Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,408)

Search Parameters:
Keywords = smart responsiveness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 1232 KB  
Review
Wound Healing: Molecular Mechanisms, Antimicrobial Peptides, and Emerging Technologies in Regenerative Medicine
by Ana Paula de Araújo Boleti, Ana Cristina Jacobowski, Breno Emanuel Farias Frihling, Maurício Vicente Cruz, Kristiane Fanti Del Pino Santos, Ludovico Migliolo, Lucas Rannier Melo de Andrade and Maria Ligia Rodrigues Macedo
Pharmaceuticals 2025, 18(10), 1525; https://doi.org/10.3390/ph18101525 - 10 Oct 2025
Abstract
Wound healing is a dynamic process involving distinct phases that are regulated by cellular and molecular interactions. This review explores the fundamental mechanisms involved in wound healing, including the roles of cytokines and growth factors within the local microenvironment, with a particular focus [...] Read more.
Wound healing is a dynamic process involving distinct phases that are regulated by cellular and molecular interactions. This review explores the fundamental mechanisms involved in wound healing, including the roles of cytokines and growth factors within the local microenvironment, with a particular focus on antimicrobial peptides (AMPs) as immune modulators and therapeutic agents in chronic wounds. Notably, AMPs such as LL-37 have been shown to reduce biofilm density by up to 60%, highlighting their dual role in both modulating host immune responses and combating persistent bacterial infections. It further examines emerging technologies that are transforming the field, extending beyond traditional biological mechanisms to innovations such as smart dressings, 3D bioprinting, AI-driven therapies, regenerative medicine, gene therapy, and organoid models. Additionally, the review addresses strategies to overcome bacterial biofilms and highlights promising approaches including biomaterials, nanomedicine, gene therapy, peptide-loaded nanoparticles, and the application of organoids as advanced platforms for studying and enhancing wound repair. Full article
Show Figures

Graphical abstract

24 pages, 2134 KB  
Article
Smart Risk Assessment and Adaptive Control Strategy Selection for Human–Robot Collaboration in Industry 5.0: An Intelligent Multi-Criteria Decision-Making Approach
by Ertugrul Ayyildiz, Tolga Kudret Karaca, Melike Cari, Bahar Yalcin Kavus and Nezir Aydin
Processes 2025, 13(10), 3206; https://doi.org/10.3390/pr13103206 - 9 Oct 2025
Abstract
The emergence of Industry 5.0 brings a paradigm shift towards collaborative environments where humans and intelligent robots work side-by-side, enabling personalized, flexible, and resilient manufacturing. However, integrating humans and robots introduces new operational and safety risks that require proactive and adaptive control strategies. [...] Read more.
The emergence of Industry 5.0 brings a paradigm shift towards collaborative environments where humans and intelligent robots work side-by-side, enabling personalized, flexible, and resilient manufacturing. However, integrating humans and robots introduces new operational and safety risks that require proactive and adaptive control strategies. This study proposes an intelligent multi-criteria decision-making framework for smart risk assessment and the selection of optimal adaptive control strategies in human–robot collaborative manufacturing settings. The proposed framework integrates advanced risk analytics, real-time data processing, and expert knowledge to evaluate alternative control strategies, such as real-time wearable sensor integration, vision-based dynamic safety zones, AI-driven behavior prediction models, haptic feedback, and self-learning adaptive robot algorithms. A cross-disciplinary panel of ten experts structures six main and eighteen sub-criteria spanning safety, adaptability, ergonomics, reliability, performance, and cost, with response time and implementation/maintenance costs modeled as cost types. Safety receives the most significant weight; the most influential sub-criteria are collision avoidance efficiency, return on investment (ROI), and emergency response capability. The framework preserves linguistic semantics from elicitation to aggregation and provides a transparent, uncertainty-aware tool for selecting and phasing adaptive control strategies in Industry 5.0 collaborative cells. Full article
Show Figures

