Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (939)

Search Parameters:
Keywords = sol-gel technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1463 KB  
Review
Design and Application of Hetero-Multicomponent Metal Oxide Photocatalysts for Wastewater Treatment: Ti–Cu–Zn Catalysts and Future Research Directions
by Maria-Anthoniette Oghenetejiro Onoriode-Afunezie, Justinas Krutkevičius and Agnė Šulčiūtė
Molecules 2026, 31(2), 299; https://doi.org/10.3390/molecules31020299 - 14 Jan 2026
Abstract
Hetero-multicomponent metal oxide catalysts are attracting increasing attention for wastewater remediation due to their tunable band structures, synergistic redox activity, and enhanced stability. This review thoroughly evaluates recent progress in the synthesis and application of such catalysts, highlighting Ti–Cu–Zn nanostructures as a representative [...] Read more.
Hetero-multicomponent metal oxide catalysts are attracting increasing attention for wastewater remediation due to their tunable band structures, synergistic redox activity, and enhanced stability. This review thoroughly evaluates recent progress in the synthesis and application of such catalysts, highlighting Ti–Cu–Zn nanostructures as a representative case study. We examine synthesis approaches—including hydrothermal, biosynthesis, precipitation, and spray-based methods, with additional insight into sol–gel and other less commonly applied techniques—with emphasis on their suitability for constructing layered and multicomponent heterostructures. Mechanistic aspects of photocatalysis, Fenton and Fenton-like processes, adsorption, and electrochemical routes are discussed, with particular focus on charge separation, reactive oxygen species (ROS) generation, and pollutant-specific degradation pathways. Comparative performance metrics against antibiotics, pesticides, dyes, and fertilizers are analyzed, alongside considerations of leaching, reusability, and scale-up potential. Importantly, while significant progress has been made for organic micropollutants, applications in heavy metal remediation remain scarce, highlighting an urgent research gap. By situating Ti–Cu–Zn systems within the broader class of multicomponent catalysts, this review not only synthesizes current advances but also identifies opportunities to expand their role in sustainable wastewater management, including field deployment, regulatory compliance, and integration into decentralized treatment systems. Full article
(This article belongs to the Special Issue Recent Advances in Chemical Treatments of Wastewater)
Show Figures

Figure 1

29 pages, 2741 KB  
Review
Production Techniques for Antibacterial Fabrics and Their Emerging Applications in Wearable Technology
by Azam Ali, Muhammad Zaman Khan, Sana Rasheed and Rimsha Imtiaz
Micro 2026, 6(1), 5; https://doi.org/10.3390/micro6010005 - 13 Jan 2026
Abstract
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics [...] Read more.
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics offer effective antimicrobial properties while retaining comfort and functionality by incorporating nanotechnology and advanced materials, such as silver nanoparticles, zinc oxide, titanium dioxide, and graphene. The production techniques for antibacterial textiles range from chemical and physical surface modifications to biological treatments, each tailored to achieve long-lasting antibacterial performance while preserving fabric comfort and breathability. Advanced methods such as nanoparticle embedding, sol–gel coating, electrospinning, and green synthesis approaches have shown significant promise in enhancing antibacterial efficacy and material compatibility. Wearable technology, including fitness trackers, smart clothing, and medical monitoring devices, relies on prolonged skin contact, making the prevention of bacterial colonization essential for user safety and product longevity. Antibacterial fabrics address these concerns by reducing odor, preventing skin irritation, and minimizing the risk of infection, especially in medical applications such as wound dressings and patient monitoring systems. Despite their potential, integrating antibacterial fabrics into wearable technology presents several challenges. This review provides a comprehensive overview of the key antibacterial agents, the production strategies used to fabricate antibacterial textiles, and their emerging applications in wearable technologies. It also highlights the need for interdisciplinary research to overcome current limitations and promote the development of sustainable, safe, and functional antibacterial fabrics for next-generation wearable. Full article
Show Figures

