Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = sol-gel technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2539 KB  
Review
Metallogels as Hybrid Metal-Organic Soft Materials: Classification, Fabrication Pathways and Functional Applications
by Maciej Grabowski, Tomasz Grygier and Anna Trusek
Gels 2026, 12(2), 124; https://doi.org/10.3390/gels12020124 (registering DOI) - 1 Feb 2026
Abstract
Metallogels constitute a rapidly expanding class of hybrid soft materials in which metal ions, metal complexes, or metal-containing nanoparticles play a decisive structural and functional role within a three-dimensional gel network. Their unique combination of supramolecular assembly, metal-ligand coordination, and dynamic network behaviour [...] Read more.
Metallogels constitute a rapidly expanding class of hybrid soft materials in which metal ions, metal complexes, or metal-containing nanoparticles play a decisive structural and functional role within a three-dimensional gel network. Their unique combination of supramolecular assembly, metal-ligand coordination, and dynamic network behaviour provides tunable mechanical, optical, electrical, redox, and catalytic properties that are not accessible in conventional hydrogels or organogels. This review systematically summarises current knowledge on metallogels, beginning with a classification based on matrix type, dominant metal interaction and functional output, spanning metallohydrogels, metal-organic gels, metal-phenolic gels, nanoparticle-based gels, polymer-based metallogels and low-molecular-weight metallogels. Key synthesis pathways are discussed, including coordination-chemistry-driven formation, metal-ligand self-assembly, in situ reduction, diffusion-mediated strategies, sol-gel-like polymerisation, enzyme-assisted routes, and bio-derived fabrication. Particular emphasis is placed on structure-function relationships that enable the development of catalytic, conductive, luminescent, antimicrobial, and biomedical metallogels. The examples compiled here highlight the versatility and transformative potential of metallogels in next-generation soft technologies, including sensing, energy conversion, wound healing, drug delivery, and emerging applications such as soft electronics and on-skin catalytic or bioactive patches. By mapping current progress and emerging design principles, this review aims to support the rational engineering of metallogels for advanced technological and biomedical applications Full article
(This article belongs to the Special Issue Polymeric Hydrogels for Biomedical Application (2nd Edition))
Show Figures

Figure 1

19 pages, 3518 KB  
Article
Al/Graphene Co-Doped ZnO Electrodes: Impact on CTS Thin-Film Solar Cell Efficiency
by Done Ozbek, Meryem Cam, Guldone Toplu, Sevde Erkan, Serkan Erkan, Ali Altuntepe, Kasim Ocakoglu, Sakir Aydogan, Yavuz Atasoy, Mehmet Ali Olgar and Recep Zan
Crystals 2026, 16(1), 64; https://doi.org/10.3390/cryst16010064 - 17 Jan 2026
Viewed by 164
Abstract
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al [...] Read more.
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al and reduced graphene oxide (rGO), to evaluate the individual and combined effects of these dopants. The optimal pH value for the ZnO structure was initially determined, with the film produced at pH 9 exhibiting the most favorable characteristics. Al doping was then optimized at a ratio of Al/(Al + Zn) = 0.2, followed by optimization of the graphene content at 1.5 wt%. In this context, the structural, optical, and electrical properties of pristine ZnO, Al-doped ZnO (AZO), and Al and graphene co-doped ZnO (Gr:AZO) thin films were systematically investigated. These films were integrated as TCO layers into Cu2SnS3 (CTS)-based thin-film solar cells fabricated via physical vapor deposition (PVD). The cell architecture employed an 80 nm pristine ZnO window layer, while the doped ZnO films (300 nm) served as TCO layers. To assess the influence of the chemically deposited top layers, device performance was compared against a reference cell in which all layers were fabricated entirely using PVD. As expected, the reference cell exhibited superior performance compared to the cell whose AZO layer deposited chemically; however, the incorporation of both Al and graphene significantly enhanced the efficiency of the chemically modified cell, outperforming devices using only pristine or singly doped ZnO films. These results demonstrate the promising potential of co-doped solution-processed ZnO films as an alternative TCO layer in improving the performance of thin-film solar cell technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

