Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (330)

Search Parameters:
Keywords = soil C pools

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13119 KiB  
Article
Spatial and Temporal Variability of C Stocks and Fertility Levels After Repeated Compost Additions: A Case Study in a Converted Mediterranean Perennial Cropland
by Arleen Rodríguez-Declet, Maria Teresa Rodinò, Salvatore Praticò, Antonio Gelsomino, Adamo Domenico Rombolà, Giuseppe Modica and Gaetano Messina
Soil Syst. 2025, 9(3), 86; https://doi.org/10.3390/soilsystems9030086 (registering DOI) - 4 Aug 2025
Abstract
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil [...] Read more.
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil mapping revealed strong baseline heterogeneity in texture, CEC, and Si pools. Compost application markedly increased total organic C and N levels, aggregate stability, and pH with noticeable changes after the first amendment, whereas a limited C storage potential was found following further additions. NDVI values of tree canopies monitored over a 3-year period showed significant time-dependent changes not correlated with the soil fertility variables, thus suggesting that multiple interrelated factors affect plant responses. The non-crystalline amorphous Si/total amorphous Si (iSi:Siamor) ratio is here proposed as a novel indicator of pedogenic alteration in disturbed agroecosystems. These findings highlight the importance of tailoring organic farming strategies to site-specific conditions and reinforce the value to combine C and Si pool analysis for long-term soil fertility assessment. Full article
Show Figures

Figure 1

17 pages, 3193 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 - 2 Aug 2025
Viewed by 135
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 3753 KiB  
Article
Elevational Patterns and Seasonal Dynamics of Soil Organic Carbon Fractions and Content in Rice Paddies of Yuanyang Terrace, Southwest China
by Haitao Li, Linxi Chang, Yonglin Wu, Yang Li, Xinran Liang, Fangdong Zhan and Yongmei He
Agronomy 2025, 15(8), 1868; https://doi.org/10.3390/agronomy15081868 - 1 Aug 2025
Viewed by 187
Abstract
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons [...] Read more.
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons (spring, summer, autumn and winter) at Yuanyang Terrace in southwest China were investigated, and their relationship with environmental factors was analyzed. The contents of SOC, unprotected SOC (uPOM), physically protected SOC (pPOM) and biochemically protected SOC (bcPOM) in rice paddies at a low elevation (250 m), were significantly lower by 49–51% than those at relatively high elevations (1600 m and 1800 m). Among the SOC fractions, the highest proportion (33–50%) was uPOM, followed by pPOM and bcPOM (accounting for 17–40%), and the lowest proportion was chemically protected SOC (cPOM). In addition, there were interseasonal differences among the contents of SOC fractions, with a significantly higher content of SOC, uPOM and pPOM at an elevation of 1600 m in summer than in the other three seasons, whereas the cPOM content at an elevation of 250 m in spring was significantly higher than in the other three higher elevations. According to the redundancy analysis (RDA), total nitrogen was the key environmental factor, with an explanatory degree of 56% affecting the contents of SOC and its fractions. Thus, the SOC content increased with increasing elevation, and physical and biochemical protection were potential stabilization mechanisms responsible for their stability in the rice paddy of Yuanyang Terrace. These results provides empirical evidence for the elevational distribution patterns and seasonal dynamics of SOC fractions in rice paddies across Yuanyang Terrace. These findings highlight the importance of physical and biochemical protection mechanisms in stabilizing SOC in rice paddies, which could enhance long-term C sequestration and contribute to climate change mitigation in terraced agroecosystems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 2522 KiB  
Article
Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios
by Hanbing Cao, Xinru Chen, Yunqi Luo, Zhanxiang Wu, Chengjiao Duan, Mengru Cao, Jorge L. Mazza Rodrigues, Junyu Xie and Tingliang Li
Agronomy 2025, 15(8), 1808; https://doi.org/10.3390/agronomy15081808 - 26 Jul 2025
Viewed by 296
Abstract
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in [...] Read more.
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in the region. In a long-term experimental site located in Hongtong County, Shanxi Province, soil samples were collected from the 0–100 cm depth over a nine-year period. These samples were analyzed to evaluate the impact of five treatments: no fertilization and no mulching (CK), conventional farming practices (FP), nitrogen reduction and controlled fertilization (MF), nitrogen reduction and controlled fertilization with ridge-film furrow-sowing (RF), and nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH). The average annual yield of wheat grain, SOC stock, water-soluble organic carbon (WSOC), particulate organic carbon (POC), light fraction organic carbon (LFOC), mineral-associated organic carbon (MOC), and heavy fraction organic carbon (HFOC) stocks were measured. The results revealed that the FH treatment not only significantly increased wheat grain yield but also significantly elevated the SOC stock by 23.71% at the 0–100 cm depth compared to CK. Furthermore, this treatment significantly enhanced the POC, LFOC, and MOC stocks by 106.43–292.98%, 36.93–158.73%, and 17.83–81.55%, respectively, within 0–80 cm. However, it also significantly decreased the WSOC stock by 34.32–42.81% within the same soil layer and the HFOC stock by 72.05–101.51% between the 20 and 100 cm depth. Notably, the SOC stock at the 0–100 cm depth was primarily influenced by the HFOC. Utilizing the DNDC (denitrification–decomposition) model, we found that future temperature increases are detrimental to SOC sequestration in dryland areas, whereas reduced rainfall is beneficial. The simulation results indicated that in a warmer climate, a 2 °C temperature increase would result in a SOC stock decrease of 0.77 to 1.01 t·ha−1 compared to a 1 °C increase scenario. Conversely, under conditions of reduced precipitation, a 20% rainfall reduction would lead to a SOC stock increase of 1.53% to 3.42% compared to a 10% decrease scenario. In conclusion, the nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH) treatment emerged as the most effective practice for increasing SOC sequestration in dryland areas by enhancing the HFOC stock. This treatment also fortified the SOC pool’s capacity to withstand future climate change, thereby serving as the optimal approach for concurrently enhancing production and fertility in this region. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

19 pages, 2530 KiB  
Article
Soil Microbiome Drives Depth-Specific Priming Effects in Picea schrenkiana Forests Following Labile Carbon Input
by Kejie Yin, Lu Gong, Xinyu Ma, Xiaochen Li and Xiaonan Sun
Microorganisms 2025, 13(8), 1729; https://doi.org/10.3390/microorganisms13081729 - 24 Jul 2025
Viewed by 311
Abstract
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research [...] Read more.
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research object. An indoor incubation experiment was conducted by adding three concentrations (1% SOC, 2% SOC, and 3% SOC) of 13C-labelled glucose. We applied 13C isotope probe-phospholipid fatty acid (PLFA-SIP) technology to investigate the influence of readily labile organic carbon inputs on soil priming effect (PE), microbial community shifts at various depths, and the mechanisms underlying soil PE. The results indicated that the addition of 13C-labeled glucose accelerated the mineralization of soil organic carbon (SOC); CO2 emissions were highest in the 0–20 cm soil layer and decreased trend with increasing soil depth, with significant differences observed across different soil layers (p < 0.05). Soil depth had a positive direct effect on the cumulative priming effect (CPE); however, it showed negative indirect effects through physico-chemical properties and microbial biomass. The CPE of the 0–20 cm soil layer was significantly positively correlated with 13C-Gram-positive bacteria, 13C-Gram-negative bacteria, and 13C-actinomycetes. The CPE of the 20–40 cm and 40–60 cm soil layers exhibited a significant positive correlation with cumulative mineralization (CM) and microbial biomass carbon (MBC). Glucose addition had the largest and most significant positive effect on the CPE. Glucose addition positively affected PLFAs and particularly microbial biomass. This study provides valuable insights into the dynamics of soil carbon pools at varying depths following glucose application, advancing the understanding of forest soil carbon sequestration. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 1766 KiB  
Article
A Simple Model to Predict the Temporal Nitrogen Saturation Point of a Jack Pine (Pinus banksiana L.) Forest
by Andrew M. McDonough and Shaun A. Watmough
Forests 2025, 16(7), 1195; https://doi.org/10.3390/f16071195 - 19 Jul 2025
Viewed by 307
Abstract
Dry jack pine forests exposed to elevated nitrogen (N) deposition do not necessarily exhibit traditional N saturation responses. Using empirical results from a five year above-canopy N deposition experiment, a simple nitrogen (N) saturation model was developed for jack pine (Pinus banksiana [...] Read more.
Dry jack pine forests exposed to elevated nitrogen (N) deposition do not necessarily exhibit traditional N saturation responses. Using empirical results from a five year above-canopy N deposition experiment, a simple nitrogen (N) saturation model was developed for jack pine (Pinus banksiana Lamb.) forests dominated by cryptogams. For the model, a series of differential equations using empirically derived rate constants (k) were applied to estimate changes in net N pools in biotic and abiotic components across a narrow N deposition gradient (0, 5, 10, 15, 20, and 25 kg N ha−1 yr−1). Critical soil C:N ratios were used as the model limit to signify saturation. We explored the saturation response time by priming the model to mineralize approximately one percent of the soil N pool after the critical C:N ratio was reached. A portion of this pool was made available to jack pine trees. Nitrogen leaching below the rooting zone occurred when the mass of N mineralized from the soil organic- and A horizon layers exceeded the theoretical mass required by jack pine, driving the mineral soil below the critical C:N ratio. The model suggests that N leaching below the rooting zone could happen around 50 (1% LFH N mineralization) years after the onset of deposition at 25 kg N ha−1 yr−1. In contrast, N deposition rates ≤ 20 kg N ha−1 yr−1 are not expected to be associated with N leaching over this timeframe. The modeled results are consistent with empirical surveys of jack pine forests exposed to elevated N deposition for several decades. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

19 pages, 3570 KiB  
Article
Modeling the Effects of Climate and Site on Soil and Forest Floor Carbon Stocks in Radiata Pine Stands at Harvesting Age
by Daniel Bozo, Rafael Rubilar, Óscar Jara, Marianne V. Asmussen, Rosa M. Alzamora, Juan Pedro Elissetche, Otávio C. Campoe and Matías Pincheira
Forests 2025, 16(7), 1137; https://doi.org/10.3390/f16071137 - 10 Jul 2025
Viewed by 324
Abstract
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors [...] Read more.
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors influence these carbon pools. Our objective was to evaluate the effects of climate and site variables on carbon stocks in adult radiata pine plantations across contrasting water and nutrient conditions. Three 1000 m2 plots were installed at 20 sites with sandy, granitic, recent ash, and metamorphic soils, which were selected along a productivity gradient. Biomass carbon stocks were estimated using allometric equations, and carbon stocks in the forest floor and mineral soil (up to 1 m deep) were assessed. SOC varied significantly, from 139.9 Mg ha−1 in sandy soils to 382.4 Mg ha−1 in metamorphic soils. Total carbon stocks (TCS) per site ranged from 331.0 Mg ha−1 in sandy soils to 552.9 Mg ha−1 in metamorphic soils. Across all soil types, the forest floor held the lowest carbon stock. Correlation analyses and linear models revealed that variables related to soil water availability, nitrogen content, precipitation, and stand productivity positively increased SOC and TCS stocks. In contrast, temperature, evapotranspiration, and sand content had a negative effect. The developed models will allow more accurate estimation estimates of C stocks at SOC and in the total stand. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