Figure 1

18 pages, 2666 KB  
Article
ZnO Nanoparticles Synthesized via a Supercritical-CO2-Assisted Method as Photocatalysts for the Degradation of Water Pollutants
by Shuangxue Li and Paolo P. Pescarmona
Catalysts 2026, 16(1), 64; https://doi.org/10.3390/catal16010064 - 5 Jan 2026
Viewed by 296
Abstract
Zinc oxide (ZnO) is a widely studied photocatalyst for the degradation of organic pollutants in water, yet its conventional sol–gel synthesis often suffers from low yield and produces materials with low specific surface area. In this study, we tackled these limitations by synthesizing [...] Read more.
Zinc oxide (ZnO) is a widely studied photocatalyst for the degradation of organic pollutants in water, yet its conventional sol–gel synthesis often suffers from low yield and produces materials with low specific surface area. In this study, we tackled these limitations by synthesizing ZnO nanoparticles using a supercritical-CO2-assisted sol–gel method (ZnO-scCO2). The influence of the calcination temperature, precursor concentration, and solvent type on the synthesis of ZnO was systematically investigated, and the materials were characterized with a combination of techniques (XRD, SEM, N2 physisorption, UV-Vis-DRS spectroscopy). The photocatalytic performance of the ZnO-scCO2 materials was evaluated in the degradation of two probe pollutants (phenol and rhodamine B, 200 ppm), under UV and visible radiation. The scCO2-assisted method in ethanol as the solvent allowed achieving at least a four-fold higher ZnO yield and two-fold higher surface area compared to the materials prepared with a conventional sol–gel route without scCO2. These ZnO-scCO2 nanoparticles consistently showed enhanced photocatalytic activity in the removal of phenol and rhodamine B compared to their counterparts synthesized without scCO2 and compared to commercial ZnO. Among the screened synthetic parameters, the solvent in which ZnO was prepared proved to be the one with the strongest influence in determining the ZnO yield and its photocatalytic activity. The optimum results were obtained using 0.50 M zinc acetate as the precursor in 1-butanol as the solvent, and calcination at 300 °C. Full article
Show Figures

Graphical abstract

15 pages, 3439 KB  
Article
Photocatalytic Properties of Sol–Gel Films Influenced by Aging Time for Cefuroxime Decomposition
by Nina Kaneva
Crystals 2026, 16(1), 8; https://doi.org/10.3390/cryst16010008 - 23 Dec 2025
Viewed by 229
Abstract
Dip-coating and sol–gel techniques are used to apply ZnO sol–gel films to glass substrates. The primary ingredient used to produce the film is zinc acetate dihydrate. The ZnO sample is prepared for 0, 1, 3, 5, 10, 15, and 30 days. To deposit [...] Read more.
Dip-coating and sol–gel techniques are used to apply ZnO sol–gel films to glass substrates. The primary ingredient used to produce the film is zinc acetate dihydrate. The ZnO sample is prepared for 0, 1, 3, 5, 10, 15, and 30 days. To deposit nanocrystalline thin films, several gels are used. The films’ structural and photocatalytic properties are examined in relation to the ZnO solid’s aging time. UV–vis spectroscopy is used to evaluate the catalytic degradation of the antibiotic cefuroxime (CFX) in tap and distilled water, taking into account the initial solution’s aging duration. Every experiment is carried out under ultraviolet light illumination. These findings demonstrate that ZnO’s photocatalytic activity generally prolongs the initial solution. When compared to freshly prepared films, films made from a ZnO sample for 30 days showed the highest photocatalytic degradation of the medication under UV light. Overall, the photocatalytic activity of ZnO is increased by increasing the aging time of the starting solution. All samples and the photocatalytic test findings are reproducible. Full article
(This article belongs to the Special Issue Functional Thin Films: Growth, Characterization, and Applications)
Show Figures