Figure 1

21 pages, 1084 KB  
Article
Adaptive Ensemble Machine Learning Framework for Proactive Blockchain Security
by Babatomiwa Omonayajo, Oluwafemi Ayotunde Oke and Nadire Cavus
Appl. Sci. 2025, 15(19), 10848; https://doi.org/10.3390/app151910848 - 9 Oct 2025
Abstract
Blockchain technology has rapidly evolved beyond cryptocurrencies, underpinning diverse applications such as supply chains, healthcare, and finances, yet its security vulnerabilities remain a critical barrier to safe adoption. However, attackers increasingly exploit weaknesses in consensus protocols, smart contracts, and network layers with threats [...] Read more.
Blockchain technology has rapidly evolved beyond cryptocurrencies, underpinning diverse applications such as supply chains, healthcare, and finances, yet its security vulnerabilities remain a critical barrier to safe adoption. However, attackers increasingly exploit weaknesses in consensus protocols, smart contracts, and network layers with threats such as Denial-of-Chain (DoC) and Black Bird attacks, posing serious challenges to blockchain ecosystems. We conducted anomaly detection using two independent datasets (A and B) generated from simulation attack scenarios including hash rate, Sybil, Eclipse, Finney, and Denial-of-Chain (DoC) attacks. Key blockchain metrics such as hash rate, transaction authorization status, and recorded attack consequences were collected for analysis. We compared both class-balanced and imbalanced datasets, applying Synthetic Minority Oversampling Technique (SMOTE) to improve representation of minority-class samples and enhance performance metrics. Supervised models such as Random Forest, Gradient Boosting, and Logistic Regression consistently outperformed unsupervised models, achieving high F1-scores (0.90), while balancing the training data had only a modest effect. The results are based on simulated environment and should be considered as preliminary until the experiment is performed in a real blockchain environment. Based on identified gaps, we recommend the exploration and development of multifaceted defense approaches that combine prevention, detection, and response to strengthen blockchain resilience. Full article
Show Figures