29 pages, 2741 KB  
Review
Production Techniques for Antibacterial Fabrics and Their Emerging Applications in Wearable Technology
by Azam Ali, Muhammad Zaman Khan, Sana Rasheed and Rimsha Imtiaz
Micro 2026, 6(1), 5; https://doi.org/10.3390/micro6010005 - 13 Jan 2026
Viewed by 413
Abstract
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics [...] Read more.
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics offer effective antimicrobial properties while retaining comfort and functionality by incorporating nanotechnology and advanced materials, such as silver nanoparticles, zinc oxide, titanium dioxide, and graphene. The production techniques for antibacterial textiles range from chemical and physical surface modifications to biological treatments, each tailored to achieve long-lasting antibacterial performance while preserving fabric comfort and breathability. Advanced methods such as nanoparticle embedding, sol–gel coating, electrospinning, and green synthesis approaches have shown significant promise in enhancing antibacterial efficacy and material compatibility. Wearable technology, including fitness trackers, smart clothing, and medical monitoring devices, relies on prolonged skin contact, making the prevention of bacterial colonization essential for user safety and product longevity. Antibacterial fabrics address these concerns by reducing odor, preventing skin irritation, and minimizing the risk of infection, especially in medical applications such as wound dressings and patient monitoring systems. Despite their potential, integrating antibacterial fabrics into wearable technology presents several challenges. This review provides a comprehensive overview of the key antibacterial agents, the production strategies used to fabricate antibacterial textiles, and their emerging applications in wearable technologies. It also highlights the need for interdisciplinary research to overcome current limitations and promote the development of sustainable, safe, and functional antibacterial fabrics for next-generation wearable. Full article
Show Figures

Figure 1

21 pages, 7692 KB  
Article
Preparation of Chitin–Glucan Complex Aerogel from Mycelium Waste with Tunable Properties
by A. M. Abdel-Mohsen, Katerina Skotnicova, Rasha M. Abdel-Rahman and Josef Jancar
Gels 2026, 12(1), 41; https://doi.org/10.3390/gels12010041 - 1 Jan 2026
Viewed by 473
Abstract
Chitin–glucan complex (CGC) is a naturally occurring heteropolysaccharide in which chitin chains are covalently integrated with β-glucans, forming a rigid structural framework in fungal and yeast cell walls. CGC exhibits a broad spectrum of functional properties, including antimicrobial, antioxidant, adsorption, and tissue-regenerative activities; [...] Read more.
Chitin–glucan complex (CGC) is a naturally occurring heteropolysaccharide in which chitin chains are covalently integrated with β-glucans, forming a rigid structural framework in fungal and yeast cell walls. CGC exhibits a broad spectrum of functional properties, including antimicrobial, antioxidant, adsorption, and tissue-regenerative activities; however, its technological exploitation has been severely constrained by its intrinsic insolubility in water and most common solvents. In this work, CGC was isolated from Aspergillus niger mycelial biomass and, for the first time, completely dissolved in a precooled aqueous NaOH/urea solvent system (12 wt.% NaOH, 8 wt.% urea) within 5 min at ambient temperature, yielding a clear and stable solution. The influence of alkali concentration on dissolution efficiency and solution stability was systematically examined. Structural integrity and covalent linkage between chitin/chitosan and glucan segments were confirmed using FTIR spectroscopy, two-dimensional NMR, and electron microscopy. The degree of deacetylation determined by NMR was approximately 25%. Rheological analysis revealed concentration- and temperature-dependent sol–gel transitions, with well-defined storage and loss moduli during gelation. Crosslinking with epichlorohydrin enabled the fabrication of lightweight, highly porous three-dimensional CGC aerogels. In vitro cytocompatibility studies using NIH 3T3 fibroblasts demonstrated no detectable cytotoxicity over 72 h. These results establish a green, efficient route for CGC dissolution and processing and highlight the promise of CGC aerogels as sustainable biomaterials for biomedical and environmental applications. Full article
Show Figures

Figure 1

19 pages, 3085 KB  
Article
Bismuth-Based Ceramic Processed at Ultra-Low-Temperature for Dielectric Applications
by Susana Devesa, Sílvia Soreto Teixeira, Manuel Pedro Graça and Luís Cadillon Costa
Nanomaterials 2026, 16(1), 46; https://doi.org/10.3390/nano16010046 - 29 Dec 2025
Viewed by 339
Abstract
High-performance dielectric materials that can be processed at ultra-low temperatures are essential for next-generation LTCC technologies and compact RF–microwave components. In this work, a multicomponent Bi–Fe–Nb oxide system was synthesized using a modified citrate sol–gel method and thermally treated at only 400 °C [...] Read more.
High-performance dielectric materials that can be processed at ultra-low temperatures are essential for next-generation LTCC technologies and compact RF–microwave components. In this work, a multicomponent Bi–Fe–Nb oxide system was synthesized using a modified citrate sol–gel method and thermally treated at only 400 °C to investigate its structural evolution and dielectric behavior. XRD and Raman analysis revealed the coexistence of a well-crystallized BiOCl phase embedded within a partially amorphous Bi–Fe–Nb–O matrix. SEM and EDS mapping confirmed the presence of two distinct microstructural regions, reflecting differences in local composition and crystallization kinetics. Microwave measurements at 2.7 and 5.0 GHz showed low dielectric losses and a stable dielectric response. Impedance spectroscopy in the RF range revealed strong Maxwell–Wagner polarization at low frequencies and thermally activated relaxation evidenced by the temperature shift in the modulus and impedance peaks. Arrhenius analysis of the relaxation frequencies yielded similar activation energies from both modulus and impedance formalisms, indicating a single underlying relaxation mechanism. Equivalent-circuit fitting confirmed non-Debye behavior, with nearly temperature-independent capacitance and decreasing resistance consistent with thermally activated conduction. These results demonstrate that the Bi–Fe–Nb system exhibits promising dielectric stability and functional behavior even when processed at exceptionally low temperatures. Full article
(This article belongs to the Special Issue Advanced Ceramics and Polymer Nanocomposites for Energy Storage)
Show Figures

Figure 1

30 pages, 5119 KB  
Review
Thermo-Responsive Smart Hydrogels: Molecular Engineering, Dynamic Cross-Linking Strategies, and Therapeutics Applications
by Jiten Yadav, Surjeet Chahal, Prashant Kumar and Chandra Kumar
Gels 2026, 12(1), 12; https://doi.org/10.3390/gels12010012 - 23 Dec 2025
Viewed by 930
Abstract
Temperature-responsive hydrogels are sophisticated stimuli-responsive biomaterials that undergo rapid, reversible sol–gel phase transitions in response to subtle thermal stimuli, most notably around physiological temperature. This inherent thermosensitivity enables non-invasive, precise spatiotemporal control of material properties and bioactive payload release, rendering them highly promising [...] Read more.
Temperature-responsive hydrogels are sophisticated stimuli-responsive biomaterials that undergo rapid, reversible sol–gel phase transitions in response to subtle thermal stimuli, most notably around physiological temperature. This inherent thermosensitivity enables non-invasive, precise spatiotemporal control of material properties and bioactive payload release, rendering them highly promising for advanced biomedical applications. This review critically surveys recent advances in the design, synthesis, and translational potential of thermo-responsive hydrogels, emphasizing nanoscale and hybrid architectures optimized for superior tunability and biological performance. Foundational systems remain dominated by poly(N-isopropylacrylamide) (PNIPAAm), which exhibits a sharp lower critical solution temperature near 32 °C, alongside Pluronic/Poloxamer triblock copolymers and thermosensitive cellulose derivatives. Contemporary developments increasingly exploit biohybrid and nanocomposite strategies that incorporate natural polymers such as chitosan, gelatin, or hyaluronic acid with synthetic thermo-responsive segments, yielding materials with markedly enhanced mechanical robustness, biocompatibility, and physiologically relevant transition behavior. Cross-linking methodologies—encompassing covalent chemical approaches, dynamic physical interactions, and radiation-induced polymerization are rigorously assessed for their effects on network topology, swelling/deswelling kinetics, pore structure, and degradation characteristics. Prominent applications include on-demand drug and gene delivery, injectable in situ gelling systems, three-dimensional matrices for cell encapsulation and organoid culture, tissue engineering scaffolds, self-healing wound dressings, and responsive biosensing platforms. The integration of multi-stimuli orthogonality, nanotechnology, and artificial intelligence-guided materials discovery is anticipated to deliver fully programmable, patient-specific hydrogels, establishing them as pivotal enabling technologies in precision and regenerative medicine. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Graphical abstract

21 pages, 869 KB  
Review
Green Synthesis for Antibiotic Photodegradation: Recent Advances and Future Trends
by Filipe S. Duarte, Amanda Melo, Leonardo Oliveira, José Duarte and Rosane Oliveira
Water 2026, 18(1), 39; https://doi.org/10.3390/w18010039 - 23 Dec 2025
Viewed by 598
Abstract
Water contamination by antibiotics has become a critical environmental and public health issue. Among emerging technologies for their removal, heterogeneous photocatalysis has shown remarkable potential. This review provides a systematic analysis of 40 recent studies (2019–2025) that employed green synthesis routes—including sol–gel, hydrothermal, [...] Read more.
Water contamination by antibiotics has become a critical environmental and public health issue. Among emerging technologies for their removal, heterogeneous photocatalysis has shown remarkable potential. This review provides a systematic analysis of 40 recent studies (2019–2025) that employed green synthesis routes—including sol–gel, hydrothermal, combustion, pyrolysis and co-precipitation methods—for the photocatalytic degradation of antibiotics. The comparison of these techniques revealed that biogenic metal oxides and ferrites synthesized with plant extracts achieved outstanding photocatalytic performance, with degradation efficiencies often exceeding 90–100% for antibiotics such as ciprofloxacin and tetracycline. These results are attributed to the phytochemical composition of the extracts, which are rich in flavonoids, phenols, saponins, tannins, and alkaloids, which act as natural reducing, capping, and stabilizing agents, promoting uniform nucleation, smaller particle sizes, and enhanced crystallinity. The review also highlights the synergistic relationship between biomolecule-mediated reduction and controlled synthesis conditions, which enables the design of sustainable, reusable, and high-efficiency photocatalysts for wastewater treatment and environmental remediation. Full article
Show Figures

Figure 1

19 pages, 15326 KB  
Article
A Comprehensive Kinetic Study on the Enhanced Thermal Stability of Silica Xerogels with the Addition of Organochlorinated Substituents
by Beatriz Rosales-Reina, Guillermo Cruz-Quesada, Pablo Pujol, Santiago Reinoso, César Elosúa, Gurutze Arzamendi, María Victoria López-Ramón and Julián J. Garrido
Gels 2026, 12(1), 2; https://doi.org/10.3390/gels12010002 - 19 Dec 2025
Viewed by 346
Abstract
Hybrid silica xerogels functionalised with chlorinated organosilanes combine tunable porosity and surface chemistry, rendering them attractive for applications in sensing, membrane technology, and photonics. This study quantitatively investigates the thermal decomposition kinetics of organochlorinated xerogels and correlates with volatile compounds previously identified via [...] Read more.
Hybrid silica xerogels functionalised with chlorinated organosilanes combine tunable porosity and surface chemistry, rendering them attractive for applications in sensing, membrane technology, and photonics. This study quantitatively investigates the thermal decomposition kinetics of organochlorinated xerogels and correlates with volatile compounds previously identified via Thermogravimetric Analysis (TGA) coupled to Fourier-Transform Infrared Spectroscopy (FT–IR) and Gas Chromatography coupled with Mass Spectrometry (GC–MS). The xerogels were synthesised via the sol–gel process using organochlorinated alkoxysilane precursors and yielded highly condensed nanostructures in which the precursor nature strongly influences the morphology and textural properties. In this study, the molar percentage of the organochlorinated compounds was fixed at 10%. Standard N2 adsorption-desorption isotherm at 77 K revealed that increasing the precursor content systematically decreased the specific surface area and pore volume of the materials while promoting the formation of periodic domains, which are observed even at low organosilane molar percentages. Thermal characterisation via TGA/FT–IR/GC–MS revealed at least two main decomposition stages, with thermal stability following the order of 4–chlorophenyl > chloromethyl > 3–chloropropyl > 2–chloroethyl. This study focuses on kinetic and mechanistic insights in the thermal decomposition process through the Flynn–Wall–Ozawa isoconversional method and Criado master plots, using TGA/Differential Scanning Calorimetry (DSC) measurements under nitrogen at multiple heating rates (5, 10, 20, 30, and 40 K min−1), which revealed activation energies ranging from 53 to 290 kJ mol−1. Demonstrating that the chlorinated organosilane precursor directly controls both the textural properties and thermal behaviour of the resulting silica materials, with aromatic groups providing superior thermal stability compared to aliphatic chains. These quantitative kinetic insights provide a predictive framework for designing thermally stable hybrid materials while ensuring safe processing conditions to prevent hazardous volatile release. Full article
(This article belongs to the Special Issue Xerogels: Preparation, Properties and Applications)
Show Figures

Graphical abstract

17 pages, 4693 KB  
Article
From Waste to Cathode: A Comparative Evaluation of Sol–Gel and Co-Precipitation Routes for Closed-Loop Recycling of Lithium-Ion Battery Cathodes
by Alexandra Kosenko, Konstantin Pushnitsa, Pavel Novikov and Anatoliy A. Popovich
Batteries 2025, 11(12), 466; https://doi.org/10.3390/batteries11120466 - 18 Dec 2025
Viewed by 975
Abstract
The exponential growth of lithium-ion batteries (LIBs) in electric vehicles and energy storage systems has amplified the urgent need for sustainable recycling strategies. Conventional pyrometallurgical and hydrometallurgical methods for LIB recycling are energy-intensive, chemically demanding, and fail to preserve the structural integrity of [...] Read more.
The exponential growth of lithium-ion batteries (LIBs) in electric vehicles and energy storage systems has amplified the urgent need for sustainable recycling strategies. Conventional pyrometallurgical and hydrometallurgical methods for LIB recycling are energy-intensive, chemically demanding, and fail to preserve the structural integrity of cath-ode materials. Closed-loop recycling, in contrast, enables the recovery of layered oxides with minimal processing steps, reducing environmental footprint and supporting a circular economy. This study provides a systematic comparison of two regeneration approaches—sol–gel synthesis and hydroxide co-precipitation—for closed-loop recycling of layered NCM (LiNixCoyMnzO2) cathode materials recovered from spent LIBs. Spent cells were mechani-cally processed and leached using malic acid to recover Ni, Co, Mn, which were subsequently used to synthesize NCM622 cathode powders. The regenerated materials were characterized using SEM/EDX, XRD, and electrochemical testing in CR2032 coin cells. Both methods successfully produced phase-pure layered oxides with the R-3m structure, with distinct differences in structural ordering and electrochemical behavior. The sol–gel-derived NCM622 displayed higher crystallinity and reduced cation mixing, evidenced by an I(003)/I(104) ratio of 1.896 compared to 1.720 for the co-precipitated sample, and delivered a high initial discharge capacity of 170 mAh/g at 0.1 C. However, it exhibited significant capacity fade, retaining only 60 mAh/g after 40 cycles. In contrast, the co-precipitation route produced hierarchical porous spherical agglomerates that offered superior cycling stability, maintaining ~150 mAh/g after 40 cycles with lower polarization (ΔEp = 0.16 V). Both materials demonstrated electrochemical performance comparable to commercial NCM. Overall, hydroxide co-precipitation emerged as the most industrially viable method due to scalable processing, compositional robustness, and improved long-term stability of regenerated cathodes. This work highlights the critical influence of synthesis route selection in LIB closed-loop recycling and provides a technological framework for industrial recovery of high-value NCM cathode materials. Full article
Show Figures

Figure 1

23 pages, 4191 KB  
Article
A Photocatalytic TiO2 Coating with Optimized Mechanical Properties Shows Strong Antimicrobial Activity Against Foodborne Pathogens
by Eduardo Torres Domínguez, Fnu Chenggeer, Liang Mao, Matthew R. Maschmann, Heather K. Hunt and Azlin Mustapha
Materials 2025, 18(24), 5640; https://doi.org/10.3390/ma18245640 - 15 Dec 2025
Viewed by 412
Abstract
Advanced technologies, such as antimicrobial coatings on food contact surfaces (FCSs), are critical to prevent the occurrence of food-contaminating bacteria. Titanium dioxide coatings were fabricated by the sol–gel method on stainless steel following an experiment consisting of eight different combinations of these synthetic [...] Read more.
Advanced technologies, such as antimicrobial coatings on food contact surfaces (FCSs), are critical to prevent the occurrence of food-contaminating bacteria. Titanium dioxide coatings were fabricated by the sol–gel method on stainless steel following an experiment consisting of eight different combinations of these synthetic parameters: type of protocol (method), amount of surfactant, aging time, spinning speed, and sintering temperature. Hardness and elastic modulus values of the eight coating combinations were assessed by nanoindentation, and their values were statistically analyzed to determine which protocol and sintering temperature were significant influencing factors. Additional experimental points were procured to obtain trends relating sintering temperature to hardness and elastic modulus. Within the experimental range studied, hardness monotonically increased with sintering temperature, reaching its maximum value at 595 °C, while elastic modulus attained a maximum value at 640 °C. These maxima’s isotherms were overlapped on the coating’s photocatalytic activity contour plot to explore which combinations of protocol, aging time, and sintering temperature yielded optimal photocatalytic activity, hardness, and elastic modulus. The optimized coating was tested against two representative foodborne pathogens, Escherichia coli O157:H7 and Staphylococcus aureus cells and their biofilms, and was characterized by nanoindentation, scanning electron microscopy, and X-ray diffraction. The properties of the coating, as found in this study, present evidence for its potential FCS applications. Full article
Show Figures

Figure 1

14 pages, 4019 KB  
Article
Study on Electrochemical Performance and Magnesium Storage Mechanism of Na3V2(PO4)3@C Cathode in Mg(TFSI)2/DME Electrolyte
by Jinxing Wang, Peiyang Zhang, Xuan Mou, Jingdong Yang, Jiaxu Wang, Guangsheng Huang and Jingfeng Wang
Energies 2025, 18(22), 5975; https://doi.org/10.3390/en18225975 - 14 Nov 2025
Viewed by 694
Abstract
Magnesium metal boasts a high theoretical volumetric specific capacity and abundant reserves. Magnesium batteries offer high safety and environmental friendliness. In recent years, magnesium-ion batteries (MIBs) with Mg or Mg alloys as anodes have garnered extensive interest and emerged as promising candidates for [...] Read more.
Magnesium metal boasts a high theoretical volumetric specific capacity and abundant reserves. Magnesium batteries offer high safety and environmental friendliness. In recent years, magnesium-ion batteries (MIBs) with Mg or Mg alloys as anodes have garnered extensive interest and emerged as promising candidates for next-generation competitive energy storage technologies. However, MIBs are plagued by issues such as sluggish desolvation kinetics and slow migration kinetics, which lead to limitations including a limited electrochemical window and poor magnesium storage reversibility. Herein, the sodium vanadium phosphate @ carbon (Na3V2(PO4)3@C, hereafter abbreviated as NVP@C) cathode material was synthesized via a sol–gel method. The electrochemical performance and magnesium storage mechanism of NVP@C in a 0.5 M magnesium bis(trifluoromethanesulfonyl)imide/ethylene glycol dimethyl ether (Mg(TFSI)2/DME) electrolyte were investigated. The as-prepared NVP@C features a pure-phase orthorhombic structure with a porous microspherical morphology. The discharge voltage of NVP@C is 0.75 V vs. activated carbon (AC), corresponding to 3.5 V vs. Mg/Mg2+. The magnesium storage process of NVP@C is tentatively proposed to follow a ‘sodium extraction → magnesium intercalation → magnesium deintercalation’ three-step intercalation–deintercalation mechanism, based on the characterization results of ICP-OES, ex situ XRD, and FTIR. No abnormal phases are generated throughout the process, and the lattice parameter variation is below 0.5%. Additionally, the vibration peaks of PO4 tetrahedrons and VO6 octahedrons shift reversibly, and the valence state transitions between V3+ and V4+/V5+ are reversible. These results confirm the excellent reversibility of the material’s structure and chemical environment. At a current density of 50 mA/g, NVP@C delivers a maximum discharge specific capacity of 62 mAh/g, with a capacity retention rate of 66% after 200 cycles. The observed performance degradation is attributed to the gradual densification of the CEI film during cycling, leading to increased Mg2+ diffusion resistance. This work offers valuable insights for the development of high-voltage MIB systems. Full article
Show Figures

Figure 1

20 pages, 4018 KB  
Article
Advancements in ZnFe2O4 Synthesis: A Comparative Study of Sol–Gel and Solid-State Methods for Next-Generation Battery Applications
by Vadim V. Efremov, Roman I. Korneikov, Svetlana V. Aksenova, Yaroslav G. Zernov, Tatiana V. Reznichenko, Nikita P. Ivanov, Semen A. Azon, Anton A. Belov, Aleksandr N. Fedorets, Oksana E. Kravchenko, Oleg I. Akhmetov, Ivan G. Tananaev, Evgeniy K. Papynov and Oleg O. Shichalin
J. Compos. Sci. 2025, 9(11), 632; https://doi.org/10.3390/jcs9110632 - 13 Nov 2025
Viewed by 1586
Abstract
The article examines the synthesis and electrophysical properties of spinel ferrite ZnFe2O4, produced using the sol–gel method with a solid-state finishing process; as well as through classical ceramic technology with mechanochemical activation. The study includes a detailed analysis of [...] Read more.
The article examines the synthesis and electrophysical properties of spinel ferrite ZnFe2O4, produced using the sol–gel method with a solid-state finishing process; as well as through classical ceramic technology with mechanochemical activation. The study includes a detailed analysis of the phase composition and crystalline structure using X-ray diffraction; infrared spectroscopy; mass spectrometry; and thermogravimetric and differential thermal analyses. These methods help identify thermal effects and the stages of synthesis. Impedance spectroscopy is used to investigate the electrophysical properties, revealing a significant influence of firing temperature on electrical ionic conductivity. The results show that the electrophysical properties differ based on the synthesis conditions and methods. This suggests potential applications for ZnFe2O4 as a cathode material in metal-ion batteries. The work highlights the importance of optimizing synthesis conditions to achieve high-performance characteristics in electrode materials. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
Show Figures

Figure 1

37 pages, 2700 KB  
Review
Research Progress on Electrochromic Properties of WO3 Thin Films
by Fuyueyang Tan, Jinhui Zhou, Zhengjie Guo, Chi Zhang, Shaoyi Yu, Yikun Yang, Yixian Xie, Xi Cao, Xinyi Wu, Xiaofei Gao, Zaijin Li, Yi Qu and Lin Li
Coatings 2025, 15(11), 1310; https://doi.org/10.3390/coatings15111310 - 10 Nov 2025
Cited by 2 | Viewed by 1690
Abstract
With continuous breakthroughs in electrochromic technology, tungsten trioxide (WO3) thin films, as a core material in this field, are rapidly expanding their applications in smart windows, anti-glare automotive rearview mirrors, and adaptive optical lenses. Owing to its excellent electrochromic properties—including high [...] Read more.
With continuous breakthroughs in electrochromic technology, tungsten trioxide (WO3) thin films, as a core material in this field, are rapidly expanding their applications in smart windows, anti-glare automotive rearview mirrors, and adaptive optical lenses. Owing to its excellent electrochromic properties—including high optical modulation, short switching times, and high coloration efficiency—WO3 has become a research focus in the field of electrochromic devices. This review takes WO3 thin films as the research subject. It begins by introducing the crystal structure of WO3 and the ion/electron co-intercalation-based electrochromic mechanism and explains two key performance parameters for evaluating electrochromic properties: optical modulation amplitude and coloration efficiency. Subsequently, it provides a detailed review of recent advances in the preparation of WO3 thin films via physical methods (including sputtering deposition, evaporative deposition, and pulsed laser deposition) and chemical methods (including hydrothermal, sol–gel, and electrodeposition methods). A systematic comparison is made of the microstructure and electrochromic performance (optical modulation amplitude and coloration efficiency) of films prepared by different methods, and the interaction between WO3 film morphology and device structure is analyzed. Finally, the advantages and challenges of physical and chemical methods in tuning film properties are summarized, and the outlook of their application prospects in high-performance electrochromic devices is given. This review aims to provide guidance for the selection and process optimization of WO3 thin films with enhanced performance for applications such as smart windows, anti-glare rearview mirrors, and adaptive optical systems. Full article
(This article belongs to the Special Issue Recent Developments in Thin Films for Technological Applications)
Show Figures

Figure 1

38 pages, 4591 KB  
Review
Non-Metallic Doping of Multinary Metal Oxide Semiconductors for Energy Applications
by Zhihua Wu, Jing Gao and Yongbo Kuang
Catalysts 2025, 15(11), 1062; https://doi.org/10.3390/catal15111062 - 7 Nov 2025
Viewed by 1228
Abstract
Multinary metal oxides are widely applied in energy storage and conversion, heterogeneous catalysis and environmental technologies, but their wide band gaps, low intrinsic electronic conductivity and limited density of active sites severely restrict their practical efficiency. This review examines non-metallic doping via the [...] Read more.
Multinary metal oxides are widely applied in energy storage and conversion, heterogeneous catalysis and environmental technologies, but their wide band gaps, low intrinsic electronic conductivity and limited density of active sites severely restrict their practical efficiency. This review examines non-metallic doping via the substitutional, interstitial or mixed incorporation of light elements such as B, C, N, F, P and S as a versatile strategy to overcome these fundamental limitations. We begin by outlining the primary synthesis methodologies for doped oxides, such as sol–gel, chemical vapor deposition, and hydrothermal routes, followed by a critical discussion of the multi-technique characterization framework required to verify successful dopant incorporation and elucidate its structural and electronic consequences. We focus on the fundamental principles of how doping parameters—such as mode, element type, and concentration—can be tuned to regulate material properties. The key mechanisms for performance enhancement, including synergistic lattice reconstruction, defect engineering, and electronic structure modulation, are emphasized. Significant advancements are highlighted in applications like energy storage, fuel cells, water splitting, and CO2 reduction. Finally, we assess current challenges, such as the precise control of doping sites and long-term stability, and offer perspectives on the rational design of next-generation oxide materials. Full article
Show Figures

Graphical abstract

20 pages, 3626 KB  
Article
Superwettable Carbon Fiber Membranes Functionalized with Cu-TiO2: High-Performance Oil–Water Separation and Sustainable Reusability
by Yuqiang Chen, Yang Chen, Xiaojun Li, Renzhong Li, Gege Lei, Ziyang Jia, Dongjie Liu and Zongfan Duan
Coatings 2025, 15(11), 1273; https://doi.org/10.3390/coatings15111273 - 3 Nov 2025
Viewed by 965
Abstract
Oily wastewater poses severe ecological and health threats, but conventional separation technologies have limitations like low efficiency or high energy consumption. Herein, two superwettable carbon fiber (CF)-based membranes were fabricated for efficient oil–water separation. Using CF (low cost, excellent mechanical stability) as the [...] Read more.
Oily wastewater poses severe ecological and health threats, but conventional separation technologies have limitations like low efficiency or high energy consumption. Herein, two superwettable carbon fiber (CF)-based membranes were fabricated for efficient oil–water separation. Using CF (low cost, excellent mechanical stability) as the substrate, Cu-TiO2@CF (superhydrophilic/underwater superoleophobic, renewable) was prepared via a deep ultraviolet (DUV)-assisted sol–gel method, and OTMS/Cu-TiO2@CF (superhydrophobic/superoleophilic) was obtained by modifying Cu-TiO2@CF with octadecyltrimethoxysilane (OTMS) via hydrothermal synthesis. Characterization showed Cu-TiO2 coatings uniformly covered CF, with strong substrate bonding. Both membranes exhibited outstanding performance: Cu-TiO2@CF achieved water fluxes of up to 79,839.6 L·m−2·h−1 and >97.3% separation efficiency for four oil–water mixtures; OTMS/Cu-TiO2@CF had a maximum oil flux of 86,593.4 L·m−2·h−1 and >98.1% efficiency. Cu-TiO2@CF regenerated via 10 min UV irradiation (restoring underwater oil contact angle to 153°), while OTMS/Cu-TiO2@CF achieved recovery through the process of UV irradiation followed by OTMS re-modification. Both membranes maintained stable performance over 100 cycles, demonstrating considerable potential for engineering applications. Full article
(This article belongs to the Special Issue Novel Application of Films and Coatings for Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop