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Abstract

The study evaluates the impact of massive electric vehicle (EV) penetration on Quito’s
138 kV distribution system in Ecuador, employing a probabilistic approach to support a
sustainable energy transition. The rapid adoption of EVs, as projected by Ecuador’s Na-
tional Electromobility Strategy, poses significant challenges to the capacity and reliability
of the city’s electrical infrastructure. The objective is to analyze the system’s response to
increased EV load and assess its readiness for this scenario. A methodology integrating
dynamic battery modeling, Monte Carlo simulations, and power flow analysis was em-
ployed, evaluating two penetration levels: 800 and 25,000 EVs, under homogeneous and
non-homogeneous distribution scenarios. The results indicate that while the system can
handle moderate penetration, high penetration levels lead to overloads in critical lines, such
as L10–15 and L11–5, compromising normal system operation. It is concluded that specific
infrastructure upgrades and the implementation of smart charging strategies are necessary
to mitigate operational risks. This approach provides a robust framework for effective
planning of EV integration into the system, contributing key insights for a transition toward
sustainable mobility.

Keywords: distribution system; electric vehicles; probabilistic modeling; loadability; energy
transition

1. Introduction
The increasing adoption of electric vehicles (EVs) poses a significant challenge to

electrical distribution systems due to their uncertain demand and battery-charging patterns
at various state-of-charge levels [1,2]. Several researchers have investigated the impact
of EVs on distribution systems using diverse methodologies, highlighting the effects of
batteries on various components, such as transformers and voltage quality [3–5]. For
instance, studies have analyzed how long-range EVs affect distribution systems through
Monte Carlo simulations based on real data [3], while others have projected the need for
distribution network reinforcements by 2030 [6,7]. Furthermore, dynamic battery modeling
is critical for simulating EV behavior in distribution systems, providing tools to evaluate
their integration [8,9]. Within the framework of Ecuador’s National Electromobility Strategy,
which aims to integrate thousands of EVs in the coming decades, this study assesses the
impact of massive EV penetration on Quito’s 138 kV distribution system (EEQ).
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Several authors have studied EV integration at global and regional levels. Compre-
hensive reviews emphasize that large-scale EV adoption requires coordinated charging
strategies and integration with renewable energy sources to mitigate impacts on supply
quality and system capacity [10,11]. In the Latin American context, studies such as those
conducted in Colombia have employed probabilistic approaches to assess the impact of
EVs on residential networks, accounting for uncertainty in charging patterns [12,13].

Several critical scenarios associated with the growth of electric mobility in distribution
networks have been documented in the literature. Table 1 provides a summary of recent
studies conducted in Latin American countries and international reference cases, high-
lighting significant impacts on power systems, such as overloads, voltage drops, harmonic
distortion, and the need for infrastructure reinforcement. These cases emphasize the ur-
gency of planning network expansion proactively, particularly for the 138 kV distribution
system of the Metropolitan District of Quito.

Table 1. Critical analysis of regional power infrastructure and impact.

Country Study Year Analysis Critical Impact

Colombia [14] 2023, 2030, 2040 2023: 3822 kVA 2030: 7291 kVA
2040: 16,538 kVA

Increased harmonics, voltage imbalance,
and overloads. Industrial and

commercial nodes are most affected.
Distribution planning is needed.

Costa Rica [15] 2025, 2030, 2040 2025: ∼11,438 EV 2030: ∼35,309 EV
2040: ∼93,657 EV estimated

Dangerous voltage drops after 2030;
increased demand (+428.3 MW in 2040);

urgent grid investment.

California (EE.UU.) [2] Until 2030 Projection of 6 million EVs
443 feeders will require upgrades (20% of

the system), but only 88 have planned
updates.

Latin America [16] 2023–2024
Theoretical research. Current status of
the system in Latin America with EV

implementation.

Lack of infrastructure, need for
comprehensive policies, and differences

between countries. Requires
public–private planning and expansion
of fast charging, especially in Ecuador

and Uruguay.

Numerous studies have addressed this topic. Previous research has utilized forecasting
models such as Bass, Gompertz, and Markov to predict EV penetration and evaluate its
impact on electrical system load, employing power flow analysis software like ETAP [14,17].
Reviews have also highlighted the adoption of EVs as coordinated loads and the integration
of renewable energy sources to mitigate their impact in the Latin American context [18,19].
Other works have proposed methods to determine the maximum additional load (MAL)
that can be connected to each node of a radial distribution system (RDS) without violating
safe voltage limits, using modified forward–backward sweep (MFBS) algorithms and
validating results in 33- and 69-bus RDS systems [20,21]. Additionally, methodologies have
been developed to model the daily charging load of EVs at charging stations, considering
random factors such as charging power, initial state of charge (SOC), start time, and
charging duration, through Monte Carlo simulations [22,23]. Probabilistic models have
also been proposed to estimate EV quantities, using Monte Carlo methods to generate EV
integration scenarios and superimposing load curves of different EV types to obtain the total
demand curve [24,25]. Other studies have employed user probability distribution models
based on data such as charging start time, initial SOC, power level, and charging duration
to predict the physical distribution of EV load, considering geographical aspects, EV types,
and climatic conditions, again using Monte Carlo simulations [26,27]. Analyses of factors
affecting load, such as vehicle type, driving distance, charging start time, charging power,
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and battery capacity, have been conducted using lognormal distributions for daily mileage
and normal distributions for charging start time, with Monte Carlo simulations [28,29].

Additionally, models have been proposed that utilize contingency analysis variables
to determine the required power capacity, incorporating photovoltaic systems and energy
storage [30], along with constant generation alternatives, and Monte Carlo simulations to
assess the additional power capacity needed, with power flow optimization performed
using software such as GAMS [31,32]. An EV charging model was developed using Monte
Carlo simulation, considering travel distance, trip start and end times, and time-of-use
electricity pricing. Linear programming was employed to optimize EV charging schedules
and minimize costs. Subsequently, a continuation power flow (CPF) analysis was conducted
to evaluate static voltage stability and determine the maximum EV connection capacity [33].
The integration of plug-in electric vehicles (PEVs) and distributed generation (DG) in
distribution systems was assessed, accounting for uncertainties in renewable generation
and load demand [34,35]. The objective was to optimize the placement and sizing of DG
units to minimize energy losses and enhance system reliability [36,37]. Finally, studies
based on surveys of EV users have evaluated their willingness to modify charging habits
in response to economic incentives, alongside simulations modeling the impact of these
incentives on the electrical grid and traffic [38].