31 pages, 7541 KiB  
Article
Harnessing Bacillus subtilis–Moss Synergy: Carbon–Structure Optimization for Erosion-Resistant Barrier Formation in Cold Mollisols
by Tianxiao Li, Shunli Zheng, Zhaoxing Xiao, Qiang Fu, Fanxiang Meng, Mo Li, Dong Liu and Qingyuan Liu
Agriculture 2025, 15(14), 1465; https://doi.org/10.3390/agriculture15141465 - 8 Jul 2025
Viewed by 270
Abstract
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing [...] Read more.
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing soil structural stability. Mosses contribute to soil particle fixation through their unique rhizoid structures; however, the mechanisms underlying their interactions in mixed inoculation remain unclear. Therefore, this study addresses soil and water loss caused by rainfall erosion in the cold black soil region. We conducted controlled laboratory experiments cultivating Bacillus subtilis and cold-adapted moss species, evaluating the erosion mitigation effects of different biological treatments under gradient slopes (3°, 6°, 9°) and rainfall intensities (70 mm h−1, 120 mm h−1), and elucidating their carbon-based structural reinforcement mechanism. The results indicated that compared to the control group, Treatment C significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates by 121.6% and 76.75%, respectively. In separate simulated rainfall events at 70 mm h−1 and 120 mm h−1, Treatment C reduced soil loss by 95.70% and 96.75% and decreased runoff by 38.31% and 67.21%, respectively. Crucially, the dissolved organic carbon (DOC) loss rate in Treatment C was only 21.98%, significantly lower than that in Treatment A (32.32%), Treatment B (22.22%), and the control group (51.07%)—representing a 59.41% reduction compared to the control. This demonstrates the following: (1) Bacillus subtilis enhances microbial metabolism, driving carbon conversion into stable pools, while mosses reduce carbon leaching via physical barriers, synergistically forming a dual “carbon protection–structural reinforcement” barrier. (2) The combined inoculation optimizes soil structure by increasing the proportion of large soil particles and enhancing aggregate stability, effectively suppressing soil loss even under extreme rainfall erosion. This study elucidates, for the first time, the biological pathway through which microbe–moss interactions achieve synergistic carbon sequestration and erosion resistance by regulating aggregate formation and pore water dynamics. It provides a scalable “carbon–structure”-optimized biotechnology system (co-inoculation of Bacillus subtilis and moss) for the ecological restoration of the cold black soil region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 3983 KiB  
Article
Reduced Precipitation Alters Soil Nutrient Dynamics by Regulating the Chemical Properties of Deadwood Substrates
by Laicong Luo, Xi Yuan, Chunsheng Wu, Dehuan Zong, Xueying Zhong, Kang Lin, Long Li, Bingxu Yang, Xuejiao Han, Chao Luo, Wenping Deng, Shijie Li and Yuanqiu Liu
Forests 2025, 16(7), 1112; https://doi.org/10.3390/f16071112 - 4 Jul 2025
Viewed by 242
Abstract
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby [...] Read more.
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby influences soil nutrient pools remain poorly resolved. Here, we investigated a Cunninghamia lanceolata (Lamb.) Hook. plantation in subtropical China under ambient precipitation (CK) and precipitation reduction treatments of 30%, 50%, and 80%, systematically examining how reduced precipitation alters the chemical properties of deadwood substrates and, in turn, soil nutrient status. Our findings reveal that (1) as precipitation declined, soil water content decreased significantly (p < 0.01), while deadwood pH declined and total organic carbon (TOC), nonstructural carbohydrates (NSCs), and lignin content markedly accumulated (p < 0.01); (2) these shifts in deadwood chemistry affected feedback mechanisms, leading to the suppression of soil nutrient pools: extreme drought (80% reduction) significantly reduced soil TOC, dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.01) and inhibited N and P mineralization, whereas the 30% reduction treatment elicited a transient increase in soil microbial biomass carbon (MBC), indicative of microbial acclimation to mild water stress; and (3) principal component analysis (PCA) showed that the 80% reduction treatment drove lignin accumulation in deadwood, while the 30% reduction treatment exerted the greatest influence on soil DOC, TOC, and MBC; partial least squares path modeling (PLS-PM) further demonstrated that soil water content and deadwood substrate properties (pH, lignin, soluble sugars, TOC, C/N, and lignin/N) were strongly negatively correlated (r = −0.9051, p < 0.01), and that deadwood chemistry was, in turn, negatively correlated with soil nutrient variables (pH, TOC, DOC, MBC, TP, TN, and dissolved organic nitrogen [DON]; r = −0.8056, p < 0.01). Together, these results indicate that precipitation reduction—by drying soils—profoundly modifies deadwood chemical composition (lignin accumulation and NSC retention) and thereby, via slowed organic-matter mineralization, constrains soil nutrient release and accumulation. This work provides a mechanistic framework for understanding forest carbon–nitrogen cycling under climate change. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

18 pages, 1697 KiB  
Article
Synergistic Effects of Organic and Chemical Fertilizers on Microbial-Mediated Carbon Stabilization: Insights from Metagenomics and Spectroscopy
by Wei Wang, Yue Jiang, Shanshan Cai, Yumei Li, Juanjuan Qu and Lei Sun
Agronomy 2025, 15(7), 1555; https://doi.org/10.3390/agronomy15071555 - 26 Jun 2025
Viewed by 416
Abstract
Fertilization management constitutes a critical determinant of agroecosystem productivity. Reasonable fertilization can increase the organic matter content in soil; however, the potential mechanism of how different fertilization regimes impact soil carbon sequestration is unclear. We hypothesized that the combined application of biochar and [...] Read more.
Fertilization management constitutes a critical determinant of agroecosystem productivity. Reasonable fertilization can increase the organic matter content in soil; however, the potential mechanism of how different fertilization regimes impact soil carbon sequestration is unclear. We hypothesized that the combined application of biochar and organic fertilizer would enhance soil carbon sequestration by improving soil physicochemical conditions, increasing microbial activity, and promoting the accumulation of stable forms of carbon. This study systematically investigated different regimes, including the application of chemical fertilizer alone (SCN), chemical fertilizer with biochar (SCB), chemical fertilizer with organic fertilizer (SCO), and chemical fertilizer with both biochar and organic fertilizer (SCBO), on soil physiochemical properties, enzyme activities, labile organic carbon fractions, microbial carbon fixation gene expression, and community composition. The results demonstrated that (1) the application of organic materials significantly enhanced soil nutrient levels and enzyme activities, with the best performance from SCBO; (2) the organic materials increased the labile soil organic carbon (SOC) content and the carbon pool management index, with SCO showing the highest at 69.82%; (3) SCB and SCBO improved the stability of soil carbon components by increasing the proportion of Aromatic C; and (4) the carbon fixation genes ACAT and sdhA exhibited the highest abundance in SCBO. In parallel, the relative abundance of Actinomycetota increased with the application of organic materials, reaching its peak in SCBO. Mantel testing revealed a strong correlation between microbial community composition and SOC, emphasizing the importance of SOC in microbial growth and metabolism. Moreover, the strong correlation between carbon fixation genes and aromatic carbon suggested that specific carbon forms, particularly aromatic structures, played a critical role in driving microbial carbon fixation processes. Full article
(This article belongs to the Special Issue Microbial Carbon and Its Role in Soil Carbon Sequestration)
Show Figures

Figure 1

15 pages, 878 KiB  
Article
Changes in Microbial Necromass Carbon in Soil Profiles of Grasslands with Different Stages of Restoration in a Karst Region
by Xuefeng Wu, Heng Liu, Xiaolong Bai, Dongpeng Lv, Mingzhi Lv, Yurong Yang and Wangjun Li
Agronomy 2025, 15(6), 1436; https://doi.org/10.3390/agronomy15061436 - 12 Jun 2025
Viewed by 639
Abstract
Ecological restoration has increasingly been employed to reverse land degradation and increase carbon (C) sink, especially in ecologically fragile karst areas. Microbial necromass carbon (MNC) constitutes a critical pool within soil organic carbon (SOC), contributing substantially to long-term C sequestration through mineral stabilization. [...] Read more.
Ecological restoration has increasingly been employed to reverse land degradation and increase carbon (C) sink, especially in ecologically fragile karst areas. Microbial necromass carbon (MNC) constitutes a critical pool within soil organic carbon (SOC), contributing substantially to long-term C sequestration through mineral stabilization. However, its distribution patterns across soil profiles and grassland restoration stages in karst areas remain unclear. To address this knowledge gap, the contents of bacterial necromass C (BNC), fungal necromass C (FNC), and their contributions to SOC were estimated based on glucosamine and muramic acid contents across the soil profile (0–20 cm, 20–40 cm, 40–60 cm, 60–80 cm, and 80–100 cm) for four subalpine restoration stages (grazing enclosure for 5, 11, 17, and 25 years) in the karst region. Our findings demonstrated that both soil depth and grassland restoration stages effectively influenced the BNC and FNC contents. On average, the soil BNC, FNC, and total MNC at the depth of 80–100 cm reduced by 70.50%, 59.70%, and 62.18% compared with in topsoil (0–20 cm), respectively. However, the FNC/BNC ratio gradually increased with the increase in soil depth, which was 43.15% higher at 80–100 cm soil depth than in topsoil, suggesting that the accumulation efficiency of FNC was higher compared to BNC in the deep soil. The BNC, FNC, and MNC were positively correlated with the grassland restoration stage, while FNC/BNC ratio had a negative relationship with the restoration stage (R2 = 0.45, p < 0.001). FNC contributed significantly more to SOC (28.6–36.4%) compared to BNC (7.7–9.9%) at all soil depths, indicating that soil fungal necromass has an essential effect on SOC sequestration. The results of the random forest model and distance-based redundancy analysis identified that pH, soil water content, and dissolved organic carbon were the three most essential predictors for the contribution of MNC to SOC. Our study highlights the importance of microbial necromass to SOC accumulation, providing significant scientific implications for the C pool management during the restoration of degraded grasslands in karst regions. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

15 pages, 5545 KiB  
Article
Stable and Mobile (Water-Extractable) Forms of Organic Matter in High-Latitude Volcanic Soils Under Various Land Use Scenarios in Southeastern Iceland
by Aleksandra Kot, Urszula Norton, Grzegorz Kulczycki, Jón Guðmundsson, Agnieszka Medyńska-Juraszek, Chloe M. Mattilio, Szymon Jędrzejewski and Jarosław Waroszewski
Agriculture 2025, 15(12), 1255; https://doi.org/10.3390/agriculture15121255 - 10 Jun 2025
Viewed by 904
Abstract
High-latitude regions store substantial amounts of soil organic matter (SOM). Icelandic volcanic soils have exceptional capabilities for SOM accumulation, but recent changes in land use can significantly impact it. Water-extractable organic matter (WEOM) represents a labile SOM pool and serves as a reliable [...] Read more.
High-latitude regions store substantial amounts of soil organic matter (SOM). Icelandic volcanic soils have exceptional capabilities for SOM accumulation, but recent changes in land use can significantly impact it. Water-extractable organic matter (WEOM) represents a labile SOM pool and serves as a reliable index of SOM dynamics. We assessed the stable carbon (C), stable nitrogen (N), and WEOC (water-extractable organic carbon), as well as WETN (water-extractable total nitrogen), concentrations in soils under different land uses—semi-natural habitats (tundra and wetland) and human-managed areas (intensively and extensively grazed pasturelands and formerly and presently fertilized meadows)—in southeastern Iceland. The results suggest that human-managed sites contain more total C and N but less WEOM per unit of total C or N than semi-natural habitats, except for wetlands. Wetlands exhibited the highest WEOM content. Extensive pasturelands and fertilized meadows are becoming more common in local ecosystems, highlighting the direction of changes in Icelandic grasslands management. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

16 pages, 2270 KiB  
Article
Impact of Long-Term Agroforestry Systems on Carbon Pools and Sequestration in Top and Deep Soil Layers of Semi-Arid Region of Western India
by Mahesh Sirimalle, Chiranjeev Kumawat, Raimundo Jiménez-Ballesta, Ramu Meena, Kamlesh Kumar Sharma, Abhik Patra, Kiran Kumar Mohapatra and Arvind Kumawat
Forests 2025, 16(6), 946; https://doi.org/10.3390/f16060946 - 4 Jun 2025
Viewed by 626
Abstract
To explore the impact of different agroforestry systems on carbon sequestration, the carbon management index, and carbon fractions, a long-term (37 years) field trial was conducted using three tree-based agroforestry systems consisting of tree species, namely Acacia tortilis, Hardwickia binata, and [...] Read more.
To explore the impact of different agroforestry systems on carbon sequestration, the carbon management index, and carbon fractions, a long-term (37 years) field trial was conducted using three tree-based agroforestry systems consisting of tree species, namely Acacia tortilis, Hardwickia binata, and Tecomella undulata, along with fallow land in a semi-arid region of India. The soil samples were taken at four distinct depths (0–15, 15–30, 30–60, and 60–90 cm) with eight replications and analyzed for soil total organic carbon (TOC), soil organic carbon fractions, soil carbon stocks, and the carbon management index (CMI). In the topsoil layer (0–30 cm), the Acacia tortilis-based agroforestry system recorded a total organic carbon (TOC) content of 4.09%, which was 42.5% higher than that of fallow land. In this layer, the active carbon pool (ACP) was more prominent than the passive carbon pool (PCP). Compared to fallow land, the ACP increased by 68.3%, 59%, and 53.6% for the Acacia tortilis-, Hardwickia binata-, and Tecomella undulata-based systems, respectively. Similarly, the PCP increased by 18.4%, 11.8%, and 8.2% for the same respective systems in the topsoil layer. For the 0–90 cm soil layer, the Acacia tortilis-based agroforestry system sequestered the highest amount of total organic carbon (39.34 Mg C ha−1), followed by agroforestry systems based on Hardwickia binata (37.86 Mg C ha−1), Tecomella undulata (36.99 Mg C ha−1), and fallow land (30.65 Mg C ha−1). Carbon sequestration is higher in the subsurface soil layers (30–90 cm) than in the surface layers. This trend is observed across all agroforestry systems. The carbon management index registered higher for the Acacia tortilis-based agroforestry system (166.58) at the top soil layer than others. Hence, long-term agroforestry systems could improve soil carbon storage and the carbon management index as compared to fallow land. A 37-year field study in a semi-arid region of India revealed that Acacia tortilis-based agroforestry significantly enhances soil carbon sequestration, active carbon pools, and the carbon management index, especially in deeper soil layers, compared to fallow land. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 2927 KiB  
Article
Long-Term Film Mulching with Manure Amendment Drives Trade-Offs Between Spring Maize Nutrient Uptake and Topsoil Carbon Stability on the Loess Plateau
by Fangfang Zhang, Kai Liu, Qilong Song, Linjuan Wang, Renshan Li, Kongyang Wu, Jianming Han and Shiqing Li
Agronomy 2025, 15(6), 1352; https://doi.org/10.3390/agronomy15061352 - 31 May 2025
Cited by 1 | Viewed by 489
Abstract
Film mulching and gravel mulching are effective methods for increasing crop yields in Northwest China but exacerbate soil organic carbon (SOC) mineralisation. Manure amendment is a viable method for offsetting carbon (C) losses from mulching. SOC stability is a key factor in determining [...] Read more.
Film mulching and gravel mulching are effective methods for increasing crop yields in Northwest China but exacerbate soil organic carbon (SOC) mineralisation. Manure amendment is a viable method for offsetting carbon (C) losses from mulching. SOC stability is a key factor in determining the nutrient supply capacity of soils, as it affects the C sources available to microorganisms. However, the synergistic effects of film mulching and manure amendment on SOC stability and crop nutrient uptake are still unclear. Therefore, four treatments—no mulching (CK), gravel mulching (GM), film mulching (FM), and film mulching with manure amendment (FCM)—were established on the Loess Plateau. Experiments were conducted to measure plant and grain nitrogen (N), phosphorus (P), potassium (K) uptake, SOC, labile organic C fractions (LOCFs), stability-based organic C fractions (SOCFs), and the C management index (CMI) in 2019 and 2020. The results showed that the FM and FCM treatments significantly improved crop dry matter accumulation in both years compared to the control. The FCM treatment significantly increased the two-year NPK averages of plants to 44.9%, 50.7%, and 54.5% and significantly increased those of grains to 46.7%, 58.2%, and 30.4%. The FCM treatment significantly increased all LOCFs, water solution C (WSC), hot-water-extractable C (HWC), permanganate oxidisable C (POXC), and particulate organic C (POC) in the topsoil (0–20 cm) in both years. The fractions of the active C pool (AP) in the SOCFs, namely, very labile C (CVL) and labile C (CL), were significantly increased, suggesting that the FCM treatment significantly decreased C stability in the topsoil. The sensitivity index showed that, among all SOC fractions, POC (21.5–72.9%) and less labile C (CLL) (20.8–483.8%) were the most sensitive fractions of LOCFs and SOCFs compared to SOC (1.93–35.8%). A random forest analysis showed that most labile C fractions and the CMI significantly contributed to crop N, P, and K uptake, especially POXC to crop N uptake, the CMI to crop P uptake, and the AP to crop K uptake. It was concluded that the FCM treatment synergistically enhanced SOC lability, crop NPK uptake, and labile C fractions, especially POXC, the AP, and the CMI, which serve as robust indicators for guiding precision nutrient management in semi-arid croplands. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

19 pages, 1658 KiB  
Article
Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon
by Holly D. Deighton, F. Wayne Bell and Zoë Lindo
Forests 2025, 16(6), 902; https://doi.org/10.3390/f16060902 - 28 May 2025
Viewed by 494
Abstract
Boreal forests have historically been regarded as some of the largest terrestrial carbon (C) sinks. However, increased soil organic matter (SOM) decomposition due to forest harvesting and post-harvest silviculture (e.g., site preparation, planting, and managing for competing vegetation) may exacerbate the effects of [...] Read more.
Boreal forests have historically been regarded as some of the largest terrestrial carbon (C) sinks. However, increased soil organic matter (SOM) decomposition due to forest harvesting and post-harvest silviculture (e.g., site preparation, planting, and managing for competing vegetation) may exacerbate the effects of climate warming and shift boreal forests from being C sinks to C sources. We used an established stand-scale, fully replicated, experimental study to identify how two levels of forest management (harvesting = Harvest Only, and harvesting with post-harvest silviculture = Harvest Plus) influence SOC dynamics at three boreal forest sites varying in soil texture. Each site was surveyed for forest floor (litter and F/H horizons) and mineral soils pre-harvest (0) and 5, 14, and 20 years post-harvest. We predicted that sites harvested and left to revegetate naturally would have the lowest SOC stocks after 20 years, as sites that were planted and managed for competing vegetation would recover faster and contribute to a larger nutrient pool, and that the sand-dominated site would have the largest SOC losses following harvest due to the inherently lower ability of sand soils to chemically and/or physically protect SOC from decomposition following harvest. Over a 20-year period, both forest management treatments generally resulted in reduced total (litter, F/H, and mineral horizon) SOC stocks compared with the control: the Harvest Only treatment reduced overall SOC stocks by 15% at the silt-dominated site and 31% at the clay-dominated site but increased overall SOC stocks by 4% at the sand-dominated site, whereas the Harvest Plus treatment reduced overall SOC stocks by 32% at the sand- and silt-dominated sites and 5% at the clay-dominated site. This suggests that harvesting and leaving plots to revegetate naturally on sand-dominated sites and harvesting followed by post-harvest silviculture on clay-dominated sites may minimize total SOC losses at similar sites, though a full replicated field experiment is needed to test this hypothesis. Most treatment effects in this study were observed only in the second decade post-harvest (14 and 20 years post-harvest), highlighting the importance of long-term field experiments on the effects of forest harvesting and post-harvest silviculture. This research improves our understanding of the relationship between C dynamics, forest management, and soil texture, which is integral for developing sustainable management strategies that optimize C sequestration and contribute to the resilience of boreal forest ecosystems in the face of climate change. Full article
Show Figures

Figure 1

Back to TopTop