Figure 1

23 pages, 1389 KB  
Article
The Transmission Effect of Threshold Experiences: A Study on the Influence of Psychological Cognition and Subjective Experience on the Consumption Intentions of Smart Sports Venues
by Zhenning Yao, Yujie Zhang, Sen Chen, Qian Huang and Tianqi Liu
Buildings 2025, 15(19), 3629; https://doi.org/10.3390/buildings15193629 - 9 Oct 2025
Abstract
As a key domain within smart buildings, Smart Sports Venues represent a strategic direction for the future development of the construction industry and hold immense potential to drive the transformation and upgrading of the sports industry. To explore the underlying mechanisms influencing consumer [...] Read more.
As a key domain within smart buildings, Smart Sports Venues represent a strategic direction for the future development of the construction industry and hold immense potential to drive the transformation and upgrading of the sports industry. To explore the underlying mechanisms influencing consumer willingness to use Smart Sports Venues, this study constructs a theoretical model based on cognitive evaluation theory and collects data from 632 spectators in core cities of Western China (a region undergoing rapid urbanization where the sports industry is accelerating its development). As an emerging consumption scenario, Smart Sports Venues demonstrate significant development potential and representativeness in these cities. Empirical testing using structural equation modeling (SEM) combined with mediation and moderation analysis revealed the following results: (1) Perceptions of technology and convenience positively influence consumption intention; (2) Risk perceptions negatively influence consumption intention; (3) Critical experiences mediate the effects of technology perceptions, convenience perceptions, and risk perceptions on consumption intention; (4) Subjective Experience exerts a moderating effect. This study offered a novel theoretical explanation for how smart sports venues enhanced sports consumption willingness by revealing the “cognition-experience-behavior” transmission pathway—the complete journey consumers traversed from forming perceptions and experiencing on-site activities to ultimately making purchase decisions. Compared to existing research, this model innovatively integrated psychological cognition with behavioral response mechanisms, breaking away from traditional studies’ isolated analysis of technical parameters or consumption motivations. From an interdisciplinary perspective of sports consumption psychology and behavioral science, this study not only highlighted the value of smart sports venues as a pivotal link in technological innovation and industrial upgrading but also filled a gap in existing literature regarding how smart technologies influenced consumer behavior through psychological mechanisms. The findings provided theoretical foundations for optimizing smart sports architecture through user behavior data analysis and offered practical insights for the widespread adoption and development of smart building technologies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 1878 KB  
Article
The Potential of Bilberry and Blackcurrant Juices as a Source of Colorants in Intelligent Pectin Films
by Anna Pakulska, Magdalena Mikus, Magdalena Karwacka and Sabina Galus
Appl. Sci. 2025, 15(19), 10789; https://doi.org/10.3390/app151910789 - 7 Oct 2025
Viewed by 199
Abstract
The aim of this study was to develop biodegradable pectin films enriched with anthocyanin-rich fruit juices and evaluate their functional properties. Films were prepared with bilberry and blackcurrant juices, and their color response to pH, mechanical performance, thermal stability, and water vapor permeability [...] Read more.
The aim of this study was to develop biodegradable pectin films enriched with anthocyanin-rich fruit juices and evaluate their functional properties. Films were prepared with bilberry and blackcurrant juices, and their color response to pH, mechanical performance, thermal stability, and water vapor permeability were analyzed. The incorporation of juices significantly affected the films’ color, with ΔE values ranging from 8.41 to 39.24 for blackcurrant and 36.60 to 59.59 for wild bilberry juice, showing clear visual differences. Increasing juice concentration from 5% to 10% enhanced color intensity and opacity, with the highest opacity (12.90 a.u./mm) observed for films containing 2% pectin and 10% bilberry juice. Mechanical testing indicated reduced tensile strength after juice addition, with the lowest elongation (11.90%) noted for films with 2% pectin and 5% blackcurrant juice. The lowest water vapor permeability (7.43·10−11 g/m·s·Pa) was recorded for films with 2% pectin. Thermal analysis revealed greater mass loss in juice-enriched films (40–44.5%) compared to controls (37.6%), reflecting the presence of volatile compounds. pH testing confirmed the films’ indicator function, with red coloration at pH 2 and shifts toward blue-grey (bilberry) or orange-green (blackcurrant) at pH 8. These findings demonstrate that pectin films enriched with dark red fruit juices exhibit promising potential for smart food packaging applications. Full article
(This article belongs to the Special Issue Functional Food: From Discovery to Application)
Show Figures

Figure 1

21 pages, 5727 KB  
Article
Multi-Objective Energy Management System in Smart Homes with Inverter-Based Air Conditioner Considering Costs, Peak-Average Ratio, and Battery Discharging Cycles of ESS and EV
by Moslem Dehghani, Seyyed Mohammad Bornapour, Felipe Ruiz and Jose Rodriguez
Energies 2025, 18(19), 5298; https://doi.org/10.3390/en18195298 - 7 Oct 2025
Viewed by 198
Abstract
The smart home contributions in energy management systems can help the microgrid operator overcome technical problems and ensure economically viable operation by flattening the load profile. The purpose of this paper is to propose a smart home energy management system (SHEMS) that enables [...] Read more.
The smart home contributions in energy management systems can help the microgrid operator overcome technical problems and ensure economically viable operation by flattening the load profile. The purpose of this paper is to propose a smart home energy management system (SHEMS) that enables smart homes to monitor, store, and manage energy efficiently. SHEMS relies heavily on energy storage systems (ESSs) and electric vehicles (EVs), which enable smart homes to be more flexible and enhance the reliability and efficiency of renewable energy sources. It is vital to study the optimal operation of batteries in SHEMS; hence, a multi-objective optimization approach for SHEMS and demand response programs is proposed to simultaneously reduce the daily bills, the peak-to-average ratio, and the number of battery discharging cycles of ESSs and EVs. An inverter-based air conditioner, photovoltaic system, ESS, and EV, shiftable and non-shiftable equipment are considered in the suggested smart home. In addition, the amount of energy purchased and sold throughout the day is taken into account in the suggested mathematical formulation based on the real-time market pricing. The suggested multi-objective problem is solved by an improved gray wolf optimizer, and various weather conditions, including rainy, sunny, and cloudy days, are also analyzed. Additionally, simulations indicate that the proposed method achieves optimal results, with three objectives shown on the Pareto front of the optimal solutions. Full article
(This article belongs to the Topic Smart Energy Systems, 2nd Edition)
Show Figures

Figure 1

22 pages, 5333 KB  
Article
Research on Key Technologies and Integrated Solutions for Intelligent Mine Ventilation Systems
by Deyun Zhong, Lixue Wen, Yulong Liu, Zhaohao Wu, Liguan Wang and Xianwei Ji
Technologies 2025, 13(10), 451; https://doi.org/10.3390/technologies13100451 - 6 Oct 2025
Viewed by 104
Abstract
Intelligent ventilation systems can optimize airflow regulation to enhance mining safety and reduce energy consumption, driving green development in mineral resource extraction. This paper systematically elaborates on the overall architecture, cutting-edge advances, and core technologies of current intelligent mining ventilation. Building upon this [...] Read more.
Intelligent ventilation systems can optimize airflow regulation to enhance mining safety and reduce energy consumption, driving green development in mineral resource extraction. This paper systematically elaborates on the overall architecture, cutting-edge advances, and core technologies of current intelligent mining ventilation. Building upon this foundation, a comprehensive intelligent mine ventilation solution encompassing the entire process of ventilation design, optimization, and operation is constructed based on a five-layer architecture, integrating key technologies such as intelligent sensing, real-time solving, airflow regulation, and remote control, providing an overarching framework for smart mine ventilation development. To address the computational efficiency bottleneck of traditional methods, an improved loop-solving method based on minimal independent closed loops is realized, achieving near real-time analysis of ventilation networks. Furthermore, a multi-level airflow regulation strategy is realized, including the methods of optimization control based on mixed integer linear programming and equipment-driven demand-based regulation, effectively resolving the challenges of calculating nonlinear programming models. Case studies indicate that the intelligent ventilation system significantly enhances mine safety and efficiency, leading to approximately 10–20% energy saving, a 40–60% quicker emergency response, and an average increase of about 20% in the utilization of fresh air at working faces through its remote and real-time control capabilities. Full article
Show Figures

Figure 1

17 pages, 3908 KB  
Article
Modeling and Experimental Analysis of Hybrid Cantilever Structures with Embedded MFC Patch
by Andrzej Mitura
Materials 2025, 18(19), 4610; https://doi.org/10.3390/ma18194610 - 5 Oct 2025
Viewed by 269
Abstract
This study presents the modeling and analysis of a composite structure incorporating an embedded macro fiber composite (MFC) patch. MFC actuators are available in several variants, with types P1 and P2 being the most commonly used. In this paper, an electromechanical model of [...] Read more.
This study presents the modeling and analysis of a composite structure incorporating an embedded macro fiber composite (MFC) patch. MFC actuators are available in several variants, with types P1 and P2 being the most commonly used. In this paper, an electromechanical model of the hybrid structure is developed, and experimental procedures are outlined for identifying selected system parameters. In the first phase of the study, two separate cantilever beam specimens are investigated—one with an embedded P1 patch and the other with a P2 patch. Their behaviors are tested and compared to identify and critically assess the advantages and limitations associated with each MFC type. In the second phase, a more complex system—a bistable cantilever shell—is examined. The choice of the appropriate MFC type (P1 or P2) for this structure is based on the findings obtained in the first phase. For the system incorporating the selected MFC patch, the dynamic response is analyzed in the vicinity of both stable equilibrium states, which are characterized by significantly different levels of pre-strain and pre-stress. The study concludes with highlights for the design of smart composite structures with integrated MFC patches. Full article
Show Figures

Figure 1

26 pages, 3051 KB  
Article
Impact of Massive Electric Vehicle Penetration on Quito’s 138 kV Distribution System: Probabilistic Analysis for a Sustainable Energy Transition
by Paul Andrés Masache, Washington Rodrigo Freire, Leandro Gabriel Corrales, Ana Lucia Mañay and Pablo Andrés Reyes
World Electr. Veh. J. 2025, 16(10), 570; https://doi.org/10.3390/wevj16100570 - 5 Oct 2025
Viewed by 322
Abstract
The study evaluates the impact of massive electric vehicle (EV) penetration on Quito’s 138 kV distribution system in Ecuador, employing a probabilistic approach to support a sustainable energy transition. The rapid adoption of EVs, as projected by Ecuador’s National Electromobility Strategy, poses significant [...] Read more.
The study evaluates the impact of massive electric vehicle (EV) penetration on Quito’s 138 kV distribution system in Ecuador, employing a probabilistic approach to support a sustainable energy transition. The rapid adoption of EVs, as projected by Ecuador’s National Electromobility Strategy, poses significant challenges to the capacity and reliability of the city’s electrical infrastructure. The objective is to analyze the system’s response to increased EV load and assess its readiness for this scenario. A methodology integrating dynamic battery modeling, Monte Carlo simulations, and power flow analysis was employed, evaluating two penetration levels: 800 and 25,000 EVs, under homogeneous and non-homogeneous distribution scenarios. The results indicate that while the system can handle moderate penetration, high penetration levels lead to overloads in critical lines, such as L10–15 and L11–5, compromising normal system operation. It is concluded that specific infrastructure upgrades and the implementation of smart charging strategies are necessary to mitigate operational risks. This approach provides a robust framework for effective planning of EV integration into the system, contributing key insights for a transition toward sustainable mobility. Full article
(This article belongs to the Special Issue Impact of Electric Vehicles on Power Systems and Society)
Show Figures

Figure 1

15 pages, 5603 KB  
Article
Fluidic Response and Sensing Mechanism of Meissner’s Corpuscles to Low-Frequency Mechanical Stimulation
by Si Chen, Tonghe Yuan, Zhiheng Yang, Weimin Ru and Ning Yang
Sensors 2025, 25(19), 6151; https://doi.org/10.3390/s25196151 - 4 Oct 2025
Viewed by 232
Abstract
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and [...] Read more.
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and shear stress distribution under different vibration modes. A biomimetic microfluidic platform was developed and coupled with a dynamic mesh computational fluid dynamics (CFD) model to simulate the response of the corpuscle to 20 Hz normal and tangential vibrations. The simulation results showed clear differences in fluid behavior. Normal vibration produced localized vortices and peak wall shear stress greater than 0.0054 Pa along the short axis. In contrast, tangential vibration generated stable laminar flow with a lower average shear stress of about 0.0012 Pa along the long axis. These results suggest that the internal structure of the Meissner corpuscle is important for converting mechanical inputs from different directions into specific fluid patterns. This study provides a physical foundation for understanding mechanotransduction and supports the design of biomimetic sensors with improved directional sensitivity for use in smart skin and soft robotic systems. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

24 pages, 6042 KB  
Article
IncentiveChain: Adequate Power and Water Usage in Smart Farming Through Diffusion of Blockchain Crypto-Ether
by Sukrutha L. T. Vangipuram, Saraju P. Mohanty and Elias Kougianos
Information 2025, 16(10), 858; https://doi.org/10.3390/info16100858 - 4 Oct 2025
Viewed by 115
Abstract
The recent advancements in blockchain technology have also expanded its applications to smart agricultural fields, leading to increased research and studies in areas such as supply chain traceability systems and insurance systems. Policies and reward systems built on top of centralized systems face [...] Read more.
The recent advancements in blockchain technology have also expanded its applications to smart agricultural fields, leading to increased research and studies in areas such as supply chain traceability systems and insurance systems. Policies and reward systems built on top of centralized systems face several problems and issues, including data integrity issues, modifications in data readings, third-party banking vulnerabilities, and central point failures. The current paper discusses how farming is becoming a leading cause of water and electricity wastage and introduces a novel idea called IncentiveChain. To keep a limit on the usage of resources in farming, we implemented an application for distributing cryptocurrency to the producers, as the farmers are responsible for the activities in farming fields. Launching incentive schemes can benefit farmers economically and attract more interest and attention. We provide a state-of-the-art architecture and design through distributed storage, which will include using edge points and various technologies affiliated with national agricultural departments and regional utility companies to make IncentiveChain practical. We successfully demonstrate the execution of the IncentiveChain application by transferring crypto-ether from utility company accounts to farmer accounts in a decentralized system application. With this system, the ether is distributed to the farmer more securely using the blockchain, which in turn removes third-party banking vulnerabilities and central, cloud, and blockchain constraints and adds data trust and authenticity. Full article
Show Figures

Figure 1

36 pages, 4484 KB  
Review
Research Progress of Deep Learning-Based Artificial Intelligence Technology in Pest and Disease Detection and Control
by Yu Wu, Li Chen, Ning Yang and Zongbao Sun
Agriculture 2025, 15(19), 2077; https://doi.org/10.3390/agriculture15192077 - 3 Oct 2025
Viewed by 251
Abstract
With the rapid advancement of artificial intelligence technology, the widespread application of deep learning in computer vision is driving the transformation of agricultural pest detection and control toward greater intelligence and precision. This paper systematically reviews the evolution of agricultural pest detection and [...] Read more.
With the rapid advancement of artificial intelligence technology, the widespread application of deep learning in computer vision is driving the transformation of agricultural pest detection and control toward greater intelligence and precision. This paper systematically reviews the evolution of agricultural pest detection and control technologies, with a special focus on the effectiveness of deep-learning-based image recognition methods for pest identification, as well as their integrated applications in drone-based remote sensing, spectral imaging, and Internet of Things sensor systems. Through multimodal data fusion and dynamic prediction, artificial intelligence has significantly improved the response times and accuracy of pest monitoring. On the control side, the development of intelligent prediction and early-warning systems, precision pesticide-application technologies, and smart equipment has advanced the goals of eco-friendly pest management and ecological regulation. However, challenges such as high data-annotation costs, limited model generalization, and constrained computing power on edge devices remain. Moving forward, further exploration of cutting-edge approaches such as self-supervised learning, federated learning, and digital twins will be essential to build more efficient and reliable intelligent control systems, providing robust technical support for sustainable agricultural development. Full article
Show Figures

Figure 1

15 pages, 2076 KB  
Article
Forecasting Urban Water Demand Using Multi-Scale Artificial Neural Networks with Temporal Lag Optimization
by Elias Farah and Isam Shahrour
Water 2025, 17(19), 2886; https://doi.org/10.3390/w17192886 - 3 Oct 2025
Viewed by 339
Abstract
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization [...] Read more.
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization to predict daily and hourly water consumption across heterogeneous user profiles. Using high-resolution smart metering data from the SunRise Smart City Project in Lille, France, four demand nodes were analyzed: a District Metered Area (DMA), a student residence, a university restaurant, and an engineering school. Results demonstrate that incorporating lagged consumption variables substantially improves prediction accuracy, with daily R2 values increasing from 0.490 to 0.827 at the DMA and from 0.420 to 0.806 at the student residence. At the hourly scale, the 1-h lag model consistently outperformed other configurations, achieving R2 up to 0.944 at the DMA, thus capturing both peak and off-peak consumption dynamics. The findings confirm that short-term autocorrelation is a dominant driver of demand variability, and that ANN-based forecasting enhanced by temporal lag features provides a robust, computationally efficient tool for real-time water network management. Beyond improving forecasting performance, the proposed methodology supports operational applications such as leakage detection, anomaly identification, and demand-responsive planning, contributing to more sustainable and resilient urban water systems. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

23 pages, 830 KB  
Article
Leaders’ STARA Competencies and Green Innovation: The Mediating Roles of Challenge and Hindrance Appraisals
by Sameh Fayyad, Osman Elsawy, Ghada M. Wafik, Siham A Abotaleb, Sarah Abdelrahman Ali Abdelrahman, Azza Abdel Moneim, Rasha Omran, Salsabil Attia and Mahmoud A. Mansour
Tour. Hosp. 2025, 6(4), 202; https://doi.org/10.3390/tourhosp6040202 - 2 Oct 2025
Viewed by 398
Abstract
The hospitality sector is undergoing a rapid digital change due to smart technology and artificial intelligence. This presents both possibilities and problems for the development of sustainable innovation. Yet, little is known about how leaders’ technological competencies affect employees’ capacity to engage in [...] Read more.
The hospitality sector is undergoing a rapid digital change due to smart technology and artificial intelligence. This presents both possibilities and problems for the development of sustainable innovation. Yet, little is known about how leaders’ technological competencies affect employees’ capacity to engage in environmentally responsible innovation. This study addresses this gap by examining how leaders’ competencies in smart technology, artificial intelligence, robotics, and algorithms (STARA) shape employees’ green innovative behavior in hotels. Anchored in person–job fit theory and cognitive appraisal theory, we propose that when employees perceive a strong alignment between their skills and the technological demands introduced by STARA, they are more likely to appraise such technologies as opportunities (challenge appraisals) rather than threats (hindrance appraisals). These appraisals, in turn, mediate the link between leadership and green innovation. Convenience sampling was used to gather data from staff members at five-star, ecologically certified hotels in Sharm El-Sheikh, Egypt. According to structural equation modeling using SmartPLS, employees’ green innovation behaviors are improved by leaders’ STARA abilities. Crucially, staff members who viewed STARA technologies as challenges (i.e., chances for learning and development) converted leadership skills into more robust green innovation results. Conversely, employees who perceived these technologies as obstacles, such as burdens or threats, diminished this beneficial effect and decreased their desire to participate in green innovation. These findings highlight that the way employees cognitively evaluate technological change determines whether leadership efforts foster or obstruct sustainable innovation in hotels. Full article
(This article belongs to the Special Issue Digital Transformation in Hospitality and Tourism)
Show Figures

Figure 1

29 pages, 2319 KB  
Article
Research on the Development of a Building Model Management System Integrating MQTT Sensing
by Ziang Wang, Han Xiao, Changsheng Guan, Liming Zhou and Daiguang Fu
Sensors 2025, 25(19), 6069; https://doi.org/10.3390/s25196069 - 2 Oct 2025
Viewed by 363
Abstract
Existing building management systems face critical limitations in real-time data integration, primarily relying on static models that lack dynamic updates from IoT sensors. To address this gap, this study proposes a novel system integrating MQTT over WebSocket with Three.js visualization, enabling real-time sensor-data [...] Read more.
Existing building management systems face critical limitations in real-time data integration, primarily relying on static models that lack dynamic updates from IoT sensors. To address this gap, this study proposes a novel system integrating MQTT over WebSocket with Three.js visualization, enabling real-time sensor-data binding to Building Information Models (BIM). The architecture leverages MQTT’s lightweight publish-subscribe protocol for efficient communication and employs a TCP-based retransmission mechanism to ensure 99.5% data reliability in unstable networks. A dynamic topic-matching algorithm is introduced to automate sensor-BIM associations, reducing manual configuration time by 60%. The system’s frontend, powered by Three.js, achieves browser-based 3D visualization with sub-second updates (280–550 ms latency), while the backend utilizes SpringBoot for scalable service orchestration. Experimental evaluations across diverse environments—including high-rise offices, industrial plants, and residential complexes—demonstrate the system’s robustness: Real-time monitoring: Fire alarms triggered within 2.1 s (22% faster than legacy systems). Network resilience: 98.2% availability under 30% packet loss. User efficiency: 4.6/5 satisfaction score from facility managers. This work advances intelligent building management by bridging IoT data with interactive 3D models, offering a scalable solution for emergency response, energy optimization, and predictive maintenance in smart cities. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop