m, and a saline interface at 37 m depth. The novelty of this study, in analyzing all karstic water surfaces together as a system, including the vadose zone and the aquifer, and considering the interactions with the surface, is highlighted by the strength of this approach. This analysis provides a better understanding and more precise insight into the integrated system than analyzing each component separately. These findings have significant implications for water resource management in karst regions such as Yucatan, underscoring the urgent need for sustainable groundwater management practices to address seawater intrusion. Full article
(This article belongs to the Special Issue Marine Karst Systems: Hydrogeology and Marine Environmental Dynamics)
Show Figures

Graphical abstract

21 pages, 2500 KB  
Article
Spatiotemporal Coupling and Simulation Prediction of Socioecological Systems in the Qilian Mountain Life Community
by Hua Xu, Tao Zhou, Heng Ren, Shengji Jiang, Erwen Xu and Feng Yuan
Agriculture 2025, 15(24), 2528; https://doi.org/10.3390/agriculture15242528 - 5 Dec 2025
Viewed by 309
Abstract
The socioecological system (SES) of the Qilian Mountains community—mountains, water, forests, fields, lakes, grasslands, and sands—faces considerable challenges from climate change and anthropogenic pressures. Here, we aimed to examine the coupled coordination relationships within the Qilian Mountains community. Using a comprehensive evaluation index [...] Read more.
The socioecological system (SES) of the Qilian Mountains community—mountains, water, forests, fields, lakes, grasslands, and sands—faces considerable challenges from climate change and anthropogenic pressures. Here, we aimed to examine the coupled coordination relationships within the Qilian Mountains community. Using a comprehensive evaluation index system for the socioeconomic components of the life community, we analyzed the spatiotemporal evolution of the coupled coordination degree (CCD) from 2000 to 2023, identified key hindering factors, and forecasted future trends based on a grey prediction model. The overall CCD achieved a historic leap from near-disharmony to sound coordination. The findings reveal the following: (1) The overall CCD achieved a historic leap from near-disharmony to sound coordination from 0.340 to 0.523, indicating a transition into a synergistic development phase, though with persistent spatial disparities. (2) System coordination is primarily constrained by water, farmland, and grassland subsystems, with water supply–demand imbalance being the foremost regional obstacle. In the Hexi Oasis area, this manifests as a sharp contradiction between farmland expansion and agricultural water demand. In the Qinghai region, it is deeply intertwined with topography, water yield modulus, and the distribution of forested and aquatic areas. (3) GM(1,1) projections suggest a continued upward trajectory for CCD, yet also underscore the complexity and long-term nature of coordinated development. This study established a framework for socioecological system research in arid and vulnerable regions, with the conclusions providing a reference for optimizing national ecological security barrier construction and regional high-quality coordinated development. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

15 pages, 2814 KB  
Article
Simultaneous Broadband Sound Absorption and Vibration Suppression in Gradient-Symmetric Multilayer Metamaterials
by Hanbo Shao, Yichao Yang, Wentao Di, Hanqi Zhang and Dong Jiang
Appl. Sci. 2025, 15(23), 12628; https://doi.org/10.3390/app152312628 - 28 Nov 2025
Viewed by 463
Abstract
Metamaterials show perfect physics characteristics for controlling elastic wave propagation. Their potential offers a lot of useful applications in low-frequency sound absorption and vibration reduction systems. However, traditional materials have inherent deficiencies in terms of functionality. There are a few designs in both [...] Read more.
Metamaterials show perfect physics characteristics for controlling elastic wave propagation. Their potential offers a lot of useful applications in low-frequency sound absorption and vibration reduction systems. However, traditional materials have inherent deficiencies in terms of functionality. There are a few designs in both acoustic and solid-mechanics domains that simultaneously exhibit sound attenuation bands and vibration bandgaps. The question poses new challenges for metamaterial development. To address this, we propose a gradient-symmetric multilayered metamaterial. The structure is capable of concurrent sound and vibration absorption. First, we established an acoustic model based on Helmholtz resonators and a vibration model by spring-mass systems. This model can predict the sound attenuation frequencies and natural frequency positions accurately. Second, through a combined simulation and experimental approach, we investigated how variations in the number of structural layers affect sound attenuation bandwidth. In addition, we analyzed the mechanisms of sound pressure distribution inside and outside the bandgaps. Finally, we elucidated the influence of lattice constants on vibration bandgap positions, demonstrating possibilities for passive control of metamaterials. This research provides robust support for the dynamic design of acoustic and mechanical metamaterials, structural modeling methodologies, bandwidth regulation strategies, and the development of sound-absorbing and vibration-damping devices. Full article
Show Figures

