Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Forest Floor and Mineral Horizon Sampling
2.4. Sample Processing
2.5. Twentieth-Year Litterfall and Decompositon
2.6. Statistical Analysis
3. Results
3.1. Forest Floor (L and F/H) and Mineral Horizon SOC Stocks Following Forest Harvesting with and Without Post-Harvest Silviculture
3.2. Long-Term (20 Year) Effects of Forest Management on Overall SOC Stocks
3.3. Long-Term (20th Year) Effects of Forest Management on Litterfall and Decomposition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C | Carbon |
SOM | Soil organic matter |
SOC | Soil organic carbon |
F | Fragmented |
H | Humic |
CO2 | Carbon dioxide |
SFM | Sustainable forest management |
LOI | Loss-on-ignition |
DWT | Dry weight equivalent |
References
- Crowther, T.W.; Van Den Hoogen, J.; Wan, J.; Mayes, M.A.; Keiser, A.D.; Mo, L.; Averill, C.; Maynard, D.S. The global soil community and its influence on biogeochemistry. Science 2019, 365, eaav0550. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppu, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Vanhala, P.; Bergström, I.; Haaspuro, T.; Kortelainen, P.; Holmberg, M.; Forsius, M. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. Sci. Total Environ. 2016, 557–558, 51–57. [Google Scholar] [CrossRef]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef]
- Kyaschenko, J.; Clemmensen, K.E.; Karltun, E.; Lindahl, B.D. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol. Lett. 2017, 20, 1546–1555. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Hashimoto, S.; Suzuki, M. The impact of forest clear-cutting on soil temperature: A comparison between before and after cutting, and between clear-cut and control sites. J. For. Res. 2004, 9, 125–132. [Google Scholar] [CrossRef]
- Devine, W.D.; Harrington, C.A. Influence of harvest residues and vegetation on microsite soil and air temperatures in a young conifer plantation. Agric. For. Meteorol. 2007, 145, 125–138. [Google Scholar] [CrossRef]
- Startsev, A.D.; McNabb, D.H. Effects of skidding on forest soil infiltration in west-central Alberta. Can. J. Soil Sci. 2000, 80, 617–624. [Google Scholar] [CrossRef]
- Schnurr-Pütz, S.; Bååth, E.; Guggenberger, G.; Drake, H.L.; Kirsten, K. Compaction of forest soil by logging machinery favours occurrence of prokaryotes. FEMS Microbiol. Ecol. 2006, 58, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Funakawa, S.; Hayakawa, C.; Kosaki, T. Effects of clearcutting and girdling on soil respiration and fluxes of dissolved organic carbon and nitrogen in a Japanese cedar plantation. For. Ecol. Manag. 2021, 498, 119520. [Google Scholar] [CrossRef]
- Prescott, C.E.; Reid, A.; Wu, S.Y.; Nilsson, M.-C. Decomposition rates of surface and buried forest-floor material. Can. J. For. Res. 2017, 47, 1140–1144. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Mjöfors, K.; Strömgren, M.; Nohrstedt, H.-Ö.; Johansson, M.-B.; Gärdenäs, A.I. Indications that site preparation increases forest ecosystem carbon stocks in the long term. Scand. J. For. Res. 2017, 32, 717–725. [Google Scholar] [CrossRef]
- Pan, P.; Zhao, F.; Ning, J.; Zhang, L.; Ouyang, X.; Zang, H. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations. PLoS ONE 2018, 13, e0191952. [Google Scholar] [CrossRef]
- Natural Resources Canada. The State of Canada’s Forests: Annual Report 2023; Natural Resources Canada: Ottawa, ON, Canada, 2023; 104p, Available online: https://natural-resources.canada.ca/sites/nrcan/files/forest/sof2023/NRCAN_SofForest_Annual_2023_EN_accessible-vf.pdf (accessed on 12 April 2024).
- Certification Canada. Forest Management Certification in Canada: 2022 Year-End Status Report Canada. Forest Products Association of Canada. 18p. Available online: https://certificationcanada.org/wp-content/uploads/2023/05/2022-Yearend-SFM-Certification-Detailed-Report.pdf (accessed on 12 April 2024).
- Foster, B.C.; Wang, D.; Keeton, W.S.; Ashton, M.S. Implementing sustainable forest management using six concepts in an adaptive management framework. J. Sustain. For. 2010, 29, 79–108. [Google Scholar] [CrossRef]
- Campbell, R.A. Herbicide use for forest management in Canada: Where we are and where we are going. For. Chron. 1990, 66, 355–360. [Google Scholar] [CrossRef]
- Natural Resources Canada. Forest Herbicide Research. Canadian Forest Service—Great Lakes Forestry Centre. Bulletin 53. Available online: https://publications.gc.ca/collections/collection_2012/rncan-nrcan/Fo122-1-53-2012-eng.pdf (accessed on 14 May 2024).
- Pennock, D.J. Soil genesis. In Digging into Canadian Soils; Krzic, M., Walley, F., Diochon, A., Paré, M.C., Farrell, R., Eds.; Canadian Society of Soil Science: Pinawa, MB, Canada, 2021; pp. 13–65. ISBN 978-0-88880-670-3. [Google Scholar]
- von Lützow, M.; Kögel-Knabner, I.; Ludwig, B.; Matzner, E.; Flessa, H.; Ekschmitt, K.; Guggenberger, G.; Marschner, B.; Kalbitz, K. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. J. Plant Nutr. Soil Sci. 2008, 171, 111–124. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Mueller, C.W.; Höschen, C.; Ivanov, P.; Kögel-Knabner, I. The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence. Biogeochemistry 2021, 156, 401–420. [Google Scholar] [CrossRef]
- Angst, G.; Pokorný, J.; Mueller, C.W.; Prater, I.; Preusser, S.; Kandeler, E.; Meador, T.; Straková, P.; Hájek, T.; van Buiten, G.; et al. Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biol. Biochem. 2021, 159, 108302. [Google Scholar] [CrossRef]
- Huang, M.; Zettl, J.D.; Barbour, L.; Elshorbagy, A.; Cheng Si, B. The impact of soil moisture availability on forest growth indices for variably layered coarse-textured soils. Ecohydrology 2013, 6, 214–227. [Google Scholar] [CrossRef]
- Thiffault, E.; Hannam, K.D.; Paré, D.; Titus, B.; Hazlett, P.W.; Maynard, D.G.; Brais, S. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 2011, 19, 278–309. [Google Scholar] [CrossRef]
- Piirainen, S.; Finér, L.; Starr, M. Changes in forest floor and mineral soil carbon and nitrogen stocks in a boreal forest after clear-cutting and mechanical site preparation. Eur. J. Soil Sci. 2015, 66, 735–743. [Google Scholar] [CrossRef]
- Bell, F.W.; Shaw, M.; Dacosta, J.; Newmaster, S.G. The NEBIE plot network: Background and experimental design. For. Chron. 2017, 93, 87–94. [Google Scholar] [CrossRef]
- Searle, E.B.; Bell, F.W.; Dacosta, J.; Deighton, H.D. Effects of silvicultural treatments on post-harvesting residual tree mortality. For. Ecol. Manag. 2022, 506, 119974. [Google Scholar] [CrossRef]
- Environment Canada. 1991–2020 Canadian Climate Normals. 2024. Available online: https://climate.weather.gc.ca/climate_normals/ (accessed on 22 November 2022).
- Wester, M.C.; Benson, B.L.; Crins, W.J.; Uhlig, P.W.C.; Gray, P.A. The Ecosystems of Ontario, Part 2: Ecodistricts; Science and Research Technical Report TR-26; Ontario Ministry of Natural Resources and Forestry, Science and Research Branch: Peterborough, ON, Canada, 2018; 474p. [Google Scholar]
- Bell, F.W.; Parton, J.; Stocker, N.; Joyce, D.G.; Reid, D.E.B.; Wester, M.; Kayahara, G.; Towill, B. Developing a silvicultural framework and definitions for use in forest management planning and practice. For. Chron. 2008, 84, 678–693. [Google Scholar] [CrossRef]
- Soil Classification Working Group. The Canadian System of Soil Classification, 3rd ed.; Agriculture and Agri-Food Canada Publications 1646 (Revised); National Research Council of Canada: Ottawa, ON, Canada, 1998; 187p, ISBN 0-660-17404-9.
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef]
- Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Woodall, C.W.; Heath, L.S.; Domke, G.M.; Nichols, M.C. Methods and Equations for Estimating Aboveground Volume, Biomass, and Carbon for Trees in the U.S. Forest Inventory; General Technical Report NRS-26; United States Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2010; 30p.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation: Kaysville, UT, USA, 2024; Available online: https://ringo.ams.stonybrook.edu/images/2/2b/Refman.pdf (accessed on 22 January 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.; Lenth, M.R. Package ‘lsmeans’. Am. Stat. 2018, 34, 216–221. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 2010, 259, 857–866. [Google Scholar] [CrossRef]
- James, J.; Harrison, R. The effect of harvest on forest soil carbon: A meta-analysis. Forests 2016, 7, 308. [Google Scholar] [CrossRef]
- Achat, D.L.; Fortin, M.; Landmann, G.; Ringeval, B.; Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 2015, 5, 15991. [Google Scholar] [CrossRef]
- Schmidt, M.G.; Macdonald, S.E.; Rothwell, R.L. Harvesting and site preparation effects on soil chemical properties. Can. J. Soil Sci. 1996, 76, 531–540. [Google Scholar] [CrossRef]
- Lindo, Z.L.; Visser, S. Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. Can. J. For. Res. 2003, 33, 1610–1620. [Google Scholar] [CrossRef]
- Hart, G. Humus Depths Under Cut and Uncut Northern Hardwood Forests; Forest Research Notes No. 113; Forest Service U.S. Department of Agriculture, Northeastern Forest Experiment Station: Upper Darby, PV, USA, 1961; 4p. Available online: https://www.govinfo.gov/content/pkg/GOVPUB-A13-PURL-gpo44280/pdf/GOVPUB-A13-PURL-gpo44280.pdf (accessed on 21 January 2025).
- Covington, W.W. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 1981, 62, 41–48. Available online: https://www.jstor.org/stable/1936666 (accessed on 22 January 2025). [CrossRef]
- Mayer, M.; Sandén, H.; Rewald, B.; Godbold, D.L.; Katzensteiner, K. Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Funct. Ecol. 2017, 31, 1163–1172. [Google Scholar] [CrossRef]
- Binkley, D. Does forest removal increase rates of decomposition and nitrogen release? For. Ecol. Manag. 1984, 8, 229–233. [Google Scholar] [CrossRef]
- Prescott, C.E.; Blevins, L.L.; Staley, C.L. Effects of clear-cutting on decomposition rates of litter and forest floor in forests of British Columbia. Can. J. For. Res. 2000, 30, 1751–1757. [Google Scholar] [CrossRef]
- Giasson, M.-A.; Coursolle, C.; Margolis, H.A. Ecosystem-level CO2 fluxes from a boreal cutover in eastern Canada before and after scarification. Agric. For. Meteorol. 2006, 140, 23–40. [Google Scholar] [CrossRef]
- Yanai, R.D.; Currie, W.S.; Goodale, C.L. Soil carbon dynamics after forest harvest: An ecosystem paradigm reconsidered. Ecosystems 2003, 6, 197–212. [Google Scholar] [CrossRef]
- Vincent, A.B. Growth and numbers of speckled alder following logging of black spruce peatlands. For. Chron. 1964, 40, 515–518. [Google Scholar] [CrossRef]
- Morris, D.M.; Reid, D.E.B.; Kwiaton, M.; Hunt, S.L.; Gordon, A.M. Comparing growth patterns of jack pine and black spruce in mixed natural stands and plantations. Écoscience 2014, 21, 1–10. [Google Scholar] [CrossRef]
- Kristensen, H.L.; Debosz, K.; McCarty, G.W. Short-term effects of tillage on mineralization of nitrogen and carbon in soil. Soil Biol. Biochem. 2003, 35, 979–986. [Google Scholar] [CrossRef]
- Londo, A.J.; Messina, M.G.; Schoenholtz, S.H. Forest harvesting effects on soil temperature, moisture, and respiration in a bottomland hardwood forest. Soil Sci. Soc. Am. J. 1999, 63, 637–644. [Google Scholar] [CrossRef]
- Burgess, D.; Baldock, J.A.; Wetzell, S.; Brand, D.G. Scarification, fertilization and herbicide treatment effects on planted conifers and soil fertility. Plant Soil 1995, 168–169, 513–522. [Google Scholar] [CrossRef]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef]
- Frey, B.; Kremer, J.; Rüdt, A.; Sciacca, S.; Matthies, D.; Lüscher, P. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur. J. Soil Biol. 2009, 45, 312–320. [Google Scholar] [CrossRef]
- Tan, X.; Chang, S.X.; Kabzems, R. Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study. For. Ecol. Manag. 2005, 217, 158–170. [Google Scholar] [CrossRef]
- Nieminen, M. Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland. Silva Fenn. 2004, 38, 123–132. [Google Scholar] [CrossRef]
- Löf, M.; Dey, D.C.; Navarro, R.M.; Jacobs, D.F. Mechanical site preparation for forest restoration. New For. 2012, 43, 825–848. [Google Scholar] [CrossRef]
- Sartori, F.; Markewitz, D.; Borders, B.E. Soil carbon storage and nitrogen and phosphorous availability in loblolly pine plantations over 4 to16 years of herbicide and fertilizer treatments. Biogeochemistry 2007, 84, 13–30. [Google Scholar] [CrossRef]
Sand-Dominated Site | Silt-Dominated Site | Clay-Dominated Site | |
---|---|---|---|
Co-ordinates | 50°01′ N, 91°18′ W | 48°21′ N, 81°18′ W | 49°09′ N, 82°28′ W |
Town in closest proximity | Sioux-Lookout, Ontario | Timmins, Ontario | Kapuskasing, Ontario |
Mean annual temperature (°C) | 2.2 a | 1.8 b | 1.8 b |
Mean annual precipitation (mm) | 796.4 a | 778.8 b | 806.2 c |
Parent material | acidic, coarse-textured morainal deposits | calcareous morainal and glaciolacustrine deposits | calcareous fine-textured morainal and glaciolacustrine deposits |
Effective soil texture d | medium sand | silt with areas of silt loam | clay with areas of silty clay |
Soil order | Podzol | Luvisol | Luvisol |
Humus form d | moder | mull and moder | moder and mor |
Organic matter horizon depth (cm) d | 5.8 (±0.5) | 3.1 (±0.5) | 7.4 (±1.2) |
Soil depth range de | moderately deep to deep | moderately deep to deep | deep |
Drainage class d | rapid | imperfect | moderately well and imperfect |
Moisture regime d | moderately dry | fresh and moderately moist | very fresh and moist |
Stand age d | 85–90 | 85–90 | 107 |
Silviculture system d | clearcut | clearcut with seed-tree | clearcut with seed-tree |
Dominant tree canopy d | Pinus banksiana Lamb. Picea mariana (Mill) B.S.P. | Populus tremuloides Michx. Picea glauca (Moench.) Voss Abies balsamea (L.) Mill. | Populus tremuloides Michx. Betula papyrifera Marsh. Picea mariana (Mill) B.S.P. |
Dominant understory vegetation d | Pleurozium schreberi (Brid.) Mitt Picea mariana (Mill.) B.S.P. Vaccinium myrtilloides Michx. | Eurybia macrophylla (L.) Cass Abies balsamea (L.) Mill Corylus cornuta Marsh | Abies balsamea (L.) Mill. Alnus incana (L.) Moench Acer spicatum Lamb. |
Sand-Dominated Site | Silt-Dominated Site | Clay-Dominated Site | |||||||
---|---|---|---|---|---|---|---|---|---|
Post-harvest year | 5 | 14 | 20 | 5 | 14 | 20 | 5 | 14 | 20 |
Bulk density (g cm−3) | |||||||||
Control | 0.94 ± 0.1 | 0.94 ± 0.1 | 1.00 ± 0.0 | 0.75 ± 0.1 | 0.75 ± 0.2 | 0.71 ± 0.0 | 0.89 b ± 0.0 | 1.06 ± 0.1 | 0.86 ± 0.1 |
Harvest Only | 1.03 ± 0.1 | 0.96 ± 0.1 | 1.03 ± 0.0 | 0.82 ± 0.1 | 0.85 ± 0.1 | 0.76 ± 0.0 | 0.99 ab ± 0.0 | 1.05 ± 0.1 | 1.03 ± 0.1 |
Harvest Plus | 0.94 ± 0.1 | 1.02 ± 0.1 | 0.99 ± 0.1 | 0.83 ± 0.1 | 0.76 ± 0.2 | 0.72 ± 0.2 | 1.06 a ± 0.0 | 0.92 ± 0.1 | 0.99 ± 0.1 |
Moisture (%) | |||||||||
Control | 0.7 ± 0.0 | 0.6 ± 0.1 | 0.7 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.1 | 7.0 ± 2.2 | 2.3 ± 0.1 | 2.6 ± 0.1 | 5.9 ± 1.1 |
Harvest Only | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.9 ± 0.2 | 0.8 ± 0.0 | 0.9 ± 0.1 | 9.0 ± 3.4 | 2.3 ± 0.1 | 2.9 ± 0.1 | 4.0 ± 0.9 |
Harvest Plus | 0.7 ± 0.0 | 0.6 ± 0.1 | 0.6 ± 0.1 | 1.3 ± 0.1 | 0.9 ± 0.0 | 6.4 ± 1.3 | 2.4 ± 0.1 | 3.2 ± 0.3 | 3.8 ± 1.1 |
pH | |||||||||
Control | 5.0 ± 0.4 | N/A | 5.1 ± 0.2 | 5.7 a ± 0.2 | N/A | 5.8 ± 0.4 | 7.2 a ± 0.4 | N/A | 7.1 ± 0.6 |
Harvest Only | 5.1 ± 0.2 | N/A | 5.0 ± 0.4 | 5.0 b ± 0.1 | N/A | 5.2 ± 0.2 | 6.5 ab ± 0.4 | N/A | 6.7 ± 0.4 |
Harvest Plus | 5.1 ± 0.3 | N/A | 4.9 ± 0.4 | 5.1 b ± 0.1 | N/A | 5.4 ± 0.3 | 6.2 b ± 0.2 | N/A | 6.3 ± 0.7 |
TN (g kg−1) | |||||||||
Control | 0.3 ± 0.1 | 0.3 ± 0.0 | 0.5 ± 0.0 | 1.1 ± 0.1 | 1.5 ± 0.1 | 1.6 ± 0.1 | 0.7 ± 0.0 | 0.8 ± 0.0 | 4.2 ± 1.0 |
Harvest Only | 0.2 ± 0.0 | 0.3 ± 0.0 | 0.5 ± 0.0 | 1.1 ± 0.1 | 1.3 ± 0.2 | 1.8 ± 0.3 | 0.7 ± 0.1 | 0.8 ± 0.1 | 3.5 ± 1.1 |
Harvest Plus | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.5 ± 0.0 | 1.2 ± 0.1 | 1.4 ± 0.1 | 2.1 ± 0.5 | 0.7 ± 0.0 | 0.9 ± 0.1 | 2.8 ± 1.1 |
Sand-Dominated Site | Silt-Dominated Site | Clay-Dominated Site | |
---|---|---|---|
Litterfall (Mg ha−1 yr−1) | |||
Control | 2.1 a ± 0.2 | 4.5 ± 1.2 | 3.2 a ± 0.1 |
Harvest Only | 0.4 b ± 0.1 | 3.5 ± 0.3 | 3.2 ab ± 0.5 |
Harvest Plus | 1.3 a ± 0.2 | 3.7 ± 0.8 | 2.0 b ± 0.4 |
Decomposition (% mass lost) | |||
Control | 10.8 ± 1.6 | 17.5 b ± 3.4 | 24.3 b ± 5.3 |
Harvest Only | 13.8 ± 4.1 | 43.2 a ± 2.8 | 35.7 a ± 5.4 |
Harvest Plus | 14.2 ± 1.9 | 43.6 a ± 3.9 | 17.0 b ± 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deighton, H.D.; Bell, F.W.; Lindo, Z. Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon. Forests 2025, 16, 902. https://doi.org/10.3390/f16060902
Deighton HD, Bell FW, Lindo Z. Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon. Forests. 2025; 16(6):902. https://doi.org/10.3390/f16060902
Chicago/Turabian StyleDeighton, Holly D., F. Wayne Bell, and Zoë Lindo. 2025. "Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon" Forests 16, no. 6: 902. https://doi.org/10.3390/f16060902
APA StyleDeighton, H. D., Bell, F. W., & Lindo, Z. (2025). Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon. Forests, 16(6), 902. https://doi.org/10.3390/f16060902