Figure 1

20 pages, 4219 KB  
Article
Antibacterial, Redox, Cytotoxic, and Ecotoxic Properties of New Sol–Gel Silica-Copper-Based Materials
by Iliana Ivanova, Lilia Yordanova, Lora Simeonova, Miroslav Metodiev, Elena Nenova, Deyan Monov, Yoanna Kostova, Albena Bachvarova-Nedelcheva, Iva Kirova and Elitsa Pavlova
Pharmaceuticals 2026, 19(1), 35; https://doi.org/10.3390/ph19010035 - 23 Dec 2025
Viewed by 245
Abstract
Objective: The objective of our study was to synthesize and characterize silica–copper nanomaterials and to evaluate their biological properties (antibacterial, redox, cytotoxic, and ecotoxic) for potential applications. Methods and Results: Si/Cu-based materials were prepared by a sol–gel method. They were characterized by XRD, [...] Read more.
Objective: The objective of our study was to synthesize and characterize silica–copper nanomaterials and to evaluate their biological properties (antibacterial, redox, cytotoxic, and ecotoxic) for potential applications. Methods and Results: Si/Cu-based materials were prepared by a sol–gel method. They were characterized by XRD, UV-Vis, and SEM-EDS. The antibacterial activity of the materials was evaluated against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium), and yeasts (Candida albicans, Saccharomyces cerevisiae). The nanomaterial that was calcined at 500 °C exhibited greater antibacterial efficacy compared to the gel form. S. typhimurium demonstrated the highest susceptibility, whereas S. aureus and P. aeruginosa were the most resistant of the tested bacteria. Both yeasts exhibited comparable sensitivity (MBC = 1.0 mg/mL). The redox activity of both nanomaterials was tested at pH 7.4 (physiological) and 8.5 (optimal) by the activated chemiluminescent method. The nanocomposites significantly inhibited the free-radical and ROS generation. This presents them as redox regulators in living systems. The cytotoxic effects in normal BEAS-2B and tumor A549 human cell lines were assessed microscopically and by the cell viability neutral red uptake assay, CC50 being evaluated. The observed effects suggest moderate, similar cytotoxicity in both cell lines. The ecotoxicity study using Daphnia magna showed an LC50 of ~7–8 mg/L about Si/Cu/500. The LC50 for Si/Cu (gel) was lower than 0.25 mg/L, indicating an increase in toxicity with increased exposure time. Conclusions: Possible applications of the newly synthesized nanomaterials include antimicrobial coatings, drug delivery systems, antioxidant additives in various formulations, and water purification. Full article
Show Figures

Graphical abstract

21 pages, 869 KB  
Review
Green Synthesis for Antibiotic Photodegradation: Recent Advances and Future Trends
by Filipe S. Duarte, Amanda Melo, Leonardo Oliveira, José Duarte and Rosane Oliveira
Water 2026, 18(1), 39; https://doi.org/10.3390/w18010039 - 23 Dec 2025
Viewed by 440
Abstract
Water contamination by antibiotics has become a critical environmental and public health issue. Among emerging technologies for their removal, heterogeneous photocatalysis has shown remarkable potential. This review provides a systematic analysis of 40 recent studies (2019–2025) that employed green synthesis routes—including sol–gel, hydrothermal, [...] Read more.
Water contamination by antibiotics has become a critical environmental and public health issue. Among emerging technologies for their removal, heterogeneous photocatalysis has shown remarkable potential. This review provides a systematic analysis of 40 recent studies (2019–2025) that employed green synthesis routes—including sol–gel, hydrothermal, combustion, pyrolysis and co-precipitation methods—for the photocatalytic degradation of antibiotics. The comparison of these techniques revealed that biogenic metal oxides and ferrites synthesized with plant extracts achieved outstanding photocatalytic performance, with degradation efficiencies often exceeding 90–100% for antibiotics such as ciprofloxacin and tetracycline. These results are attributed to the phytochemical composition of the extracts, which are rich in flavonoids, phenols, saponins, tannins, and alkaloids, which act as natural reducing, capping, and stabilizing agents, promoting uniform nucleation, smaller particle sizes, and enhanced crystallinity. The review also highlights the synergistic relationship between biomolecule-mediated reduction and controlled synthesis conditions, which enables the design of sustainable, reusable, and high-efficiency photocatalysts for wastewater treatment and environmental remediation. Full article
Show Figures

