Impact of Long-Term Agroforestry Systems on Carbon Pools and Sequestration in Top and Deep Soil Layers of Semi-Arid Region of Western India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Climate
2.2. Experimental Details
2.3. Soil Sampling and Processing
2.4. Methods of Soil Analysis
2.5. Soil Organic Carbon Storage/Stock (Mg C Ha−1)
2.6. Carbon Management Index (CMI)
2.7. Statistical Analysis
3. Results
3.1. Total Soil Organic Carbon (TOC) Distribution
3.2. Organic Carbon Fractions
3.2.1. Very Labile Carbon Fraction (VLC)
3.2.2. Labile Carbon Fraction (LCF)
3.2.3. Less Labile Carbon Fraction (LCF)
3.2.4. Recalcitrant Carbon Fraction (RCF)
3.3. Active Carbon Pools (ACPs) and Passive Carbon Pools (PCPs) of Soil Organic Carbon
3.4. Soil Organic Carbon Stock (Sequestrated Organic Carbon)
3.5. Soil Carbon Management Indices of Different Agroforestry Systems
3.5.1. Carbon Lability Index
3.5.2. Carbon Pool Index (CPI)
3.5.3. Carbon Management Index (CMI)
3.6. Relationship Among Different Soil Organic Carbon Fractions
4. Discussion
4.1. Total Organic Carbon
4.2. Soil Organic Carbon Fractions
4.2.1. Very Labile Carbon Fraction
4.2.2. Labile Carbon Fraction
4.2.3. Less Labile Carbon Fraction
4.2.4. Recalcitrant Carbon Fraction
4.3. Active Carbon Pool and Passive Carbon Pool
4.4. Soil Organic Carbon Stock
4.5. Carbon Pool Index
4.6. Carbon Management Index
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Lorenz, K.; Lal, R. Soil Organic Carbon Sequestration in Agroforestry Systems—A Review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef]
- Kaushal, R.; Tewari, S.; Thapliyal, S.D.; Kumar, A.; Roy, T.; Islam, S.; Durai, J. Build-Up of Labile, Non-Labile Carbon Fractions under Fourteen-Year-Old Bamboo Plantations in the Himalayan Foothills. Heliyon 2021, 7, e07850. [Google Scholar] [CrossRef]
- Ajit; Dhyani, S.K.; Handa, A.K.; Newaj, R.; Chavan, S.B.; Alam, B. Estimating Carbon Sequestration Potential of Existing Agroforestry Systems in India. Agrofor. Syst. 2017, 90, 1101–1118. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement. Conference of the Parties, Twenty-First Session, Paris, 30 November to 11 December 2015; United Nations Framework Convention on Climate Change: Geneva, Switzerland, 2015. [Google Scholar]
- Rizvi, R.H.; Newaj, R.; Chaturvedi, O.P.; Saxena, A.; Karmakar, P.S.; Maurya, A. State Level Assessment of Area and Carbon Sequestration under Agroforestry Systems for Karnataka, India. In Proceedings of the Conference on Promotion of Agroforestry for Rural Income Generation, Climate Change Mitigation and Adaptation, Kathmandu, Nepal, 27–29 April 2018; Central Agroforestry Research Institute: Jhansi, India, 2018. [Google Scholar]
- Nair, P.K.; Mohan Kumar, B.; Nair, V. Agroforestry as a Strategy for Carbon Sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Newaj, R.; Chaturvedi, O.P.; Handa, A.K. Recent Development in Agroforestry Research and Its Role in Climate Change Adaptation and Mitigation. Indian J. Agrofor. 2016, 18, 1–9. [Google Scholar]
