Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Forest Floor and Mineral Horizon Sampling
2.4. Sample Processing
2.5. Twentieth-Year Litterfall and Decompositon
2.6. Statistical Analysis
3. Results
3.1. Forest Floor (L and F/H) and Mineral Horizon SOC Stocks Following Forest Harvesting with and Without Post-Harvest Silviculture
3.2. Long-Term (20 Year) Effects of Forest Management on Overall SOC Stocks
3.3. Long-Term (20th Year) Effects of Forest Management on Litterfall and Decomposition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C | Carbon |
SOM | Soil organic matter |
SOC | Soil organic carbon |
F | Fragmented |
H | Humic |
CO2 | Carbon dioxide |
SFM | Sustainable forest management |
LOI | Loss-on-ignition |
DWT | Dry weight equivalent |
References
- Crowther, T.W.; Van Den Hoogen, J.; Wan, J.; Mayes, M.A.; Keiser, A.D.; Mo, L.; Averill, C.; Maynard, D.S. The global soil community and its influence on biogeochemistry. Science 2019, 365, eaav0550. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppu, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Vanhala, P.; Bergström, I.; Haaspuro, T.; Kortelainen, P.; Holmberg, M.; Forsius, M. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. Sci. Total Environ. 2016, 557–558, 51–57. [Google Scholar] [CrossRef]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef]
- Kyaschenko, J.; Clemmensen, K.E.; Karltun, E.; Lindahl, B.D. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol. Lett. 2017, 20, 1546–1555. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Hashimoto, S.; Suzuki, M. The impact of forest clear-cutting on soil temperature: A comparison between before and after cutting, and between clear-cut and control sites. J. For. Res. 2004, 9, 125–132. [Google Scholar] [CrossRef]
- Devine, W.D.; Harrington, C.A. Influence of harvest residues and vegetation on microsite soil and air temperatures in a young conifer plantation. Agric. For. Meteorol. 2007, 145, 125–138. [Google Scholar] [CrossRef]
- Startsev, A.D.; McNabb, D.H. Effects of skidding on forest soil infiltration in west-central Alberta. Can. J. Soil Sci. 2000, 80, 617–624. [Google Scholar] [CrossRef]
- Schnurr-Pütz, S.; Bååth, E.; Guggenberger, G.; Drake, H.L.; Kirsten, K. Compaction of forest soil by logging machinery favours occurrence of prokaryotes. FEMS Microbiol. Ecol. 2006, 58, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Funakawa, S.; Hayakawa, C.; Kosaki, T. Effects of clearcutting and girdling on soil respiration and fluxes of dissolved organic carbon and nitrogen in a Japanese cedar plantation. For. Ecol. Manag. 2021, 498, 119520. [Google Scholar] [CrossRef]
- Prescott, C.E.; Reid, A.; Wu, S.Y.; Nilsson, M.-C. Decomposition rates of surface and buried forest-floor material. Can. J. For. Res. 2017, 47, 1140–1144. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Mjöfors, K.; Strömgren, M.; Nohrstedt, H.-Ö.; Johansson, M.-B.; Gärdenäs, A.I. Indications that site preparation increases forest ecosystem carbon stocks in the long term. Scand. J. For. Res. 2017, 32, 717–725. [Google Scholar] [CrossRef]
- Pan, P.; Zhao, F.; Ning, J.; Zhang, L.; Ouyang, X.; Zang, H. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations. PLoS ONE 2018, 13, e0191952. [Google Scholar] [CrossRef]
- Natural Resources Canada. The State of Canada’s Forests: Annual Report 2023; Natural Resources Canada: Ottawa, ON, Canada, 2023; 104p, Available online: https://natural-resources.canada.ca/sites/nrcan/files/forest/sof2023/NRCAN_SofForest_Annual_2023_EN_accessible-vf.pdf (accessed on 12 April 2024).
- Certification Canada. Forest Management Certification in Canada: 2022 Year-End Status Report Canada. Forest Products Association of Canada. 18p. Available online: https://certificationcanada.org/wp-content/uploads/2023/05/2022-Yearend-SFM-Certification-Detailed-Report.pdf (accessed on 12 April 2024).
- Foster, B.C.; Wang, D.; Keeton, W.S.; Ashton, M.S. Implementing sustainable forest management using six concepts in an adaptive management framework. J. Sustain. For. 2010, 29, 79–108. [Google Scholar] [CrossRef]
- Campbell, R.A. Herbicide use for forest management in Canada: Where we are and where we are going. For. Chron. 1990, 66, 355–360. [Google Scholar] [CrossRef]
- Natural Resources Canada. Forest Herbicide Research. Canadian Forest Service—Great Lakes Forestry Centre. Bulletin 53. Available online: https://publications.gc.ca/collections/collection_2012/rncan-nrcan/Fo122-1-53-2012-eng.pdf (accessed on 14 May 2024).
- Pennock, D.J. Soil genesis. In Digging into Canadian Soils; Krzic, M., Walley, F., Diochon, A., Paré, M.C., Farrell, R., Eds.; Canadian Society of Soil Science: Pinawa, MB, Canada, 2021; pp. 13–65. ISBN 978-0-88880-670-3. [Google Scholar]
- von Lützow, M.; Kögel-Knabner, I.; Ludwig, B.; Matzner, E.; Flessa, H.; Ekschmitt, K.; Guggenberger, G.; Marschner, B.; Kalbitz, K. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. J. Plant Nutr. Soil Sci. 2008, 171, 111–124. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Mueller, C.W.; Höschen, C.; Ivanov, P.; Kögel-Knabner, I. The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence. Biogeochemistry 2021, 156, 401–420. [Google Scholar] [CrossRef]
- Angst, G.; Pokorný, J.; Mueller, C.W.; Prater, I.; Preusser, S.; Kandeler, E.; Meador, T.; Straková, P.; Hájek, T.; van Buiten, G.; et al. Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biol. Biochem. 2021, 159, 108302. [Google Scholar] [CrossRef]
- Huang, M.; Zettl, J.D.; Barbour, L.; Elshorbagy, A.; Cheng Si, B. The impact of soil moisture availability on forest growth indices for variably layered coarse-textured soils. Ecohydrology 2013, 6, 214–227. [Google Scholar] [CrossRef]
- Thiffault, E.; Hannam, K.D.; Paré, D.; Titus, B.; Hazlett, P.W.; Maynard, D.G.; Brais, S. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 2011, 19, 278–309. [Google Scholar] [CrossRef]
- Piirainen, S.; Finér, L.; Starr, M. Changes in forest floor and mineral soil carbon and nitrogen stocks in a boreal forest after clear-cutting and mechanical site preparation. Eur. J. Soil Sci. 2015, 66, 735–743. [Google Scholar] [CrossRef]
- Bell, F.W.; Shaw, M.; Dacosta, J.; Newmaster, S.G. The NEBIE plot network: Background and experimental design. For. Chron. 2017, 93, 87–94. [Google Scholar] [CrossRef]
- Searle, E.B.; Bell, F.W.; Dacosta, J.; Deighton, H.D. Effects of silvicultural treatments on post-harvesting residual tree mortality. For. Ecol. Manag. 2022, 506, 119974. [Google Scholar] [CrossRef]
- Environment Canada. 1991–2020 Canadian Climate Normals. 2024. Available online: https://climate.weather.gc.ca/climate_normals/ (accessed on 22 November 2022).
- Wester, M.C.; Benson, B.L.; Crins, W.J.; Uhlig, P.W.C.; Gray, P.A. The Ecosystems of Ontario, Part 2: Ecodistricts; Science and Research Technical Report TR-26; Ontario Ministry of Natural Resources and Forestry, Science and Research Branch: Peterborough, ON, Canada, 2018; 474p. [Google Scholar]
- Bell, F.W.; Parton, J.; Stocker, N.; Joyce, D.G.; Reid, D.E.B.; Wester, M.; Kayahara, G.; Towill, B. Developing a silvicultural framework and definitions for use in forest management planning and practice. For. Chron. 2008, 84, 678–693. [Google Scholar] [CrossRef]
- Soil Classification Working Group. The Canadian System of Soil Classification, 3rd ed.; Agriculture and Agri-Food Canada Publications 1646 (Revised); National Research Council of Canada: Ottawa, ON, Canada, 1998; 187p, ISBN 0-660-17404-9.
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef]
- Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Woodall, C.W.; Heath, L.S.; Domke, G.M.; Nichols, M.C. Methods and Equations for Estimating Aboveground Volume, Biomass, and Carbon for Trees in the U.S. Forest Inventory; General Technical Report NRS-26; United States Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2010; 30p.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation: Kaysville, UT, USA, 2024; Available online: https://ringo.ams.stonybrook.edu/images/2/2b/Refman.pdf (accessed on 22 January 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.; Lenth, M.R. Package ‘lsmeans’. Am. Stat. 2018, 34, 216–221. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 2010, 259, 857–866. [Google Scholar] [CrossRef]
- James, J.; Harrison, R. The effect of harvest on forest soil carbon: A meta-analysis. Forests 2016, 7, 308. [Google Scholar] [CrossRef]
- Achat, D.L.; Fortin, M.; Landmann, G.; Ringeval, B.; Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 2015, 5, 15991. [Google Scholar] [CrossRef]
- Schmidt, M.G.; Macdonald, S.E.; Rothwell, R.L. Harvesting and site preparation effects on soil chemical properties. Can. J. Soil Sci. 1996, 76, 531–540. [Google Scholar] [CrossRef]
- Lindo, Z.L.; Visser, S. Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. Can. J. For. Res. 2003, 33, 1610–1620. [Google Scholar] [CrossRef]
- Hart, G. Humus Depths Under Cut and Uncut Northern Hardwood Forests; Forest Research Notes No. 113; Forest Service U.S. Department of Agriculture, Northeastern Forest Experiment Station: Upper Darby, PV, USA, 1961; 4p. Available online: https://www.govinfo.gov/content/pkg/GOVPUB-A13-PURL-gpo44280/pdf/GOVPUB-A13-PURL-gpo44280.pdf (accessed on 21 January 2025).
- Covington, W.W. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 1981, 62, 41–48. Available online: https://www.jstor.org/stable/1936666 (accessed on 22 January 2025). [CrossRef]
- Mayer, M.; Sandén, H.; Rewald, B.; Godbold, D.L.; Katzensteiner, K. Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Funct. Ecol. 2017, 31, 1163–1172. [Google Scholar] [CrossRef]
- Binkley, D. Does forest removal increase rates of decomposition and nitrogen release? For. Ecol. Manag. 1984, 8, 229–233. [Google Scholar] [CrossRef]
- Prescott, C.E.; Blevins, L.L.; Staley, C.L. Effects of clear-cutting on decomposition rates of litter and forest floor in forests of British Columbia. Can. J. For. Res. 2000, 30, 1751–1757. [Google Scholar] [CrossRef]
- Giasson, M.-A.; Coursolle, C.; Margolis, H.A. Ecosystem-level CO2 fluxes from a boreal cutover in eastern Canada before and after scarification. Agric. For. Meteorol. 2006, 140, 23–40. [Google Scholar] [CrossRef]
- Yanai, R.D.; Currie, W.S.; Goodale, C.L. Soil carbon dynamics after forest harvest: An ecosystem paradigm reconsidered. Ecosystems 2003, 6, 197–212. [Google Scholar] [CrossRef]
- Vincent, A.B. Growth and numbers of speckled alder following logging of black spruce peatlands. For. Chron. 1964, 40, 515–518. [Google Scholar] [CrossRef]
- Morris, D.M.; Reid, D.E.B.; Kwiaton, M.; Hunt, S.L.; Gordon, A.M. Comparing growth patterns of jack pine and black spruce in mixed natural stands and plantations. Écoscience 2014, 21, 1–10. [Google Scholar] [CrossRef]
- Kristensen, H.L.; Debosz, K.; McCarty, G.W. Short-term effects of tillage on mineralization of nitrogen and carbon in soil. Soil Biol. Biochem. 2003, 35, 979–986. [Google Scholar] [CrossRef]
- Londo, A.J.; Messina, M.G.; Schoenholtz, S.H. Forest harvesting effects on soil temperature, moisture, and respiration in a bottomland hardwood forest. Soil Sci. Soc. Am. J. 1999, 63, 637–644. [Google Scholar] [CrossRef]
- Burgess, D.; Baldock, J.A.; Wetzell, S.; Brand, D.G. Scarification, fertilization and herbicide treatment effects on planted conifers and soil fertility. Plant Soil 1995, 168–169, 513–522. [Google Scholar] [CrossRef]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef]
- Frey, B.; Kremer, J.; Rüdt, A.; Sciacca, S.; Matthies, D.; Lüscher, P. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur. J. Soil Biol. 2009, 45, 312–320. [Google Scholar] [CrossRef]
- Tan, X.; Chang, S.X.; Kabzems, R. Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study. For. Ecol. Manag. 2005, 217, 158–170. [Google Scholar] [CrossRef]
- Nieminen, M. Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland. Silva Fenn. 2004, 38, 123–132. [Google Scholar] [CrossRef]
- Löf, M.; Dey, D.C.; Navarro, R.M.; Jacobs, D.F. Mechanical site preparation for forest restoration. New For. 2012, 43, 825–848. [Google Scholar] [CrossRef]
- Sartori, F.; Markewitz, D.; Borders, B.E. Soil carbon storage and nitrogen and phosphorous availability in loblolly pine plantations over 4 to16 years of herbicide and fertilizer treatments. Biogeochemistry 2007, 84, 13–30. [Google Scholar] [CrossRef]
Sand-Dominated Site | Silt-Dominated Site | Clay-Dominated Site | |
---|---|---|---|
Co-ordinates | 50°01′ N, 91°18′ W | 48°21′ N, 81°18′ W | 49°09′ N, 82°28′ W |
Town in closest proximity | Sioux-Lookout, Ontario | Timmins, Ontario | Kapuskasing, Ontario |
Mean annual temperature (°C) | 2.2 a | 1.8 b | 1.8 b |
Mean annual precipitation (mm) | 796.4 a | 778.8 b | 806.2 c |
Parent material | acidic, coarse-textured morainal deposits | calcareous morainal and glaciolacustrine deposits | calcareous fine-textured morainal and glaciolacustrine deposits |
Effective soil texture d | medium sand | silt with areas of silt loam | clay with areas of silty clay |
Soil order | Podzol | Luvisol | Luvisol |
Humus form d | moder | mull and moder | moder and mor |
Organic matter horizon depth (cm) d | 5.8 (±0.5) | 3.1 (±0.5) | 7.4 (±1.2) |
Soil depth range de | moderately deep to deep | moderately deep to deep | deep |
Drainage class d | rapid | imperfect | moderately well and imperfect |
Moisture regime d | moderately dry | fresh and moderately moist | very fresh and moist |
Stand age d | 85–90 | 85–90 | 107 |
Silviculture system d | clearcut | clearcut with seed-tree | clearcut with seed-tree |
Dominant tree canopy d | Pinus banksiana Lamb. Picea mariana (Mill) B.S.P. | Populus tremuloides Michx. Picea glauca (Moench.) Voss Abies balsamea (L.) Mill. | Populus tremuloides Michx. Betula papyrifera Marsh. Picea mariana (Mill) B.S.P. |
Dominant understory vegetation d | Pleurozium schreberi (Brid.) Mitt Picea mariana (Mill.) B.S.P. Vaccinium myrtilloides Michx. | Eurybia macrophylla (L.) Cass Abies balsamea (L.) Mill Corylus cornuta Marsh | Abies balsamea (L.) Mill. Alnus incana (L.) Moench Acer spicatum Lamb. |
Sand-Dominated Site | Silt-Dominated Site | Clay-Dominated Site | |||||||
---|---|---|---|---|---|---|---|---|---|
Post-harvest year | 5 | 14 | 20 | 5 | 14 | 20 | 5 | 14 | 20 |
Bulk density (g cm−3) | |||||||||
Control | 0.94 ± 0.1 | 0.94 ± 0.1 | 1.00 ± 0.0 | 0.75 ± 0.1 | 0.75 ± 0.2 | 0.71 ± 0.0 | 0.89 b ± 0.0 | 1.06 ± 0.1 | 0.86 ± 0.1 |
Harvest Only | 1.03 ± 0.1 | 0.96 ± 0.1 | 1.03 ± 0.0 | 0.82 ± 0.1 | 0.85 ± 0.1 | 0.76 ± 0.0 | 0.99 ab ± 0.0 | 1.05 ± 0.1 | 1.03 ± 0.1 |
Harvest Plus | 0.94 ± 0.1 | 1.02 ± 0.1 | 0.99 ± 0.1 | 0.83 ± 0.1 | 0.76 ± 0.2 | 0.72 ± 0.2 | 1.06 a ± 0.0 | 0.92 ± 0.1 | 0.99 ± 0.1 |
Moisture (%) | |||||||||
Control | 0.7 ± 0.0 | 0.6 ± 0.1 | 0.7 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.1 | 7.0 ± 2.2 | 2.3 ± 0.1 | 2.6 ± 0.1 | 5.9 ± 1.1 |
Harvest Only | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.9 ± 0.2 | 0.8 ± 0.0 | 0.9 ± 0.1 | 9.0 ± 3.4 | 2.3 ± 0.1 | 2.9 ± 0.1 | 4.0 ± 0.9 |
Harvest Plus | 0.7 ± 0.0 | 0.6 ± 0.1 | 0.6 ± 0.1 | 1.3 ± 0.1 | 0.9 ± 0.0 | 6.4 ± 1.3 | 2.4 ± 0.1 | 3.2 ± 0.3 | 3.8 ± 1.1 |
pH | |||||||||
Control | 5.0 ± 0.4 | N/A | 5.1 ± 0.2 | 5.7 a ± 0.2 | N/A | 5.8 ± 0.4 | 7.2 a ± 0.4 | N/A | 7.1 ± 0.6 |
Harvest Only | 5.1 ± 0.2 | N/A | 5.0 ± 0.4 | 5.0 b ± 0.1 | N/A | 5.2 ± 0.2 | 6.5 ab ± 0.4 | N/A | 6.7 ± 0.4 |
Harvest Plus | 5.1 ± 0.3 | N/A | 4.9 ± 0.4 | 5.1 b ± 0.1 | N/A | 5.4 ± 0.3 | 6.2 b ± 0.2 | N/A | 6.3 ± 0.7 |
TN (g kg−1) | |||||||||
Control | 0.3 ± 0.1 | 0.3 ± 0.0 | 0.5 ± 0.0 | 1.1 ± 0.1 | 1.5 ± 0.1 | 1.6 ± 0.1 | 0.7 ± 0.0 | 0.8 ± 0.0 | 4.2 ± 1.0 |
Harvest Only | 0.2 ± 0.0 | 0.3 ± 0.0 | 0.5 ± 0.0 | 1.1 ± 0.1 | 1.3 ± 0.2 | 1.8 ± 0.3 | 0.7 ± 0.1 | 0.8 ± 0.1 | 3.5 ± 1.1 |
Harvest Plus | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.5 ± 0.0 | 1.2 ± 0.1 | 1.4 ± 0.1 | 2.1 ± 0.5 | 0.7 ± 0.0 | 0.9 ± 0.1 | 2.8 ± 1.1 |
Sand-Dominated Site | Silt-Dominated Site | Clay-Dominated Site | |
---|---|---|---|
Litterfall (Mg ha−1 yr−1) | |||
Control | 2.1 a ± 0.2 | 4.5 ± 1.2 | 3.2 a ± 0.1 |
Harvest Only | 0.4 b ± 0.1 | 3.5 ± 0.3 | 3.2 ab ± 0.5 |
Harvest Plus | 1.3 a ± 0.2 | 3.7 ± 0.8 | 2.0 b ± 0.4 |
Decomposition (% mass lost) | |||
Control | 10.8 ± 1.6 | 17.5 b ± 3.4 | 24.3 b ± 5.3 |
Harvest Only | 13.8 ± 4.1 | 43.2 a ± 2.8 | 35.7 a ± 5.4 |
Harvest Plus | 14.2 ± 1.9 | 43.6 a ± 3.9 | 17.0 b ± 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deighton, H.D.; Bell, F.W.; Lindo, Z. Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon. Forests 2025, 16, 902. https://doi.org/10.3390/f16060902
Deighton HD, Bell FW, Lindo Z. Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon. Forests. 2025; 16(6):902. https://doi.org/10.3390/f16060902
Chicago/Turabian StyleDeighton, Holly D., F. Wayne Bell, and Zoë Lindo. 2025. "Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon" Forests 16, no. 6: 902. https://doi.org/10.3390/f16060902
APA StyleDeighton, H. D., Bell, F. W., & Lindo, Z. (2025). Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon. Forests, 16(6), 902. https://doi.org/10.3390/f16060902