Figure 1

17 pages, 6575 KB  
Article
Wind Load Distribution Characteristics of a Semi-Enclosed Sound Barrier at the Junction of a Single-Track Bridge and Three-Track Bridge of a High-Speed Railway
by Botao Li, Yinhui Bao, Guoqing Hu and Xun Zhang
Vibration 2025, 8(4), 75; https://doi.org/10.3390/vibration8040075 - 24 Nov 2025
Viewed by 310
Abstract
Due to its effective noise reduction, the semi-enclosed noise barrier is increasingly being applied in the construction of high-speed railways. However, there is still a lack of systematic research on the wind load distribution characteristics under natural crosswind, especially for the complex aerodynamic [...] Read more.
Due to its effective noise reduction, the semi-enclosed noise barrier is increasingly being applied in the construction of high-speed railways. However, there is still a lack of systematic research on the wind load distribution characteristics under natural crosswind, especially for the complex aerodynamic behavior of the intersection section of multi-line bridges. Therefore, the wind load distribution characteristics on the surface of the sound barrier under crosswind conditions are explored within the engineering context of a semi-enclosed acoustic barrier at the junction of a single-track bridge and a three-track bridge, using a combination of wind tunnel testing and numerical simulation. A rigid-body model with a geometric scale of 1:10 is established for the wind tunnel test. The wind load distribution characteristics of the two acoustic barriers are analyzed from the perspectives of mean wind pressure, pulsating wind pressure, and extreme wind pressure, respectively. FLUENT 2022 software is utilized to model the flow field characteristics of the sound barrier under two working conditions: windward and leeward. The results show that under the action of crosswind, the surface wind load of the sound barrier at the junction of the single/three-line bridge is very prominent, the maximum negative pressure shape coefficient is −4.516, and its distribution is dominated by negative pressure; that is, the sound barrier mainly bears suction. Compared with the semi-closed sound barrier on the single-track bridge, the extreme wind pressure at the semi-closed sound barrier on the three-track bridge and the junction of the two is more significant, which shows that this kind of area needs special attention in wind-resistant design. Full article
(This article belongs to the Special Issue Railway Dynamics and Ground-Borne Vibrations)
Show Figures

Figure 1

16 pages, 5071 KB  
Article
Evaluating Fluid Distribution by Distributed Acoustic Sensing (DAS) with Perforation Erosion Effect
by Daichi Oshikata, Ding Zhu and A. D. Hill
Sensors 2025, 25(22), 7037; https://doi.org/10.3390/s25227037 - 18 Nov 2025
Cited by 1 | Viewed by 468
Abstract
Among the various completion strategies used in multi-stage hydraulic fracturing of horizontal wells, the limited entry design has become one of the most common approaches to promote more uniform slurry distribution. This method involves reducing the number of perforations so that higher perforation [...] Read more.
Among the various completion strategies used in multi-stage hydraulic fracturing of horizontal wells, the limited entry design has become one of the most common approaches to promote more uniform slurry distribution. This method involves reducing the number of perforations so that higher perforation friction is generated at each entry point. The increased pressure drops force fluid and proppant to be diverted across multiple clusters rather than concentrating at only a few, thereby enhancing stimulation efficiency along the lateral. In this study, Computational Fluid Dynamics (CFD) simulations were performed to investigate how perforation erosion influences acoustic signals measured by Distributed Acoustic Sensing (DAS). Unlike previous studies that assumed perfectly circular perforations, this work uses oval-shaped geometries to better reflect the irregular erosion observed in the field, which provides more realistic modeling. The workflow involved building wellbore and perforation geometries, generating computational meshes, and solving transient turbulent flow using Large Eddy Simulation (LES) coupled with the Ffowcs Williams–Hawkings (FW-H) acoustic model. Acoustic pressure was then estimated at receiver points and converted into sound pressure level for analysis. The results show that, for a given perforation size, changes in flow rate cause log(q) versus sound pressure level to follow a straight line defined by a constant slope and varying intercept. Even when erosion alters the perforation into an oval shape, the intercept increases logarithmically, resulting in reduced sound amplitude, while the slope remains unchanged. Furthermore, when the cross-sectional area and flow rate are equal, oval perforations produce higher sound amplitudes than circular ones, suggesting that perforation geometry has a measurable influence on the DAS signal. This indicates that even when the same amplitude DAS signal is obtained, assuming circular perforations when estimating the fluid distribution leads to an overestimation if the actual perforation shape is oval. These findings highlight the importance of considering irregular erosion patterns when linking DAS responses to fluid distribution during hydraulic fracturing. Full article
(This article belongs to the Special Issue Sensors and Sensing Techniques in Petroleum Engineering)
Show Figures

Figure 1

24 pages, 10770 KB  
Article
High-Speed Schlieren Analysis of Projectile Kinematics and Muzzle Jet Dynamics in a CO2-Driven Airsoft Gun
by Emilia-Georgiana Prisăcariu, Sergiu Strătilă, Raluca Andreea Roșu, Oana Dumitrescu and Valeriu Drăgan
Fluids 2025, 10(11), 298; https://doi.org/10.3390/fluids10110298 - 17 Nov 2025
Viewed by 633
Abstract
Understanding the transient flow phenomena accompanying projectile discharge is essential for improving the safety, efficiency, and predictability of small-scale ballistic systems. Despite extensive numerical studies on muzzle flows and shock formation, experimental visualization and quantitative data on the coupling between pressure waves, jet [...] Read more.
Understanding the transient flow phenomena accompanying projectile discharge is essential for improving the safety, efficiency, and predictability of small-scale ballistic systems. Despite extensive numerical studies on muzzle flows and shock formation, experimental visualization and quantitative data on the coupling between pressure waves, jet structures, and projectile motion remain limited. This work addresses this gap by employing high-speed schlieren imaging and schlieren image velocimetry (SIV) to investigate the near-field aerodynamics of an airsoft-type projectile propelled by a CO2 jet. Three optical configurations were analyzed—a Toepler single-mirror system, a Z-type without knife edge, and a Z-type with knife edge—to assess their sensitivity and suitability for resolving acoustic and turbulent features. The measured velocity of concentric pressure waves (≈355 m/s) agrees with the theoretical local speed of sound, validating the optical calibration. Projectile tracking yielded a mean speed of 71 ± 1.6 m/s, with drag and kinetic energy analyses confirming significant near-muzzle deceleration due to jet–projectile interaction. The SIV analysis provided additional insight into the convection velocity of coherent jet structures (≈75 m/s), tangent velocity fluctuations (±0.8 m/s), and vorticity distribution along the jet boundary. The results demonstrate that even compact schlieren setups, when coupled with quantitative image analysis, can capture the essential dynamics of unsteady compressible flows, providing a foundation for future diagnostic development and modeling of projectile–jet interactions. Full article
Show Figures

Figure 1

20 pages, 5569 KB  
Article
Investigation of Acoustic Agglomeration of Solid Particles in a Chamber with Three Overlapping Ultrasonic Acoustic Fields
by Andrius Čeponis, Darius Vainorius, Kristina Kilikevičienė and Artūras Kilikevičius
Actuators 2025, 14(11), 559; https://doi.org/10.3390/act14110559 - 14 Nov 2025
Viewed by 534
Abstract
This paper presents numerical and experimental investigations of acoustic agglomeration of solid particles in a chamber with three overlapping ultrasonic fields. The simultaneous generation of these fields produces an interference pattern with a greater number of pressure nodes, more evenly distributed across the [...] Read more.
This paper presents numerical and experimental investigations of acoustic agglomeration of solid particles in a chamber with three overlapping ultrasonic fields. The simultaneous generation of these fields produces an interference pattern with a greater number of pressure nodes, more evenly distributed across the chamber cross section. The chamber design is based on three piezoelectric transducers equipped with disc-shaped acoustic radiators and a cylindrical body. The transducers are evenly positioned around the cylinder’s horizontal axis of symmetry. Numerical simulations of their acoustic characteristics showed that, at a resonance frequency of 49.71 kHz and with a 125 Vp-p excitation, the system can generate up to 146 dB sound pressure level. The predicted interference field pattern indicated a high density of alternating pressure nodes across the chamber. Experimental results confirmed that, at a resonance frequency of 48.85 kHz and with the same excitation signal, the sound pressure in the chamber reached 144.8 dB. Particle agglomeration tests demonstrated effective performance: ultrafine particles in the 191–294 nm range decreased by 31.2%, while particles in the 0.75–1 µm range increased by up to 52.9%. These findings confirm the strong potential of interference acoustic fields for enhancing particle agglomeration and supporting air purification applications. Full article
(This article belongs to the Special Issue Advances in Piezoelectric Actuators and Materials)
Show Figures

Figure 1

13 pages, 6067 KB  
Article
Experimental Study on the Scintillation Index of Vortex Beam Superposition States Perturbed by Linear Array Acoustic Sources in Atmospheric Environments
by Jialin Zhang, Mingjun Wang, Luxin Diao, Yafei Wei and Pengchao Zhu
Photonics 2025, 12(11), 1124; https://doi.org/10.3390/photonics12111124 - 14 Nov 2025
Viewed by 311
Abstract
Acoustic waves, as mechanical waves, can perturb atmospheric pressure during propagation, altering the refractive index and turbulence distribution. This study explores a method to mitigate the impact of atmospheric turbulence on optical wave transmission using a linear array acoustic source. We investigated the [...] Read more.
Acoustic waves, as mechanical waves, can perturb atmospheric pressure during propagation, altering the refractive index and turbulence distribution. This study explores a method to mitigate the impact of atmospheric turbulence on optical wave transmission using a linear array acoustic source. We investigated the transmission characteristics of vortex beam superposition states under acoustic perturbation, examining the effects of different wave frequencies and propagation distances on the acoustic field distribution, scintillation index, and atmospheric refractive index structure constant. The results show that acoustic field distributions vary with frequency, and a stable acoustic field is achievable with proper configuration. The scintillation index and refractive index structure constant are influenced by both the acoustic wave propagation distance and sound pressure level. Furthermore, a higher sound pressure level of the source enhances the impact of the linear array acoustic waves on both the scintillation index and the atmospheric refractive index structure constant. This research presents a novel approach to improving optical wave transmission by mitigating atmospheric turbulence. Full article
Show Figures

Figure 1

32 pages, 3804 KB  
Article
Water Networks Management: Assessment of Heuristic and Exact Approaches for Optimal Valve Location and Operation Settings Schedule
by Maria Cunha, João Marques and Enrico Creaco
Water 2025, 17(22), 3249; https://doi.org/10.3390/w17223249 - 14 Nov 2025
Viewed by 529
Abstract
This paper deals with the optimal design-for-control of water distribution networks (WDNs) with the objectives of minimizing pressure-induced background leakage and maximizing resilience. This problem entails defining locations for installing valves and/or pipes and for simultaneously determining valve settings and belongs to the [...] Read more.
This paper deals with the optimal design-for-control of water distribution networks (WDNs) with the objectives of minimizing pressure-induced background leakage and maximizing resilience. This problem entails defining locations for installing valves and/or pipes and for simultaneously determining valve settings and belongs to the class of non-convex mixed-integer nonlinear problems. Solving highly complex infrastructure problems, such as WDNs, raises a fundamental question about the accuracy of the solutions to be implemented for sound water management. Therefore, two kinds of optimization methods are applied and assessed on two case studies. While the first is an exact global optimization method, the second is the metaheuristic based on the concept of simulated annealing. This paper proposes an innovative methodological analysis to interpret and discuss the results provided by both methods, as well as to identify their impact on the performance of the WDN. This type of analysis may help in highlight how the integration of the best features of both solution methods can promote a step forward in solving WDN problems. Full article
(This article belongs to the Special Issue Advances in Management and Optimization of Urban Water Networks)
Show Figures

Figure 1

18 pages, 2833 KB  
Article
Empirical Recalibration of Hunter’s Method for Peak Flow Estimation in Institutional Buildings: A Pilot Study in Data-Scarce Contexts
by Christian Mera-Parra and Holger Manuel Benavides-Muñoz
Water 2025, 17(22), 3233; https://doi.org/10.3390/w17223233 - 12 Nov 2025
Viewed by 756
Abstract
Accurate estimation of peak water demand remains a challenge in institutional settings with floating populations, particularly in regions where design standards may require revision and validation to accommodate evolving consumption patterns. This pilot study assesses the potential of a probabilistic adaptation of Hunter’s [...] Read more.
Accurate estimation of peak water demand remains a challenge in institutional settings with floating populations, particularly in regions where design standards may require revision and validation to accommodate evolving consumption patterns. This pilot study assesses the potential of a probabilistic adaptation of Hunter’s method, calibrated through high-resolution flow and pressure monitoring, for peak flow estimation in five academic buildings in Loja, Ecuador. Over 62 days, usage parameters, duration (t), frequency (i), and peak period (h), were disaggregated from 1 min interval data to derive building-specific binomial probability distributions. The adapted model was compared against three benchmarks: the Neyman–Scott Rectangular Pulse Model (NSRPM), the Water Demand Calculator (WDC), and Ecuador’s Hydro-Sanitary Standard (NHE 2011). Results indicate the proposed approach estimates peak flows within −11.6% to +20.0% of observed values, outperforming WDC (systematic underestimation up to −81.5%) and NHE 2011 (average underestimation of −31.3%), though NSRPM achieved high accuracy for one site (−1.1%) with high inter-building variability (average −38.4%). While limited to a small sample in a single climatic context, this pilot demonstrates that temporal disaggregation of stochastic demand enables a context-sensitive recalibration of Hunter’s method, offering a methodologically sound basis for future validation across diverse institutional settings in the Global South. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

31 pages, 870 KB  
Review
Application of Psychoacoustic Metrics in the Noise Assessment of Geared Drives
by Krisztian Horvath
World Electr. Veh. J. 2025, 16(11), 611; https://doi.org/10.3390/wevj16110611 - 6 Nov 2025
Viewed by 1629
Abstract
Psychoacoustic metrics offer a valuable complement to traditional noise evaluation methods for gear transmissions, as they account for the human perception of sound quality rather than relying solely on physical measurements. While parameters such as overall sound pressure level (SPL) and spectral content [...] Read more.
Psychoacoustic metrics offer a valuable complement to traditional noise evaluation methods for gear transmissions, as they account for the human perception of sound quality rather than relying solely on physical measurements. While parameters such as overall sound pressure level (SPL) and spectral content quantify noise intensity and frequency distribution, they often fail to reflect subjective annoyance caused by tonal or high-frequency components common in gear systems. This review provides a structured overview of how psychoacoustic metrics—including loudness, sharpness, roughness, fluctuation strength, and tonality—are applied in the analysis of gear transmission noise. Relevant studies were identified through a comprehensive search across multiple scientific databases, with 54 meeting the inclusion criteria. The findings highlight both the benefits and limitations of these metrics, and present examples of their industrial application in automotive and mechanical engineering contexts. The review also identifies gaps in current research, particularly in integrating psychoacoustic evaluation with predictive modelling and machine learning, and suggests directions for future work. Full article
Show Figures

Figure 1

21 pages, 4212 KB  
Article
A Low-Cost Detection Method for Acoustic Defects in Building Components: Compressed Nearfield Acoustic Holography
by Chenxi Yang, Hongwei Wang, Qiaochu Wang and Shujie Li
Acoustics 2025, 7(4), 69; https://doi.org/10.3390/acoustics7040069 - 30 Oct 2025
Viewed by 610
Abstract
The accurate diagnosis of acoustic defects and the precise assessment of the performance of building components are highly dependent on massive amounts of sampling data. In this study, we try to combine the compressed sensing theory with the nearfield acoustic holographic sound insulation [...] Read more.
The accurate diagnosis of acoustic defects and the precise assessment of the performance of building components are highly dependent on massive amounts of sampling data. In this study, we try to combine the compressed sensing theory with the nearfield acoustic holographic sound insulation measurement method and introduce a noise reduction algorithm so as to realize the sound pressure distribution accuracy similar to that of the conventional sampling under low-density data conditions. Numerical simulation results show that the reconstruction error of the method proposed in this paper is only 8.21% higher than that of the complete sampling under the condition of 20% sampling rate, and the reconstruction error is only 2.50% higher than that of the complete sampling under the condition of 40% sampling rate. The reconstruction error under 50% sampling rate and 6.65 dB SNR is only 4.81% higher than the complete sampling, which is basically consistent with the numerical simulation; the sound insulation is only 1 dB lower than that measured by the sound pressure method, and the acoustic defects of the components can basically be identified. The results of this study have a positive significance in simplifying the process of sound insulation measurement in most scenarios. Full article
Show Figures

Figure 1

Back to TopTop