- Chavan, S.B.; Newaj, R.; Rizvi, R.H.; Prasad, R.; Alam, B.; Handa, A.K.; Tripathi, D. Reduction of Global Warming Potential vis-à-vis Greenhouse Gases through Traditional Agroforestry Systems in Rajasthan, India. Environ. Dev. Sustain. 2021, 23, 4573–4593. [Google Scholar] [CrossRef]
- Ramesh, T.; Manjaiah, K.M.; Mohapatra, K.P.; Rajasekar, K.; Ngachan, S.V. Assessment of Soil Organic Carbon Stocks and Fractions under Different Agroforestry Systems in Subtropical Hill Agroecosystems of North-East India. Agrofor. Syst. 2015, 89, 677–690. [Google Scholar] [CrossRef]
- Tan, L.P.; He, X.D.; Wang, H.T.; Zhang, N.; Gao, Y.B. Analysis of Soil Water Content in Relation to Accumulation of Pedogenic Calcium Carbonate of Artemisia ordosica Community in Tengger Desert. J. Desert Res. 2008, 28, 701–705. [Google Scholar]
- UNFCCC. Report of the Conference of Parties on Its Thirteenth Session, Bali, Indonesia; United Nations Framework Convention on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- Nair, P.R.; Nair, V.D.; Kumar, B.M.; Showalter, J.M. Carbon Sequestration in Agroforestry Systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar] [CrossRef]
- Lal, R. World Crop Residues Production and Implications of Its Use as a Biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef]
- Blair, G.J.; Lefroy, R.D.; Lisle, L. Soil Carbon Fractions Based on Their Degree of Oxidation and the Development of a Carbon Management Index for Agricultural Systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Blair, N.; Faulkner, R.D.; Till, A.R.; Poulton, P.R. Long-Term Management Impacts on Soil C, N and Physical Fertility: Part I: Broad Balk Experiment. Soil Tillage Res. 2006, 91, 30–38. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, S.; Sun, Q.; Li, N.; Jiang, J.; Wang, R.; Zhao, M. Soil Organic Carbon Sequestration Potential of Artificial and Natural Vegetation in the Hilly Regions of Loess Plateau. Ecol. Eng. 2015, 82, 547–554. [Google Scholar] [CrossRef]
- Ghosh, B.N.; Meena, V.S.; Alam, N.M.; Dogra, P.; Bhattacharyya, R.; Sharma, N.K.; Mishra, P.K. Impact of Conservation Practices on Soil Aggregation and the Carbon Management Index after Seven Years of Maize-Wheat Cropping System in the Indian Himalayas. Agric. Ecosyst. Environ. 2016, 216, 247–257. [Google Scholar] [CrossRef]
- Kumar, M.; Panwar, N.R.; Kumawat, R.N.; Santra, P. Influence of Different Land Use Systems on Soil Properties in Hot Arid Rajasthan. J. Indian Soc. Soil Sci. 2020, 68, 121–127. [Google Scholar] [CrossRef]
- Solomon, D.; Lehmann, J.; Zech, W. Land Use Effects on Soil Organic Matter Properties of Chromic Luvisols in Semi-Arid Northern Tanzania: Carbon, Nitrogen, Lignin and Carbohydrates. Agric. Ecosyst. Environ. 2000, 78, 203–213. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Schollenberger, C.J. A Rapid Approximate Method for Determining Soil Organic Matter. Soil Sci. 1927, 24, 65–68. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. Rapid Titration Method of Organic Carbon of Soils. Soil Sci. 1934, 37, 29–33. [Google Scholar] [CrossRef]
- Chan, K.Y.; Bowman, A.; Oates, A. Oxidizable Organic Carbon Fractions and Soil Quality Changes in an Oxic Paleustalf under Different Pasture Leys. Soil Sci. 2001, 166, 61–67. [Google Scholar] [CrossRef]
- Datta, A.; Basak, N.; Chaudhari, S.K.; Sharma, D.K. Soil Properties and Organic Carbon Distribution under Different Land Uses in Reclaimed Sodic Soils of North-West India. Geoderma Reg. 2015, 4, 134–146. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984; p. 680. [Google Scholar]
- Panse, V.G.; Sukhatme, P.V. Statistical Methods for Agricultural Workers, 3rd ed.; ICAR Publications: New Delhi, India, 1978; p. 347. [Google Scholar]
- Benbi, D.K.; Brar, K.; Toor, A.S.; Singh, P. Total and Labile Pools of Soil Organic Carbon in Cultivated and Undisturbed Soils in Northern India. Geoderma 2015, 237, 149–158. [Google Scholar] [CrossRef]
- Sahoo, U.K.; Singh, S.L.; Gogoi, A.; Kenye, A.; Sahoo, S.S. Active and Passive Soil Organic Carbon Pools as Affected by Different Land Use Types in Mizoram, Northeast India. PLoS ONE 2019, 14, e0219969. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Rawat, P.; Kumar, A.; Bhatt, P. Soil Physico-Bio-Chemical Properties under Different Agroforestry Systems in Terai Region of the Garhwal Himalayas. J. Pharmacogn. Phytochem. 2018, 7, 2813–2821. [Google Scholar]
- Maini, A.; Sharma, V.; Sharma, S. Assessment of Soil Carbon and Biochemical Indicators of Soil Quality under Rainfed Land Use Systems in North Eastern Region of Punjab, India. Carbon Manag. 2020, 11, 169–182. [Google Scholar] [CrossRef]
- Thangavel, R.; Kanchikerimath, M.; Sudharsanam, A.; Ayyanadar, A.; Karunanithi, R.; Deshmukh, N.A.; Vanao, N.S. Evaluating Organic Carbon Fractions, Temperature Sensitivity and Artificial Neural Network Modeling of CO2 Efflux in Soils: Impact of Land Use Change in Subtropical India (Meghalaya). Ecol. Indic. 2018, 93, 129–141. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Otutumi, A.T.; de Sá Mendonça, E.; Neves, J.C.L.; de Oliveira, T.S. Combined Effect of Intercropping and Minimum Tillage on Soil Carbon Sequestration and Organic Matter Pools in the Semiarid Region of Brazil. Soil Res. 2019, 57, 266–275. [Google Scholar] [CrossRef]
- Santos, U.J.; Duda, G.P.; Marques, M.C.; Valente de Medeiros, E.; de Sousa Lima, J.R.; Soares de Souza, E.; Hammecker, C. Soil Organic Carbon Fractions and Humic Substances Are Affected by Land Uses of Caatinga Forest in Brazil. Arid Land Res. Manag. 2019, 33, 255–273. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency–Matrix Stabilization (MEMS) Framework Integrates Plant Litter Decomposition with Soil Organic Matter Stabilization: Do Labile Plant Inputs Form Stable Soil Organic Matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef]
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.F.; Ding, G. Effects of Agricultural Management on Soil Organic Matter and Carbon Transformation—A Review. Plant Soil Environ. 2006, 52, 531. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Preston, C.M.; Nierop, K.G. Strengthening the Soil Organic Carbon Pool by Increasing Contributions from Recalcitrant Aliphatic Bio(Macro)Molecules. Geoderma 2007, 142, 1–10. [Google Scholar] [CrossRef]
- Singh, J.; Singh, B.; Sharma, S. Comparison of Soil Carbon and Nitrogen Pools among Poplar and Eucalyptus-Based Agroforestry Systems in Punjab, India. Carbon Manag. 2021, 12, 693–708. [Google Scholar] [CrossRef]
- Nath, A.J.; Brahma, B.; Sileshi, G.W.; Das, A.K. Impact of Land Use Changes on the Storage of Soil Organic Carbon in Active and Recalcitrant Pools in a Humid Tropical Region of India. Sci. Total Environ. 2018, 624, 908–917. [Google Scholar] [CrossRef]
- Didawat, R.K.; Sharma, V.K.; Nath, D.J.; Patra, A.; Kumar, S.; Biswas, D.R.; Anil, A.S. Soil Biochemical Properties and Nutritional Quality of Rice Cultivated in Acidic Inceptisols Using Long-Term Organic Farming Practices. Arch. Agron. Soil Sci. 2023, 69, 1282–1297. [Google Scholar] [CrossRef]
- Naik, S.K.; Maurya, S.; Bhatt, B.P. Soil Organic Carbon Stocks and Fractions in Different Orchards of Eastern Plateau and Hill Region of India. Agrofor. Syst. 2017, 91, 541–552. [Google Scholar] [CrossRef]
- Paul, E.A.; Collins, H.P.; Leavitt, S.W. Dynamics of Resistant Soil Carbon of Midwestern Agricultural Soils Measured by Naturally Occurring ¹⁴C Abundance. Geoderma 2001, 104, 239–256. [Google Scholar] [CrossRef]
- Tanwar, S.P.S.; Kumar, P.; Verma, A.; Bhatt, R.K.; Kumar, A.; Lal, K.; Mathur, B.K. Carbon Sequestration Potential of Agroforestry Systems in the Indian Arid Zone. Curr. Sci. 2019, 117, 2014–2022. [Google Scholar] [CrossRef]
- Gupta, D.K.; Bhatt, R.K.; Keerthika, A.; Noor Mohammed, M.B.; Shukla, A.K.; Jangid, B.L. Carbon Sequestration Potential of Hardwickia binata Roxb.-Based Agroforestry in Hot Semi-Arid Environment of India: An Assessment of Tree Density Impact. Curr. Sci. 2019, 116, 112–116. [Google Scholar] [CrossRef]
- Kalambukattu, J.G.; Singh, R.; Patra, A.K.; Arunkumar, K. Soil Carbon Pools and Carbon Management Index under Different Land Use Systems in the Central Himalayan Region. Acta Agric. Scand. B Soil Plant Sci. 2013, 63, 200–205. [Google Scholar] [CrossRef]
- Tirol-Padre, A.; Ladha, J.K. Assessing the Reliability of Permanganate-Oxidizable Carbon as an Index of Soil Labile Carbon. Soil Sci. Soc. Am. J. 2004, 68, 969–978. [Google Scholar] [CrossRef]
Sl. No. | Agroforestry Tree Species (Botanical Name) | Local Name | Family | Spacing and Plot Size |
---|---|---|---|---|
1. | Acacia tortilis | Israeli babool | Fabaceae | 5 m × 5 m (15 rows) |
2. | Hardwickia binata | Anjan | Fabaceae | 5 m × 5 m (15 rows) |
3. | Tecomella undulata | Rohida | Bignoniaceae | 5 m × 5 m (15 rows) |
Very Labile Carbon Fraction (g kg−1) | Labile Carbon Fraction (g kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Agroforestry systems | 0–15 | 15–30 | 30–60 | 60–90 | Mean | 0–15 | 15–30 | 30–60 | 60–90 | Mean |
Acacia tortilis | 1.72 a | 1.24 a | 0.77 a | 0.54 a | 1.07 | 0.81 a | 0.65 a | 0.43 a | 0.28 a | 0.54 |
Hardwickia binata | 1.58 b | 1.22 a | 0.75 ab | 0.52 a | 1.02 | 0.75 b | 0.61 a | 0.40 ab | 0.26 a | 0.51 |
Tecomella undulata | 1.56 bc | 1.21 a | 0.72 b | 0.51 a | 1.00 | 0.72 bc | 0.54 b | 0.37 b | 0.25 a | 0.47 |
Fallow land | 0.79 d | 0.65 b | 0.44 c | 0.32 b | 0.55 | 0.63 d | 0.49 c | 0.29 c | 0.24 a | 0.41 |
Less Labile Carbon Fraction (g kg−1) | Recalcitrant Carbon Fraction (g kg−1) | |||||||||
Agroforestry systems | 0–15 | 15–30 | 30–60 | 60–90 | Mean | 0–15 | 15–30 | 30–60 | 60–90 | Mean |
Acacia tortilis | 0.84 a | 0.83 a | 0.65 a | 0.51 a | 0.71 | 1.07 a | 1.04 a | 0.91 a | 0.73 a | 0.94 |
Hardwickia binata | 0.82 a | 0.73 b | 0.62 a | 0.49 a | 0.66 | 1.01 a | 0.97 b | 0.87 a | 0.71 a | 0.89 |
Tecomella undulata | 0.80 ab | 0.72 bc | 0.56 b | 0.47 ab | 0.64 | 0.99 ab | 0.96 bc | 0.81 ab | 0.69 a | 0.86 |
Fallow land | 0.78 ac | 0.70 bcd | 0.53 bc | 0.43 c | 0.61 | 0.87 c | 0.82 d | 0.74 c | 0.67 a | 0.78 |
Agroforestry Systems | TOC | VLC | LC | LLC | RC | ACP | PCP |
---|---|---|---|---|---|---|---|
Acacia tortilis | 3.25 a | 1.07 a | 0.54 a | 0.71 a | 0.94 a | 1.61 a | 1.64 a |
Hardwickia binata | 3.08 b | 1.02 b | 0.51 a | 0.66 b | 0.89 a | 1.52 b | 1.55 b |
Tecomella undulata | 2.98 bc | 1.00 bc | 0.47 ab | 0.64 bc | 0.86 ab | 1.47 bc | 1.50 bc |
Fallow land | 2.35 d | 0.55 d | 0.41 c | 0.61 cd | 0.78 c | 0.96 d | 1.39 d |
Top Soil Layer (0–30 cm) | Deep Soil Layer (30–90 cm) | |||||
---|---|---|---|---|---|---|
Agroforestry systems | CPI | CLI | CMI | CPI | CLI | CMI |
Acacia tortilis | 1.43 a | 1.18 a | 166.58 a | 1.31 a | 1.14 a | 149.13 a |
Hardwickia binata | 1.34 b | 1.17 a | 157.68 b | 1.26 a b | 1.14 a | 142.42 b |
Tecomella undulata | 1.31 b | 1.16 a | 153.44 c | 1.21 b | 1.13 a | 136.82 c |
Fallow land | 1 c | 1 b | 100 d | 1 c | 1 b | 100 d |
TOC | CVL | CL | CLL | CR | |
---|---|---|---|---|---|
TOC | 1 | ||||
CVL | 0.983 ** | 1 | |||
CL | 0.979 ** | 0.936 ** | 1 | ||
CLL | 0.951 ** | 0.882 ** | 0.975 ** | 1 | |
CR | 0.970 ** | 0.936 ** | 0.936 ** | 0.944 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirimalle, M.; Kumawat, C.; Jiménez-Ballesta, R.; Meena, R.; Sharma, K.K.; Patra, A.; Mohapatra, K.K.; Kumawat, A. Impact of Long-Term Agroforestry Systems on Carbon Pools and Sequestration in Top and Deep Soil Layers of Semi-Arid Region of Western India. Forests 2025, 16, 946. https://doi.org/10.3390/f16060946
Sirimalle M, Kumawat C, Jiménez-Ballesta R, Meena R, Sharma KK, Patra A, Mohapatra KK, Kumawat A. Impact of Long-Term Agroforestry Systems on Carbon Pools and Sequestration in Top and Deep Soil Layers of Semi-Arid Region of Western India. Forests. 2025; 16(6):946. https://doi.org/10.3390/f16060946
Chicago/Turabian StyleSirimalle, Mahesh, Chiranjeev Kumawat, Raimundo Jiménez-Ballesta, Ramu Meena, Kamlesh Kumar Sharma, Abhik Patra, Kiran Kumar Mohapatra, and Arvind Kumawat. 2025. "Impact of Long-Term Agroforestry Systems on Carbon Pools and Sequestration in Top and Deep Soil Layers of Semi-Arid Region of Western India" Forests 16, no. 6: 946. https://doi.org/10.3390/f16060946
APA StyleSirimalle, M., Kumawat, C., Jiménez-Ballesta, R., Meena, R., Sharma, K. K., Patra, A., Mohapatra, K. K., & Kumawat, A. (2025). Impact of Long-Term Agroforestry Systems on Carbon Pools and Sequestration in Top and Deep Soil Layers of Semi-Arid Region of Western India. Forests, 16(6), 946. https://doi.org/10.3390/f16060946