The load imposed by EVs on distribution networks exhibits significant spatial and
temporal randomness [39]. To capture this inherent uncertainty, this study employs the
Monte Carlo method to generate a range of probabilistic scenarios simulating the integration
of EVs into the system. This probabilistic approach enables a more robust evaluation of the
system’s load capacity under various demand conditions, yielding results that are more
representative of real-world scenarios. Consequently, this study contributes to a more
accurate understanding of the challenges posed by the increasing penetration of EVs in
distribution networks, while providing a more comprehensive and reliable loadability
analysis methodology.

This study investigates the loadability of a 138 kV distribution system in Quito,
Ecuador (EEQ), under massive EV integration. A methodology is employed that combines
dynamic modeling of lithium-ion batteries based on models proposed by [40,41], power
flow simulations, and probabilistic EV load distribution using the Monte Carlo method.
This methodology enables a more realistic and robust evaluation of the system’s loadabil-
ity under varying EV penetration conditions, accounting for the inherent variability in
vehicle-charging patterns. The research aligns with the goals set by Ecuador’s National
Electromobility Strategy, which projects the integration of 10,000 EVs by 2025, 100,000 by
2030, and over 750,000 by 2040, posing a significant challenge to the country’s electrical
infrastructure. Therefore, this study aims to determine whether the current distribution
system is prepared to support the anticipated growth in associated demand.

This article is structured as follows: Section 2 provides a detailed description of
the methodology employed; Section 3 presents the case study, focusing on the 138 kV
subtransmission system of Quito, Ecuador; Section 4 discusses the results obtained through
the application of the methodology; and finally, Section 5 offers the conclusions and a
discussion of the results.

2. Materials and Methods
2.1. Ecuadorian Case

The 138 kV distribution system of Quito (EEQ) was selected as the case study because
it is representative of Ecuador’s power grid and records the highest increase in EV adoption
nationwide. The objective of this research is to evaluate the operational behavior of the
system under different levels of EV penetration, in order to identify potential overloads
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and critical lines. For this purpose, two load distribution scenarios were defined: (i) a
homogeneous scenario, with EVs evenly distributed across all busbars (busbars are the
distribution substations comprising the EEQ 138 kV system), and (ii) a non-homogeneous
scenario, where EVs are randomly assigned based on load density and distance. In both
cases, penetration levels of 800 and 25,000 EVs were analyzed, as they are considered
representative of the current and short-term stages according to the National Electric
Mobility Plan. The 100,000 EV scenario projected for 2030 was not considered, since
the current system lacks the technical capacity to meet such demand, as evidenced in
preliminary simulations.

2.2. Methodology

The methodology employed to assess the loadability of distribution lines under the
massive integration of electric vehicles (EVs) is characterized by its comprehensive and
probabilistic approach. The study integrates three key aspects: accurate modeling of battery
behavior during EV charging to determine the required power; simulation of the inherent
randomness in system operation using the Monte Carlo method to incorporate the electrical
demand generated by EVs; and analysis of the system’s load capacity through the power
flow (PF) technique.

2.2.1. EV Modeling

The modeling of lithium-ion batteries for electric vehicles (EVs) was carried out
using the approach proposed by [40,41], which is widely accepted in the literature for its
ability to represent the nonlinear relationship between voltage and state of charge (SOC).
For the application in this study, the base parameters reported in [41] were simulated
and validated, and the model was subsequently extended to various vehicle brands by
adjusting key parameters according to the technical specifications of each manufacturer;
the model is shown in Figure 1. Since the objective of this work is to evaluate the overall
behavior of the distribution system under massive EV penetration, this modeling approach
is considered appropriate and representative of the battery technology currently available
on the Ecuadorian market.

Figure 1. Mathematical model of the charging and discharging of EVs.

The technical specifications of the batteries used in the Nissan, Kia, Renault, and BYD
EV models were obtained from manufacturer-provided data and are presented as follows:

• Nissan: 24 kWh Li-NMC battery, with 192 cells (2 in parallel, 96 in series), nominal
voltage of 3.8 V, and capacity of 66.2 Ah.

• Kia: 30 kWh LiPB/Li-NMC battery, with 192 cells (2 in parallel, 96 in series), nominal
voltage of 3.75 V, and capacity of 75 Ah.

• Renault: 33 kWh Li-NMC battery, with 192 cells (48 modules, 96 in series), nominal
voltage of 3.5 V, and capacity of 80 Ah.
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• BYD: 80 kWh LFP (lithium iron phosphate) battery, with 324 cells (324 in series, 1 in
parallel), nominal voltage of 3.2 V, and capacity of 200 Ah.

The allocation of electric vehicles to the brands (Nissan, Kia, Renault, and BYD)
was based on their current market share in Ecuador—46.82% for Nissan, 23.96% for Kia,
21.91% for Renault, and 7.29% for BYD—according to official data from the national electric
vehicle registry. These brands were selected because, together, they represent the majority
of the Ecuadorian EV fleet. Although these proportions may evolve with the adoption
of new models featuring higher battery capacities, this study aims to reflect the current
operational state of the 138 kV distribution system under the present conditions. Initially,
the average number of EVs per brand was estimated using these probabilities to account for
the spatial uncertainty of each EV within the system. These specifications, including battery
type, voltage level, current capacity, number of cells, and other technical parameters, are
fundamental for modeling. A significant advantage of the model is its flexibility to adapt to
different lithium-ion battery types; by adjusting its parameters, it can accurately simulate
the behavior of a variety of EV batteries used in the Ecuadorian market.

To estimate the SOC, calculations were performed with a total of n = 14,000 iterations,
modeled using a mixed probability distribution. This distribution assigns the SOC through
the following expression:

• With a 60% probability, the SOC is uniformly selected within the interval [20%, 50%].
• With a 40% probability, the SOC is uniformly selected within the interval [51%, 79%].

The probability density function of the SOC was expressed in Equation (1):

f (SOC) =


0.6 × 1

50 − 20
= 0.02, if 20 ≤ SOC ≤ 50

0.4 × 1
79 − 51

≈ 0.014286, if 51 ≤ SOC ≤ 79

0, Other case

(1)

Equation (1) probabilistically assigns initial SOC values, reflecting the variability of
EV charging-level conditions.

The probabilistic assignment of the initial state of charge (SOC) is based on usage
habits observed in the Ecuadorian context, where electric vehicle users tend to connect their
units to charging stations when the battery level is in the low or medium ranges; that is,
EVs are more likely to be charged when the SOC is below 50%. Additionally, this behavior
is influenced by factors such as the limited availability of charging infrastructure in certain
urban areas and the desire to maintain sufficient driving autonomy. Based on operational
data and mobility patterns, a higher probability was assigned to SOC values between 20%
and 50%. This approach reflects real-world usage conditions and is considered a valid
approximation for planning scenarios in regions with low charging station density.

Once the SOC assignment is completed, the models proposed by [40,41] are applied,
according to the following mathematical expressions formulated below.

Voc = −1.031 · exp(−35 · SOC) + 3.685+ 0.2156 · SOC− 0.1178 · SOC2 + 0.3201 · SOC3 (2)

Equation (2) models the open-circuit voltage of the battery (Voc) as a function of the
state of charge (SOC) expressed as a percentage. This represents the battery voltage in an
unconnected state, considering the exponential behavior during charging as a function of
SOC, in addition to a polynomial behavior that captures the nonlinear voltage variation as
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the SOC increases. The coefficients (−1.031, 3.685, etc.) are derived from experimental data,
as reported in [40,41].

Rs = 0.1562 · exp(−24.37 · SOC) + 0.07446 (3)

Equation (3) defines the series resistance (Rs) of the battery, which depends on the SOC
percentage. The exponential nature of the formula reflects a reduction in internal resistance
as the battery charges, with an additional base value of 0.0746 ohms representing the
battery’s baseline resistance. This enables the modeling of energy losses during charging
and discharging processes.

Rt1 = 0.3208 · exp(−29.14 · SOC) + 0.04669 (4)

Ct1 = −752.9 · exp(−13.51 · SOC) + 703.600 (5)

Equation (4) models the internal resistance Rt1, which is part of the parallel circuit
representing the short-term transient response. The exponential term decreases with
increasing SOC, allowing the incorporation of the resistance behavior as it reduces while
the battery charges, alongside a constant value that ensures a minimum resistance level.
Equation (5) represents the capacitance Ct1 associated with Rt1. The negative exponential
term suggests an initial increase in capacitance with rising SOC, enabling the adjustment of
the constant capacitance value to stabilize the model. This captures the battery’s transient
charge storage capacity.

Rt2 = 6.603 · exp(−155.2 · SOC) + 0.04984 (6)

Ct2 = −6056 · exp(−27.12 · SOC) + 4475.00 (7)

Equation (6) represents the resistive component of the long-term transient response.
The exponential term decreases rapidly with increasing SOC, indicating very low resistance
at high SOC percentages, while the constant term represents the residual resistance at
minimal SOC levels, affecting the long-term voltage dynamics. Equation (7) models the
capacitance in parallel associated with Rt2. The negative exponential term indicates an
increase in capacitance with rising SOC, and the constant term reflects the long-term charge
storage capacity of the battery.

VRS = (Rs · I) (8)

V1 =

(∫ Rt1 · Ct1
Voc

− I
Ct1

)
(9)

V2 =

(∫ Rt2 · Ct2

Voc
− I

Ct2

)
(10)

∆Vbat = VRS + V1 + V2 − (Rs(SOC) · Voc(SOC)) (11)

From Equation (8) to Equation (11), the calculation of the EV battery voltage is rep-
resented. Equation (8) calculates the voltage across the series resistance, representing the
voltage drop due to the battery’s internal resistance. Equation (9) defines the voltage V1

across the Rt1 −Ct1 circuit, determined by the integral of the product of Rt1 and Ct1 divided
by Voc, multiplied by the charging current. This represents the short-term transient con-
tribution to the total voltage, modeling the dynamic response of the battery. Similarly, V2

is calculated in Equation (10) through the Rt2 − Ct2, defined by the integral of Rt2 and Ct2

divided by Voc, multiplied by the charging current. This captures the long-term transient
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contribution, accounting for slow relaxation effects in the battery. Finally, Equation (11)
represents the algebraic sum of all voltages calculated in the previous equations, adjusted
by a correction term that accounts for the impact of SOC on resistance and open-circuit
voltage. This final term ensures that the model accurately reflects the battery’s real-world
operating conditions under load.

2.2.2. EV Demand Distribution in the EEQ System

The analysis of EV demand distribution was conducted for two specific cases. The
first case is a homogeneous scenario, where the power demand of EVs is evenly distributed
across all the busbars of the system. In contrast, the second case is a non-homogeneous
scenario, utilizing the Monte Carlo method to assign EVs to different busbar in the system,
which is critical for reflecting the variability in EV demand. This procedure generated
multiple scenarios that were processed to obtain statistically significant results.

The assignment of EVs to the brands (Nissan, Kia, Renault, and BYD) was based
on their market shares, defined as 46.82% for Nissan, 23.96% for Kia, 21.91% for Renault,
and 7.29% for BYD, according to EV registration data in Ecuador. Initially, the average
number of vehicles per brand was estimated using these probabilities; however, to account
for uncertainty in spatial distribution, a Monte Carlo simulation was implemented to
randomly assign each vehicle to a specific busbar within the system.

The simulation was executed with 1000 iterations. This number was defined based on
a sensitivity analysis, which showed that from around 800 iterations onward, the results
began to stabilize, with variations of less than 1% in the standard deviation. This choice
ensures robustness in the results. In each iteration, EVs are assigned to the busbars using
a binomial distribution, where the probability of assignment is weighted inversely to the
distance of each busbar from the main load centers.

r ∈ [0, 1] (12)

Equation (12) represents the random variable r, to assign each EV to a specific brand
(Nissan, Kia, Renault, or BYD), a random variable r was generated using the Monte
Carlo method, following a continuous uniform distribution within the interval [0, 1].
This approach introduces stochastic variability in the assignment process, reflecting the
randomness observed in real-world scenarios, while maintaining consistency with the
market share percentages reported by Ecuador’s national electric vehicle registry. The
allocation is performed based on intervals defined by the cumulative participation values of
each brand: when r falls within a specific range, the corresponding brand is assigned. This
probabilistic method provides a more realistic representation of the progressive integration
of electric vehicles into the national power system.

brand(r) =


ProbNissan IF r < 0.4682

ProbKia IF 0.4682 ≤ r < 0.7080

ProbRenault IF 0.7080 ≤ r < 0.9271

ProbBYD IF r ≥ 0.9271

(13)

Equation (13) defines the stochastic allocation scheme for assigning each electric
vehicle to a specific brand (Nissan, Kia, Renault, or BYD), using a random variable r
generated through a continuous uniform distribution in the range [0, 1]. The intervals
of r are directly linked to the market share of each manufacturer, based on official data
from Ecuador’s national electric vehicle registry. This formulation allows for a realistic
representation of the uncertainty inherent in the technology adoption process, avoiding
deterministic rules and instead introducing controlled variability in the allocation. For
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example, if r = 0.65, and the cumulative interval for Kia is 0.4682 to 0.7080, the EV is
assigned to Kia.

Equations (15)–(23) describe the stochastic assignment of EV by brand and the cor-
responding calculation of total power demand per battery type at each busbar in the
distribution system. Once the brand assignment probability is determined, the distribution
of EVs across the busbar is carried out based on the total number of EV and the energy re-
quirements of each model. These formulations integrate both the spatial allocation—guided
by probabilistic methods—and the specific power consumption associated with each EV
type, considering technical parameters such as voltage differential and charging current.
This approach allows for a more realistic estimation of nodal demand under large-scale EV
penetration scenarios.

∆Vbat = Vbat(SOCend)− Vbat(SOCbegin) (14)

It is important to highlight that the voltage Vbat used in the power Equations (16), (18),
(20) and (22) does not correspond to a constant or nominal value, but rather represents the
voltage differential that occurs during the battery-charging process, from the initial state
of charge (SOCbegin) to the final state of charge (SOCend). This dynamic value captures the
actual variation of voltage as a function of SOC and is expressed by Equation (14):

CNissan,n =
EV

∑
i=1

δn(EVi) · δNissan(ri) (15)

where:

• δn(EVi) =

1 if EVi is assigned to node n

0 otherwise

• δNissan(ri) =

1 if ri ≤ ProbNissan

0 otherwise

PNissan,n = CNissan,n · ∆Vbat · Ibat (16)

Equation (15) calculates the number of Nissan electric vehicles allocated to a specific
busbar n. This is achieved by evaluating, for each EV in the total population, whether it
belongs to busbar n and whether the random variable r falls within the probability range
associated with the Nissan brand. The function δn(EVi) ensures that only vehicles assigned
to busbar n are counted, while δNissan(ri) ensures brand-based classification.

Equation (16) computes the total power demand PNissan,n associated with Nissan
EV at busbar n. This is calculated by multiplying the number of Nissan EVs at that
busbar (CNissan,n) by the battery charging current Ibat and the voltage differential ∆Vbat,
which represents the change in battery voltage between the initial and final state of charge
(SOCbegin and SOCend). Unlike a fixed or nominal voltage, ∆Vbat captures the dynamic
behavior of the battery during the charging process, as described in Equation (14). This
formulation links the probabilistic brand and spatial assignment of EVs to their electrical
impact on the network, enabling a more accurate estimation of nodal power consumption
based on battery-specific characteristics.

CKia,n =
EV

∑
i=1

δn(EVi) · δKia(ri) (17)

where:
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• δn(EVi) =

1 if EVi is assigned to node n

0 otherwise

• δKia(ri) =

1 if ri ≤ ProbKia

0 otherwise

PKia,n = CKia,n · ∆Vbat · Ibat (18)

CRenault,n =
EV

∑
i=1

δn(EVi) · δRenault(ri) (19)

where:

• δn(EVi) =

1 if EVi is assigned to node n

0 otherwise

• δRenault(ri) =

1 if ri ≤ ProbRenault

0 otherwise

PRenault,n = CRenault,n · ∆Vbat · Ibat (20)

CBYD,n =
EV

∑
i=1

δn(EVi) · δBYD(ri) (21)

where:

• δn(EVi) =

1 if EVi is assigned to node n

0 otherwise

• δBYD(ri) =

1 if ri ≤ ProbBYD

0 otherwise

PBYD,n = CBYD,n · ∆Vbat · Ibat (22)

From Equation (17) to Equation (22), the same procedure applied for Nissan is ex-
tended to the remaining EV brands (Kia, Renault, and BYD). In each case, the number of
EVs assigned to a given busbar is estimated based on the probabilistic allocation method,
and the total power demand is calculated by multiplying the voltage differential ∆Vbat

derived from the variation in state of charge by the charging current specific to each bat-
tery model. These equations provide a brand-specific estimation of energy demand at
each busbar, integrating both the quantity of vehicles assigned and their corresponding
electrical characteristics.

Ptotal,n = PNissan,n + PKia,n + PRenault,n + PBYD,n (23)

Equation (23) calculates the total power demand at each busbar by summing the
individual power contributions from all EV brands assigned to that busbar. This aggregated
value represents the complete electrical load generated by electric vehicle charging and
serves as a key input for the power flow analysis. It is essential for evaluating the operating
conditions of the distribution network, particularly for assessing line loadability and
identifying potential overloads under different EV penetration scenarios. Although the
battery model used in this study reflects a dynamic behavior, since the voltage depends
on the initial and final state of charge (SOC), it is important to clarify that no temporal
progression is explicitly simulated. The power demand per vehicle is calculated based on
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the voltage differential associated with the SOC change, but the process is considered as a
single charging event under maximum load conditions, rather than as a time-dependent
simulation. As such, the battery model contributes to a more realistic estimation of nodal
demand, without requiring a full temporal charging profile.

2.2.3. Loadability of the Distribution System

Loadability was evaluated as the percentage increase in distribution line power relative
to the rated power before EV integration. This calculation was performed for each line of the
138 kV EPS (Electric Power System), considering both homogeneous and non-homogeneous
scenarios at different EV penetration levels. The analysis focused on identifying lines
most sensitive to EV integration, accounting for loadability effects, the power transmitted
through each line, and demand variations at individual busbars.

For the loadability calculation, a power flow analysis was performed using the
Newton–Raphson method. This method was selected due to its quadratic convergence
characteristics and ability to handle nonlinear, multi-node systems. The primary objective
was to determine system parameters while accounting for the additional demand generated
by EVs.

Pi = Vi ·
n

∑
j=1

Vj · (Gi,j · cos(σi,j) + Bi,j · sin(σi,j)) (24)

Qi = Vi ·
n

∑
j=1

Vj(Gi,j · sin(σi,j)− Bi,j · cos(σi,j)) (25)

Equation (24) computes the active power injected at each busbar, considering both line
impedance and nodal voltage levels. This equation represents the total power contribution
from all inter-busbar connections. Equation (25) determines the reactive power injection at
each busbar, following a similar formulation to Equation (24). This calculation captures the
reactive component of line power flow, which is influenced by the specific characteristics of
each transmission line.

∆Pi = Pi,cal − Pi (26)

∆Qi = Qi,cal − Qi (27)

Equations (26) and (27) represent the power mismatch between the generated power
minus the nodal power demand and the specified active power injection at the busbar.
This variance is used to evaluate the convergence of the Newton–Raphson method, where
values approaching zero indicate the system has reached a steady-state condition.[

∆θi

∆Vi/Vi

]
= −Jab−1 ·

[
∆Pi

∆Qi

]
(28)

Jab =

[
H N
M L

]
(29)

Equation (28) represents the system of linear equations that need to be solved iter-
atively by the Newton–Raphson method. This equation updates the state variables to
bring the system closer to convergence. The state variables are the angles and voltages of
the system. Equation (29) represents the linearized terms of the Jacobian matrix, which
contains the partial derivatives of the active and reactive power with respect to the phase
angles for the case of H and M and the voltage magnitudes for the case of N and L. This
matrix is used to linearize the system of power flows.
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CP =
Pi,j

SIL
· 100% (30)

Equation (30) calculates the loadability of a distribution line, defined as the percentage
of the line’s power flow relative to its maximum transfer capacity (SIL). This equation
allows us to determine the utilization level of distribution lines and represents a critical
value for identifying potential overloads. Additionally, a critical loadability threshold of
90% is considered, meaning that when this value is exceeded, the line is assumed to be
operating under overload risk conditions. This threshold was used as a reference to analyze
the system’s behavior under different levels of EV penetration.

For the loadability and system operation analysis, technical limits for voltage and
angle were established. In particular, a voltage operating range of ±5% relative to the
nominal value of 1 p.u. was considered. Likewise, an operational limit of ±40 degrees was
set for the phase angles, ensuring stable system operation under both normal and high-load
conditions. These criteria were used to verify the validity of the results obtained across the
different simulated scenarios.

The proposed methodology is summarized in Algorithm 1, which outlines the complete
workflow of the simulation model, from data input to the loadability analysis. Each step of
the algorithm corresponds to a methodological stage described in the manuscript: input data
(Step 1), dynamic EV battery modeling using SOC dependent parameters (Step 2), stochastic
brand assignment via Monte Carlo simulation (Step 3), nodal EV demand estimation based
on voltage differential and charging current (Step 4), and finally, power flow and loadability
analysis using Newton-Raphson and contingency-based metrics (Step 5).

Algorithm 1 OST with loadability analysis and contingency rankings

Step: 1 Input data
Powers, Reactances, Resistances.
Generators: Pgen, Qgen
Transmission línes: R, X, SIL
Electrical demand: Pd, Qd

Step: 2 EV modeling
SOC assigned

0.6 · 1
50−20 = 0.02 IF 20% ≤ SOC ≤ 50%

0.4 · 1
79−51 ≈ 0.014286 IF 51% ≤ SOC ≤ 79%

0 Other case

Voc = −1.031 · exp(−35 · SOC) + 3.685 + 0.2156 · SOC − 0.1178 · SOC2 + 0.3201 ·
SOC3

Rs = 0.1562 · exp(−24.37 · SOC) + 0.07446

Rt1 = 0.3208 · exp(−29.14 · SOC) + 0.04669

Ct1 = −752.9 · exp(−13.51 · SOC) + 703.600

Rt2 = 6.603 · exp(−155.2 · SOC) + 0.04984

Ct2 = −6056 · exp(−27.12 · SOC) + 4475.00

VRS = (Rs · I)

V1 = (
∫ Rt1·Ct1

Voc − I
Ct1

)

V2 = (
∫ Rt2·Ct2

Voc − I
Ct2

)

∆Vbat = VRS + V1 + V2 − (RsSOC · VocSOC)
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Algorithm 1 Cont.

Step: 3 EV assigned
assigning each EV an r value for each busbar r ∈ [0, 1]

Nissan IF r < 0.4682
Kia IF 0.4682 ≤ r < 0.7080
Renault IF 0.7080 ≤ r < 0.9271
BYD IF r ≥ 0.9271

Step: 4 EV demand
∆Vbat = Vbat · (SOCend)− Vbat · (SOCbegin)

CBrand,n = ∑EV
i=1 δn(EVi) · δBrand(ri)

Pbrand,n = Cbrand,n · ∆Vbat · Ibat

Ptotal,n = PNissan,n + PKia,n + PRenault,n + PBYD,n

Step: 5 Loadability analysis
Pi = Vi · ∑n

j=1 Vj · (Gi,j · cos(σi,j) + Bi,j · sin(σi,j))

Qi = Vi · ∑n
j=1 Vj · (Gi,j · sin(σi,j)− Bi,j · cos(σi,j))

∆Pi = Pi,cal − Pi

∆Qi = Qi,cal − Qi[
∆θi

∆Vi/Vi

]
= −Jab−1 ·

[
∆Pi
∆Qi

]
Jab =

[
H N
M L

]
Cp =

Pij
SIL · 100%

3. Results
This section presents the results of the proposed methodology applied to the 138 kV

distribution system of the Quito District, Ecuador (EEQ), to evaluate the impact of massive
EV integration in both homogeneous and non-homogeneous distribution scenarios for 800
and 25,000 EVs. The results include the system topology (Figure 2), battery modeling, EV
demand distribution, and system loadability. The system is presented in Tables 2–4.
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Figure 2. Quitos Electrical Power System.
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Table 2. Generation data of the EEQ system.

Generator Type BusBar Pgen (MW) Qgen (MVAR)

5 Slack 200 84.65
6 PV 170 105.35
7 PV 170 105.35

15 PV 32 24

Table 3. Demand data of the Quito system.

Busbar Number Busbar Name Pd (MW) Qd (MVAR)

1 Cristiania 61.70 23.41
2 El Quinche 30.85 11.70
3 Eugenio Espejo 61.70 23.41
4 Pomasqui 61.70 23.41
5 Santa Rosa 0 0
6 Selva Alegre 61.96 17.59
7 Vicentina 70.96 15.27
8 Chilibulo 30.85 11.70
9 Conocoto 30.85 11.70

10 Tababela 30.85 11.70
11 Alangasi 30.85 11.70
12 Parque Bicentenario 64.79 28.38
13 Gualo 30.85 11.70
14 San Antonio 30.85 11.70
15 Inga 0 0
16 San Rafael 48.48 18.17

Table 4. Distribution line data of the Quito system.

Line R (p.u.) X (p.u.) SIL (MW)

Line 6–4 0.0025 0.015 187.39
Line 11–15 0.0066 0.026 61.19
Line 16–4 0.0082 0.050 187.39
Line 9–7 0.0058 0.027 115.45
Line 8–6 0.0038 0.023 187.39
Line 2–15 0.0128 0.088 54.5
Line 3–6 0.0075 0.046 187.39
Line 13–4 0.0067 0.032 110.19
Line 4–1 0.0040 0.019 79.2
Line 4–14 0.0036 0.017 186.44
Line 5–3 0.0041 0.025 191.22
Line 5–9 0.0078 0.036 115.45
Line 5–11 0.0011 0.045 77.44
Line 5–8 0.0077 0.048 191.22
Line 6–16 0.0039 0.024 187.39

Line 10–15 0.0082 0.056 48.76
Line 10–2 0.0087 0.060 54.5
Line 7–13 0.0058 0.027 143.41
Line 7–12 0.0076 0.036 215
Line 12–4 0.0082 0.039 215

3.1. Case Study

The 138 kV distribution system of Quito, Ecuador, was selected as the case study,
detailed in Tables 2 and 3 and represented in Figure 2. Table 2 summarizes the generation
data, with four generators representing the connection to the Ecuadorian national inter-
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connected system, including a slack generator at busbar 5 and PV generators at busbar
6, 7, and 15. All generator buses were assigned a voltage magnitude of 1.00 p.u., with
the slack busbar having a phase angle of 0°, as required for power flow analysis. These
values were used consistently throughout the simulation process. Table 3 lists the active
and reactive power demands at each bus. Table 4 provides the electrical parameters of the
distribution lines, including resistance (R), reactance (X) in the per-unit system, and the
maximum amount of power each line can transmit (known as SIL). Figure 2 shows the
georeferenced topology of the EEQ system.

Figure 3 shows the single-line diagram of the 138 kV distribution system. This
schematic representation complements the georeferenced view by illustrating the elec-
trical connectivity and topology of the system. The single-line diagram is essential for
understanding the operational structure of the network and serves as the basis for power
flow analysis, EV nodal allocation, and line loadability evaluation under different penetra-
tion scenarios. This figure provides the electrical foundation upon which the simulation
developed in this study is based.
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Figure 3. Quitos Single-Line Diagram of the Quito Electrical Power System.

3.2. Battery Modeling

The battery modeling results demonstrate the dynamic behavior of voltage levels
as a function of the state of charge (SOC) for lithium-ion batteries used in electric ve-
hicles. The model effectively captures the nonlinear voltage response, as formulated
in Equations (2)–(11), and reflects the charging characteristics of four representative EV
brands in the Ecuadorian market.

Figure 4 presents the short- and long-term transient resistance behavior of the lithium-
ion battery models for the electric vehicles analyzed. In the short term Figure 4a, resistance
values vary slightly: 0.1 ohms for BYD, 0.07 ohms for Kia and Renault, and 0.04 ohms for
Nissan. In the long term Figure 4b, the resistance is more uniform, with 0.07 ohms for
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Renault and 0.04 ohms for the other models. This suggests that, despite initial differences,
the long-term resistive behavior of all batteries is similar and stabilizes over time.

(a) (b)

Figure 4. Transient internal resistance: (a) Short transient internal resistance. (b) Long transient
internal resistance.

Figures 5 show the short- and long-term transient capacitance behavior of the electric
vehicles analyzed. In Figure 5a, BYD exhibits the highest capacitance (1584.29 F) and Nissan
the lowest (703 F), while Kia and Renault share a value of 1121.16 F. In Figure 5b, Kia and
Renault again show the highest capacitance (7137.6 F), compared to 4542.12 F for Nissan
and BYD. These results indicate that Kia and Renault have greater energy-storage capacity
during long-term transients, whereas BYD stands out in short-term conditions.

(a) (b)

Figure 5. Transient internal capacitance: (a) Short transient internal capacitance. (b) Long transient
internal capacitance.

Figure 6 shows the output voltage of each battery as a function of SOC percentage. For
the Kia, BYD, and Renault brands, the voltage ranges between 398 and 400 volts, with the
highest voltage level observed for the BYD E6. In contrast, a lower voltage level between
373 and 374 volts is presented for Nissan. The nonlinear relationship between SOC and
voltage is evident, showing more pronounced increases at both low and high charge levels,
which is consistent with dynamic battery modeling.



World Electr. Veh. J. 2025, 16, 570 16 of 26

Figure 6. Voltage behavior at different SOC levels.

Table 5 presents the power demand required by an EV, with power estimated by EV
brand at a minimum SOC of 12%. These values range from 23.71 kW to 78.04 kW. The
results highlight that BYD EVs have the highest power demand due to their higher-capacity
batteries, which significantly impacts the distribution system’s loadability.

Table 5. Power per hour required by an EV battery when its SOC is minimum.

EV Brands EV Electrical Power (KW)

Nissan 23.71
Kia 29.92

Renault 31.92
BYD 78.04

3.3. EV Demand Distribution in the EEQ System

Table 6 details the EV distribution according to their market share, with Nissan
representing 46.82%, followed by Kia with 23.96%, Renault with 21.92%, and BYD with
7.3%. This distribution was used to allocate EV demand across system buses according to
Equations (13)–(22).

Table 6. Estimated EV quantity for the case studies.

EV Brands Percentage
EV Sold 800 EV 25,000 EV

Nissan 46.82% 375 11,718
Kia 23.96% 192 6000

Renault 21.92% 175 5468
BYD 7.3% 58 1814
Total 100% 800 25,000

Table 6 presents the number of EVs per brand to be incorporated into the system as
demand. The EV demand distribution across each system bus is shown for each of the
cases presented below.



World Electr. Veh. J. 2025, 16, 570 17 of 26

3.3.1. EVs Homogeneous Distribution in the EEQ System

Table 7 presents the additional demand generated by 800 and 25,000 EVs for a homo-
geneous distribution scenario, where EVs are equally distributed across all buses. Conse-
quently, the EV power is uniformly allocated to all buses according to the values shown in
the table. For the 800 EV case, the additional demand per bus ranges between 0.20 MW
and 0.43 MW—values that do not represent a significant system increase. In contrast, for
25,000 EVs, the demand increases substantially, ranging between 6.28 MW and 13.56 MW.

Table 7. Homogeneous distribution of EVs in the different busbars of the system.

Busbar Number Busbar Name Demand of 800 EV
(MW)

Demand of 25,000 EV
(MW)

1 Cristiania 0.33 10.11
2 El Quinche 0.28 8.82
3 Eugenio Espejo 0.29 9.07
4 Pomasqui 0.26 8.04
5 Santa Rosa 0.42 12.98
6 Selva Alegre 0.24 7.40
7 Vicentina 0.22 7.02
8 Chilibulo 0.43 13.56
9 Conocoto 0.36 11.42
10 Tababela 0.31 9.58
11 Alangasi 0.30 9.29
12 Parque Bicentenario 0.20 6.28
13 Gualo 0.20 6.34
14 San Antonio 0.26 8.43
15 Inga 0.39 12.44
16 San Rafael 0.26 8.301

3.3.2. EVs Non-Homogeneous Distribution in the EEQ System

Table 8 shows the EV demand in a non-homogeneous scenario, where EV distribution
and demand allocation are determined by the Monte Carlo method, reflecting a more
realistic demand pattern than the homogeneous Case I. For the 800 EV case, demand ranges
from 0 MW (buses with no EV presence) up to 0.36 MW. For the 25,000 EV case, demand
varies between 0 MW and reaches a maximum of 11.53 MW.

Table 8. Non-homogeneous distribution of EVs in the different busbars of the system.

Busbar Number Busbar Name Demand of 800 EV
(MW)

Demand of 25,000 EV
(MW)

1 Cristiania 0.36 11.53
2 El Quinche 0 0
3 Eugenio Espejo 0.35 10.93
4 Pomasqui 0.33 10.40
5 Santa Rosa 0.33 10.17
6 Selva Alegre 0.32 10.02
7 Vicentina 0.30 9.42
8 Chilibulo 0.29 9.27
9 Conocoto 0 0
10 Tababela 0.28 9.05
11 Alangasi 0 0
12 Parque Bicentenario 0 0
13 Gualo 0.27 8.51
14 San Antonio 0.26 8.33
15 Inga 0.25 7.91
16 San Rafael 0 0
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3.4. EEQ System Loadability

This section evaluates the loadability of the 138 kV EEQ distribution system under
massive EV integration. The analysis examines results from both homogeneous and non-
homogeneous scenarios, considering different penetration levels of 800 and 25,000 EVs,
while identifying the lines most sensitive to load increases.

Figure 7 displays the loadability of Quito’s 138 kV distribution system without EV
integration. The diagram presents the system topology and distribution lines according
to their respective loadability percentages, visualized through a heat color scale: blue
indicates low loadability (10%) while red represents high loadability (70%). In the EEQ
system without EVs, specific lines like 11–5, 10–15, and 1–4 already exhibit 70% loadability.
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Figure 7. Loadability analysis of the EEQ system without EV integration.

3.4.1. EVs Homogeneous Distribution in the EEQ System

Figure 8 presents the loadability of the EEQ system under a homogeneous distribution
scenario, with a color scale ranging from 10% to 120%. In scenario (a) with 800 EVs,
loadability shows a moderate increase compared to the initial condition (Figure 7). Most
distribution lines maintain their original color tones, indicating a controlled system impact,
where the most loaded lines remain below 75% capacity.

In contrast, scenario (b) with 25,000 EVs demonstrates a significant loadability increase,
with multiple lines showing 60–80% loadability through different color shades. Certain lines
connected to high-demand buses experience overloading, exceeding the 100% maximum
threshold—specifically lines L10–15 and L11–5.

Figure 9 shows the active power flow (in MW) through each distribution line of the
EEQ system under homogeneous allocation. Three conditions are compared: (1) no EV
integration, (2) 800 EV integration, and (3) 25,000 EV demand increase.

In the baseline scenario without EVs, power flows vary naturally and serve as the
reference for comparison. With 800 EVs (representing 4.77 MW total demand uniformly
distributed), the system shows moderate power flow increases while maintaining adequate
supply capacity. Lines L16–4, L13–4, and L10–2 show negligible flow changes, while lines
L5–3, L5–11, and L3–6 exhibit more pronounced increases—though all remain within
transmission capacity limits.
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Figure 8. Loadability analysis of the EEQ system with EV integration in a homogeneous scenario:
(a) Loadability analysis of the EEQ system for the integration of 800 EVs. (b) Loadability analysis of
the EEQ system for the integration of 25,000 EVs.
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Figure 9. Power distributed by each line of the EEQ system for the homogeneous case study.

The 25,000 EV scenario (149.60 MW homogeneous demand) demonstrates dramatic
flow increases, particularly in lines L5–3, L5–11, L3–6, L10–15, and L11–15. These results
highlight the necessity of enhanced distribution capacity across multiple lines; the crit-
ical importance of real-time monitoring systems during EV transition phases; and the
proportional relationship between EV penetration levels and network stress

3.4.2. EVs Non-Homogeneous Distribution in the EEQ System

In Figure 10, an analysis of the loadability of the EEQ system is presented, comparing
scenario (a) with a demand increase due to 800 EVs and scenario (b) with the integration of
a demand from 25,000 EVs, against the initial state without EVs. The system’s behavior
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shows adequate loadability, ranging between 40% and 50% of its maximum load, with a
percentage no greater than 70%, concentrated in areas near the generation buses. With
the demand increase from 800 EVs, Figure 10a shows a slight increase, with a maximum
loadability of 72%, mainly in lines L1–4, L10–15, and L11–5, while most lines maintain
adequate values between 40% and 60%. In contrast, with the demand increase from
25,000 EVs, as shown in Figure 10b, the loadability rises drastically, reaching 95% in lines
such as L11–15, L9–5, L10–15, L11–5, and L1–4. This indicates that the system’s energy
demands are high and that the lines are close to their operational limits, highlighting the
system’s vulnerability to massive EV penetration.
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Figure 10. Loadability analysis of the EEQ system with EV integration in a non-homogeneous
scenario: (a) Loadability analysis of the EEQ system for the integration of 800 EVs. (b) Loadability
analysis of the EEQ system for the integration of 25,000 EVs.

Figure 11 shows the active power flow through each distribution line of the EEQ
system under non-homogeneous allocation. With 800 EVs, power flows increase slightly—
lines L16–4, L9–7, L13–4, and L10–2 show values similar to the EV-free scenario. However,
the 25,000 EV scenario demonstrates significant power flow increases, particularly in lines
L10–15, L5–8, L5–3, and L2–15, which exhibit elevated power distribution due to concen-
trated demand. These lines display critical behavior under a high power concentration.
Compared to the baseline, the 25,000 EV case reveals substantial variation caused by EV
integration into the EEQ power system.

Figures 12 and 13 show the voltage and angle behavior at each bus of the system under
the different scenarios analyzed. In Figure 12, it can be observed that the voltage remains
within the acceptable operational range (0.95–1.05 p.u.), although a progressive reduction is
evident as EV penetration increases, particularly at buses 1, 2, and 12. In contrast, Figure 13
illustrates the variation in voltage angle (in degrees), where a greater angular deviation is
also observed as the EV charging demand increases. Although the system operates within
the defined limits, it approaches critical conditions under high-EV-penetration scenarios.
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Figure 11. Power distributed by each line of the EEQ system for the non-homogeneous case study.
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4. Discussions
This study evaluates the operational behavior of the EEQ under different levels of EV

penetration using a probabilistic modeling approach. The results indicate that, although
the system remains within technical limits, high-penetration scenarios cause overloads ex-
ceeding 90% on critical lines such as L10–15, L11–5, L5–11, and L4–1, in both homogeneous
and non-homogeneous distributions. These conditions compromise the system, reveal-
ing that the current infrastructure is not yet ready for large-scale electrification without
reinforcements and demand management strategies. These findings highlight the need for
proactive planning by utilities. While the international literature emphasizes integrating
renewable energy in such analyses, this study did not include it, as EEQ’s 138 kV system
currently lacks renewable generation. The main objective was to characterize the system’s
actual operating conditions under realistic infrastructure constraints.

Similarly, although strategies such as demand response and time-of-use tariffs effec-
tively mitigate EV-related impacts in other countries, they were not applied in this study
because, under the current Ecuadorian regulatory framework, the electricity tariff is fixed
and does not vary by time of day. This reality currently limits the practical application of
differentiated pricing schemes. Nevertheless, their potential as complementary tools to
manage future demand in high EV penetration scenarios is acknowledged.

This study presents limitations that should be considered when interpreting the results.
The simulation was developed under a maximum simultaneous charging scenario, without
modeling hourly load profiles or dynamic user behavior, which limits the temporal scope of
the analysis. Moreover, the spatial allocation of EVs does not incorporate sociodemographic
variables or residential usage patterns, although their importance is recognized and their
inclusion is proposed for future work. Despite these limitations, the adopted approach is
valid for evaluating the structural behavior of the system under critical scenarios, providing
relevant results for planning reinforcements in the context of the energy transition.

To contextualize the results obtained, a comparison was made with similar studies
conducted in other regions of the Americas. Table 9 presents the main impacts reported on
distribution networks due to EV penetration, as well as the improvement needs identified
in each case. This comparison shows that the behavior observed in the EEQ system,
particularly in terms of critical line overloads, is consistent with the challenges faced by
other electric systems in scenarios of increasing EV adoption.

Table 9. Comparison of impacts on the distribution grid due to EV penetration.

Region Penetration Level Main Impact Improvement Needs

Quito, this article Moderate Overloads on critical lines Infrastructure reinforcement

Colombia [14] Medium (2030) to High (2040) Power-quality issues Improvements in regulation and
monitoring

California, USA [2] High Overload in 20% of circuits Massive upgrades

Brazil [30] Moderate Limited charging infrastructure
Investment in charging

infrastructure and
standardization

Another indispensable aspect in countries with more mature EV integration is the
study of power quality, primarily focusing on total harmonic distortion of voltage (THDv)
and imbalances, as reported in Colombia by [14]. Although the current article does not
focus on power-quality analysis, given Ecuador’s low EV penetration compared to other
countries, this is a crucial form of analysis that will be addressed in future work. Ad-
ditionally, in Latin America [30], further challenges have been identified, such as the
lack of standardization in connectors and the need for advanced technologies to manage
non-linear loads.
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When drawing comparisons with other regions, a mixed scenario emerges. While
Brazil and Costa Rica are advancing in electric mobility through the integration of renew-
able resources [19,30], California faces severe grid strain (with peak loads reaching up to
300%) [2]. In Ecuador, particularly in Quito, strategies for EV integration are beginning to
be explored. The focus is shifting towards planning and verifying that the existing system
can support EV demand and proactively considering the mitigation of future consumption
peaks caused by EVs.

These findings underscore the need for a comprehensive approach to integrating EVs
in Quito. While the current system has the capacity to support EV penetration, it requires
significant enhancements for mass adoption. Regional and global comparisons highlight
common challenges. Initially, the verification, analysis, and proactive planning of the EEQ
system must be prioritized to address the objectives set for 2030 and 2040, respectively.

5. Conclusions
The results of this study highlight the significant impact that high EV penetration can

have on the EEQ system. With the demand increase from 800 EVs, the system operates
within acceptable limits, the flow increase through the distribution lines is considerable but
does not significantly affect system operation; but with the demand increase produced by
25,000 EVs, there are critical lines such as L10–15, L11–5 and L1–4 that approach and in
some cases exceed their capacity.

Although the model was able to capture the stochastic variability of EV growth, sev-
eral methodological limitations should be addressed in future research. These include the
absence of an explicit temporal dimension, as well as the lack of integration of sociode-
mographic variables, traffic density, and time-dependent mobility patterns. Nevertheless,
these limitations do not invalidate the results obtained, as the model was designed to
evaluate critical structural conditions within the current context of the Ecuadorian distribu-
tion system. In the specific case of the EEQ system, the identification of vulnerable lines
highlights the need for targeted infrastructure investments. Distribution companies must
prioritize the monitoring and reinforcement of these lines to prevent overloads and ensure
reliable service especially considering the goals set by the National Electromobility Strategy,
which aims to reach 10,000 EVs in the short term and 100,000 EVs by 2030.

The presented methodology provides valuable information to evaluate the behavior
of the EEQ system; this methodology is transferable to other distribution systems where
demand growth from EVs is projected. However, local factors such as system topology,
existing demands, and EV penetration rates are fundamental for each case study.

6. Future Work
A time-explicit model will be developed to simulate hourly charging profiles, as well as

dynamic user behavior and time-dependent mobility patterns, and to analyze differentiated
pricing schemes such as time-of-use tariffs to evaluate system performance over time.

We plan to incorporate the limitations of the charging infrastructure, along with the
progressive integration of distributed renewable generation particularly photovoltaic solar
energy as a mitigation measure against overloads associated with high-demand scenarios.
Its impact will be evaluated in hypothetical infrastructure development scenarios, where
its contribution to reinforcement planning will be analyzed within the framework of the
energy transition.

We suggest that the spatial allocation of EVs could be improved by incorporating
sociodemographic variables and vehicle density. This will enable a more realistic repre-
sentation of the location and concentration of charging points, in contrast to the current
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approach based solely on geographic distance. Furthermore, projections of EV fleet growth
will be included using technology adoption curves and market data.
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Abbreviations
The following abbreviations are used in this manuscript:

SOC Percentage of battery state of charge
VRS Series resistor voltage
V1 Voltage of the first parallel branch
V2 Voltage of the second parallel branch
Voc Initial battery voltage
Vbat Battery voltage
I Battery-charged current
Rs Internal series resistance of source Voc
Rt1, Ct1 Component of the short-term transient response
Rt2, Ct2 Component of the long-term transient response
EV Electric vehicle
ProbNissan Probability of buying a Nissan electric vehicle
ProbKia Probability of buying a Kia electric vehicle
ProbRenault Probability of buying a Renault electric vehicle
ProbBYD Probability of buying a BYD electric vehicle
PNissan Electric demand of Nissan electric vehicle
PKia Electric demand of Kia electric vehicle
PRenault Electric demand of Renault electric vehicle
PBYD Electric demand of BYD electric vehicle
CNissan Number of Nissan Electric Vehicles
CKia Number of Kia Electric Vehicles
CRenault Number of Renault Electric Vehicles
CBYD Number of BYD Electric Vehicles
i, j Bus
Pi, Qi Power Injected into a Bus
θi Bus angle
Vi Bus voltage
Cp Loadability
Pgen Generator active power
Qgen Generator reactive power
Pd Active power demand
Qd Reactive power demand
SIL Maximum distributed power
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