Figure 1

24 pages, 6103 KB  
Article
Degradation of Traditional Silicate Glass and Protective Coatings Under Simulated Unsheltered Conditions
by Sofia Schiattone, Elisabetta Tomiato, Elena Bernardi, Martina Zangari, Tommaso Salzillo, Mariangela Vandini and Cristina Chiavari
Heritage 2026, 9(1), 2; https://doi.org/10.3390/heritage9010002 - 20 Dec 2025
Viewed by 463
Abstract
Outdoor glass is subject to degradation due to environmental factors, which alter its physical and chemical properties depending on the exposure conditions. Studying glass weathering and the effectiveness and durability of conservation treatments is necessary for developing optimal conservation strategies for glass heritage [...] Read more.
Outdoor glass is subject to degradation due to environmental factors, which alter its physical and chemical properties depending on the exposure conditions. Studying glass weathering and the effectiveness and durability of conservation treatments is necessary for developing optimal conservation strategies for glass heritage objects. Here, an accelerated aging protocol based on actual environmental data is successfully employed to replicate weathering caused by rain runoff, temperature, humidity and UVA radiation in unsheltered conditions. Two types of silicate glass with traditional compositions were artificially aged to investigate the corrosion processes and produce representative weathered substrates for applying and aging protective treatments. The performance of two recently marketed Siox-5 sol–gel systems was compared with that of Paraloid B72. Glass specimens, as well as leaching rain solutions, were analyzed with different techniques, including SEM/EDS, FTIR-ATR, color measurements and MP-AES. The composition of the glass influences weathering patterns, which in turn affect coating adhesion and overall performance. Sol–gel coatings demonstrate good chemical stability and tend to adhere more effectively to degraded surfaces than to well-preserved ones. The coatings exhibit varying degrees of sensitivity to environmental factors, with one of the sol–gel systems generally performing better than the others under the considered exposure conditions. Full article
(This article belongs to the Special Issue History, Conservation and Restoration of Cultural Heritage)
Show Figures

Figure 1

9 pages, 3658 KB  
Proceeding Paper
Preparation and Characterization of NaYF4-Based Up-Conversion Nanoparticles for Solar Energy Storage Systems
by José Joaquín Manjarrez-Arellano, Miguel A. Hernandez-Martinez, Rubén Caro-Briones, Gabriela Martínez-Mejía, Lazaro Ruiz-Virgen, José Manuel del Río, Miriam Sánchez-Pozos and Mónica Corea
Mater. Proc. 2025, 25(1), 16; https://doi.org/10.3390/materproc2025025016 - 18 Dec 2025
Viewed by 179
Abstract
Up-conversion nanoparticles (UCNPs) are materials that convert near-infrared (NIR) photons into ultraviolet (UV) or visible emissions. To enhance their optical properties, UCNPs are often synthesized with oxide (Y2O3) or fluoride (NaYF4) support matrices, useful for energy storage [...] Read more.
Up-conversion nanoparticles (UCNPs) are materials that convert near-infrared (NIR) photons into ultraviolet (UV) or visible emissions. To enhance their optical properties, UCNPs are often synthesized with oxide (Y2O3) or fluoride (NaYF4) support matrices, useful for energy storage applications. In this study, NaYF4-UCNPs were synthesized via coprecipitation and heat-treated at 400 °C. Then, a tetraethyl orthosilicate (TEOS) film was synthesized by the sol–gel technique at varying pH and temperatures from 25 °C to 80 °C. Characterization using scanning electron microscopy (SEM), X-ray diffraction (XRD), and confocal microscopy (CM) confirmed the up-conversion properties. These materials show promise for enhancing solar radiation density in polymer degradation. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

15 pages, 3114 KB  
Article
From Waste to Thermal Barrier: Green Carbonation Synthesis of a Silica Aerogel from Coal Gangue
by Chenggang Chen, Heyu Li, Zhe Sun and Yan Cao
Appl. Sci. 2025, 15(24), 13156; https://doi.org/10.3390/app152413156 - 15 Dec 2025
Viewed by 307
Abstract
A sustainable pathway for converting low-value solid waste (Coal gangue, CG) into high-performance thermal insulation materials through a green synthesis strategy has been demonstrated. The SiO2 was successfully and efficiently extracted from CG in the form of sodium silicate. The subsequent sol–gel [...] Read more.
A sustainable pathway for converting low-value solid waste (Coal gangue, CG) into high-performance thermal insulation materials through a green synthesis strategy has been demonstrated. The SiO2 was successfully and efficiently extracted from CG in the form of sodium silicate. The subsequent sol–gel process of sodium silicate solution utilized an innovative CO2 carbonation method, which replaced the conventional use of strong acids, thereby reducing the carbon footprint and enhancing process safety. Hydrophobic SiO2 aerogel was subsequently prepared via ambient pressure drying, exhibiting a high specific surface area of 750.4 m2/g, a narrow pore size distribution ranging from 2 to 15 nm and a low thermal conductivity of 0.022 W·m−1·K−1. Furthermore, the powdered aerogel was shaped into a monolithic form using a simple molding technique, which conferred appreciable compressibility and resilience, maintaining the low thermal conductivity and hydrophobicity of the original aerogels, ensuring its functional integrity for practical applications. Practical thermal management tests including low and high temperature, conclusively demonstrated the superior performance of the prepared aerogel material. This work presents a viable and efficient waste-to-resource pathway for producing high-performance thermal insulation materials. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

15 pages, 3054 KB  
Article
Nano-Silica-Modified Chitosan-Based Membranes for Application in Direct Methanol Fuel Cells
by Livhuwani Elsie Modau, Tebogo Mashola, Rudzani Annetjie Sigwadi, Touhami Mokrani and Fulufhelo Nemavhola
Polymers 2025, 17(24), 3281; https://doi.org/10.3390/polym17243281 - 11 Dec 2025
Viewed by 346
Abstract
Membrane electrolytes play a critical role in energy conversion devices. The development of stable, efficient membrane electrolytes is urgent and demands paramount attention for the successful commercialization of fuel cells. Chitosan, a naturally occurring material, and silica particles were used as precursors for [...] Read more.
Membrane electrolytes play a critical role in energy conversion devices. The development of stable, efficient membrane electrolytes is urgent and demands paramount attention for the successful commercialization of fuel cells. Chitosan, a naturally occurring material, and silica particles were used as precursors for organic–inorganic membrane polymers. The silica nanoparticles were prepared by the sol–gel and Stober methods and characterized using various techniques, including XRD, FTIR, etc. The silica-incorporated membranes show improved properties, with the sulfur-functionalized membranes having optimal proton conductivity, ion-exchange capacity, and tensile strength of 0.0238 S/cm, 2.86 meq/g, and 7.3 MPa, respectively. It also showed the lowest methanol permeability. This was clear proof that membrane functionalization has a positive impact on tuning the properties of electrolyte membranes and should be further explored in membrane development. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

8 pages, 502 KB  
Proceeding Paper
Advances in TiO2 Nanoparticles for Rhodamine B Degradation
by Md. Golam Sazid, Asraf Ibna Helal, Harunur Rashid and Md. Redwanur Rashid Nafi
Mater. Proc. 2025, 25(1), 14; https://doi.org/10.3390/materproc2025025014 - 9 Dec 2025
Viewed by 359
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor [...] Read more.
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor deposition (CVD) techniques, on the electrical and morphological properties of TiO2 NPs has been studied, emphasizing the distinctive physicochemical properties of TiO2 NPs, including their extensive surface area, significant oxidative capacity, and remarkable chemical stability, which are important in the recent advancements in their use for RhB degradation. A detailed examination of TiO2’s photocatalytic mechanism shows that it is based on the generation of reactive oxygen species (ROS) by photoinduced electron–hole pair formation under ultraviolet (UV) light exposure. In wastewater treatment, TiO2 degrades RhB into less harmful byproducts by the generation of electron–hole pairs that initiate redox reactions under sunlight. This study includes a thorough overview of significant factors influencing photocatalytic efficacy. The parameters include particle size, crystal phase (anatase, rutile, and brookite), surface changes, and the incorporation of metal or non-metal dopants to enhance visible light absorption. Researchers continually seek methods to overcome challenges, including restricted visible-light responsiveness and rapid electron–hole recombination. The investigated approaches include heterojunction generation, composite development, and co-catalyst insertion. This review article aims to address the deficiencies in our understanding of TiO2-based photocatalysis for the degradation of RhB and to propose enhancements for these systems to enable more efficient and sustainable wastewater treatment in the future. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

19 pages, 1863 KB  
Article
Degradable Polymer-Based Oil–Water Separation Materials Prepared by High Internal Phase Emulsion Templating Method and Silica-Modification
by Yunpeng Hu, Jianqiao Lu, Maoning Li, Qingyuan Du, Jing Zhao, Dandan Li, Xiangrui Meng, Yu Nan, Zhi Zhang and Dazhi Sun
Polymers 2025, 17(24), 3254; https://doi.org/10.3390/polym17243254 - 6 Dec 2025
Viewed by 477
Abstract
The development of oil–water separation materials that combine high separation efficiency, robust mechanical properties, and environmental degradability remains a significant challenge. This study presents a novel degradable and superhydrophobic porous material fabricated via a multi-step process. A porous foam was first synthesized from [...] Read more.
The development of oil–water separation materials that combine high separation efficiency, robust mechanical properties, and environmental degradability remains a significant challenge. This study presents a novel degradable and superhydrophobic porous material fabricated via a multi-step process. A porous foam was first synthesized from degradable poly(ε-caprolactone-co-2-ethylhexyl acrylate) using a high internal phase emulsion templating technique. The foam was subsequently modified through in situ silica (SiO2) deposition via a sol–gel process, followed by grafting with hydrophobic hexadecyltrimethoxysilane (HDTMS) to produce the final oil–water separation porous materials. Various characterization results showed that the optimized material featured a hierarchical pore structure in micro scales and the porosity of the foam remained ~90% even after the 2-step modification. Mechanical tests indicate that the modified material exhibited significantly enhanced compressive strength and the water contact angle measurements revealed a superhydrophobic surface with a value of approximately 156°. The prepared material demonstrated excellent oil/water separation performance with notable absorption capacities ranging from 4.11 to 4.90 g/g for oils with different viscosity. Additionally, the porous material exhibited exceptional cyclic stability, maintaining over 90% absorption capacity after 10 absorption-desorption cycles. Moreover, the prepared material achieved a mass loss of approximately 30% within the first 3 days under alkaline hydrolysis conditions (pH 12, 25 °C), which further escalated to ~70% degradation within four weeks. The current work establishes a feasible strategy for developing sustainable, high-performance oil–water separation materials through rational structural design and surface engineering. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Graphical abstract

18 pages, 3308 KB  
Article
Optical, Electrical, and Structural Properties of NiO Thin Films, Derived by Sol–Gel Method
by Tatyana Ivanova, Antoaneta Harizanova and Nikolay Petkov
Gels 2025, 11(12), 944; https://doi.org/10.3390/gels11120944 - 24 Nov 2025
Viewed by 638
Abstract
NiO films were successfully deposited by sol–gel spin coating on Si, glass, and ITO-covered glass substrates. The impact of the film thickness (the different number of layers), annealing temperatures (from 300 to 500 °C), and the substrate type on the crystal structure, film [...] Read more.
NiO films were successfully deposited by sol–gel spin coating on Si, glass, and ITO-covered glass substrates. The impact of the film thickness (the different number of layers), annealing temperatures (from 300 to 500 °C), and the substrate type on the crystal structure, film morphology, optical, and vibrational properties was investigated. X-ray diffraction (XRD) revealed a polycrystalline structure and the appearance of the cubic NiO phase. Field Emission Scanning Electron Microscopy (FESEM) was applied to explore the surface morphology of NiO films, deposited on glass and ITO substrates. The oxidation states of Ni were determined by X-ray photoelectron spectroscopy (XPS). The presence of Ni2+ and Ni3+ states was supposed. UV–VIS–NIR spectroscopy revealed that NiO films possessed a high average transparency of up to 74.6% in the visible spectral range when they were deposited on glass substrates, and up to 76.9% for NiO films on ITO substrates. The thermal treatments and the film thickness slightly affected the film transparency in the spectral range of 450–700 nm. The work function (WF) of the samples was determined. This research showed that good properties of sol–gel NiO films can be compared to the properties of those films produced using complicated and expensive techniques. Full article
(This article belongs to the Special Issue Advances in Gel Films (2nd Edition))
Show Figures

Figure 1

38 pages, 4591 KB  
Review
Non-Metallic Doping of Multinary Metal Oxide Semiconductors for Energy Applications
by Zhihua Wu, Jing Gao and Yongbo Kuang
Catalysts 2025, 15(11), 1062; https://doi.org/10.3390/catal15111062 - 7 Nov 2025
Viewed by 1133
Abstract
Multinary metal oxides are widely applied in energy storage and conversion, heterogeneous catalysis and environmental technologies, but their wide band gaps, low intrinsic electronic conductivity and limited density of active sites severely restrict their practical efficiency. This review examines non-metallic doping via the [...] Read more.
Multinary metal oxides are widely applied in energy storage and conversion, heterogeneous catalysis and environmental technologies, but their wide band gaps, low intrinsic electronic conductivity and limited density of active sites severely restrict their practical efficiency. This review examines non-metallic doping via the substitutional, interstitial or mixed incorporation of light elements such as B, C, N, F, P and S as a versatile strategy to overcome these fundamental limitations. We begin by outlining the primary synthesis methodologies for doped oxides, such as sol–gel, chemical vapor deposition, and hydrothermal routes, followed by a critical discussion of the multi-technique characterization framework required to verify successful dopant incorporation and elucidate its structural and electronic consequences. We focus on the fundamental principles of how doping parameters—such as mode, element type, and concentration—can be tuned to regulate material properties. The key mechanisms for performance enhancement, including synergistic lattice reconstruction, defect engineering, and electronic structure modulation, are emphasized. Significant advancements are highlighted in applications like energy storage, fuel cells, water splitting, and CO2 reduction. Finally, we assess current challenges, such as the precise control of doping sites and long-term stability, and offer perspectives on the rational design of next-generation oxide materials. Full article
Show Figures

Graphical abstract

29 pages, 2287 KB  
Review
A Review of Synthesis, Characterization, Properties, and Applications of Double Perovskite Oxides
by Pablo V. Tuza and Mariana M. V. M. Souza
Inorganics 2025, 13(11), 372; https://doi.org/10.3390/inorganics13110372 - 7 Nov 2025
Cited by 1 | Viewed by 1652
Abstract
Double perovskites are represented by the formula A2BB’O6 and AA’BB’O6. These materials have been synthesized using the solid-state reaction, sol–gel, Pechini, and hydrothermal methods. X-ray fluorescence, X-ray diffraction, magnetic measurements, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction, [...] Read more.
Double perovskites are represented by the formula A2BB’O6 and AA’BB’O6. These materials have been synthesized using the solid-state reaction, sol–gel, Pechini, and hydrothermal methods. X-ray fluorescence, X-ray diffraction, magnetic measurements, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction, synchrotron X-ray diffraction, neutron powder diffraction, extended X-ray absorption fine structure, and Raman spectroscopy have been used for the characterization of double perovskites. X-ray diffraction, synchrotron X-ray diffraction, and neutron powder diffraction coupled with the Rietveld method determine the crystal structure of a sample. These materials present various properties and applications. The present review aims (i) to report a process to determine the symmetry, apparent size, and apparent strain using the Rietveld method; (ii) show how experimental characterization techniques complement each other in the investigation of double perovskites; (iii) describe how the synthesis method can help in the uncovering of double perovskites with improved properties; and (iv) exemplify some of the main applications of double perovskites. Full article
(This article belongs to the Special Issue Recent Progress in Perovskites)
Show Figures

Figure 1

Back to TopTop