Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = slotting control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 404 KiB  
Article
Deterministic Scheduling for Asymmetric Flows in Future Wireless Networks
by Haie Dou, Taojie Zhu, Fei Li, Chen Liu and Lei Wang
Symmetry 2025, 17(8), 1246; https://doi.org/10.3390/sym17081246 - 6 Aug 2025
Abstract
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the [...] Read more.
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the coexistence of periodic and burst flows with varying latency, jitter, and deadline constraints, posing new challenges for deterministic transmission. Traditional time-sensitive networking (TSN) is well-suited for periodic flows but lacks the flexibility to effectively handle dynamic, asymmetric traffi. To address this limitation, we propose a two-stage asymmetric flow scheduling framework with dynamic deadline control, termed A-TSN. In the first stage, we design a Deep Q-Network-based Dynamic Injection Time Slot algorithm (DQN-DITS) to optimize slot allocation for periodic flows under varying network loads. In the second stage, we introduce the Dynamic Deadline Online (DDO) scheduling algorithm, which enables real-time scheduling for asymmetric flows while satisfying flow deadlines and capacity constraints. Simulation results demonstrate that our approach significantly reduces end-to-end latency, improves scheduling efficiency, and enhances adaptability to high-volume asymmetric traffic, offering a scalable solution for future deterministic wireless networks. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

26 pages, 9053 KiB  
Article
Numerical Study of the Use of a Flapping Foil in Energy Harvesting with Suction- and Blower-Based Control
by Yalei Bai, Huimin Yao and Min Zheng
Aerospace 2025, 12(8), 698; https://doi.org/10.3390/aerospace12080698 - 5 Aug 2025
Abstract
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to [...] Read more.
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to enhance the energy harvesting efficiency of flapping foils. Using an orthogonal experimental design and numerical methods, 49 representative combinations of SBC geometries were selected for numerical simulation. The effects and priority rankings of geometric parameters on foil performance were statistically analyzed. It was found that under the optimal geometry (the suction slot position is 0.54c, the injection slot position is 0.79c, the width of the slot is 0.015c, the angle of the suction slot is −3°, and the angle of the injection slot is −9°), the energy harvesting efficiency can reach 40.7%. Furthermore, under laminar flow conditions, the benefit of SBC increases with higher Reynolds numbers (Re). At Re = 2200, SBC maximized the improvement in energy harvesting efficiency by 76%. No significant correlation was observed between the flapping amplitude and the SBC effect. However, the reduced frequency significantly influences the efficiency improvement generated by SBC. The SBC method shifts the foil’s optimal operating region towards lower reduced frequencies, which benefits energy harvesting efficiency. The research presented herein may have potential applications in the development of marine energy systems and bio-inspired propulsion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 1370 KiB  
Article
Airborne-Platform-Assisted Transmission and Control Separation for Multiple Access in Integrated Satellite–Terrestrial Networks
by Chaoran Huang, Xiao Ma, Xiangren Xin, Weijia Han and Yanjie Dong
Sensors 2025, 25(15), 4732; https://doi.org/10.3390/s25154732 - 31 Jul 2025
Viewed by 246
Abstract
Currently, the primary random access protocol for satellite communications is Irregular Repetition Slotted ALOHA (IRSA). This protocol leverages interference cancellation and burst repetition based on probabilistic distributions, achieving up to 80% channel utilization in practical use. However, it faces three significant issues: (1) [...] Read more.
Currently, the primary random access protocol for satellite communications is Irregular Repetition Slotted ALOHA (IRSA). This protocol leverages interference cancellation and burst repetition based on probabilistic distributions, achieving up to 80% channel utilization in practical use. However, it faces three significant issues: (1) low channel utilization with smaller frame sizes; (2) drastic performance degradation under heavy load, where channel utilization can be lower than that of traditional Slotted ALOHA; and (3) even under optimal load and frame sizes, up to 20% of the valuable satellite channel resources are still wasted despite reaching up to 80% channel utilization. In this paper, we propose the Separated Transmission and Control ALOHA (STCA) protocol, which introduces a space–air–ground layered network and separates the access control process from the satellite to an airborne platform, thus preventing collisions in satellite channels. Additionally, the airborne-platform estimates the load to ensure maximum access rates. Simulation results demonstrate that the STCA protocol significantly outperforms the IRSA protocol in terms of channel utilization. Full article
Show Figures

Figure 1

10 pages, 1977 KiB  
Proceeding Paper
Finite-Element and Experimental Analysis of a Slot Line Antenna for NV Quantum Sensing
by Dennis Stiegekötter, Jonas Homrighausen, Ann-Sophie Bülter, Ludwig Horsthemke, Frederik Hoffmann, Jens Pogorzelski, Peter Glösekötter and Markus Gregor
Eng. Proc. 2025, 101(1), 9; https://doi.org/10.3390/engproc2025101009 - 30 Jul 2025
Viewed by 206
Abstract
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by [...] Read more.
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by finite element method (FEM) for magnetic field amplitude and uniformity. A microstrip-to-slot-line converter with a 10 dB bandwidth of 3.2 GHz was implemented. Rabi oscillation measurements with an NV microdiamond on a glass fiber show uniform excitation over 1.5 MHz across the slot, allowing spin manipulation within the coherence time of the NV center. Full article
Show Figures

Figure 1

16 pages, 3042 KiB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 318
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

18 pages, 4826 KiB  
Article
Study on Optimal Adaptive Meta-Model and Performance Optimization of Built-In Permanent Magnet Synchronous Motor
by Chuanfu Jin, Wei Zhou, Wei Yang, Yao Wu, Jinlong Li, Yongtong Wang and Kang Li
Actuators 2025, 14(8), 373; https://doi.org/10.3390/act14080373 - 25 Jul 2025
Viewed by 145
Abstract
To overcome the limitations of single-objective optimization in permanent magnet synchronous motor (PMSM) performance enhancement, this study proposes an adaptive moving least squares (AMLS) for a 12-pole/36-slot built-in PMSM. Through comprehensive exploration of the design space, a systematic approach is established for holistic [...] Read more.
To overcome the limitations of single-objective optimization in permanent magnet synchronous motor (PMSM) performance enhancement, this study proposes an adaptive moving least squares (AMLS) for a 12-pole/36-slot built-in PMSM. Through comprehensive exploration of the design space, a systematic approach is established for holistic motor performance improvement. The Gaussian weight function is modified to improve the model’s fitting accuracy, and the decay rate of the control weight is optimized. The optimal adaptive meta-model for the built-in PMSM is selected based on the coefficient of determination. Subsequently, sensitivity analysis is conducted to identify the parameters that most significantly influence key performance indicators, including torque ripple, stator core loss, electromagnetic force amplitude, and average output torque. These parameters are then chosen as the optimal design variables. A multi-objective optimization framework, built upon the optimal adaptive meta-model, is developed to address the multi-objective optimization problem. The results demonstrate increased output torque, along with reductions in stator core loss, torque ripple, and radial electromagnetic force, thereby significantly improving the overall performance of the motor. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

15 pages, 4556 KiB  
Article
Vibration Suppression Algorithm for Electromechanical Equipment in Distributed Energy Supply Systems
by Huan Wang, Fangxu Han, Bo Zhang and Guilin Zhao
Energies 2025, 18(14), 3757; https://doi.org/10.3390/en18143757 - 16 Jul 2025
Viewed by 235
Abstract
In recent years, distributed energy power supply systems have been widely used in remote areas and extreme environments. However, the intermittent and uncertain output power may cause power grid fluctuations, leading to higher harmonics in electromechanical equipment, especially motors. For permanent magnet synchronous [...] Read more.
In recent years, distributed energy power supply systems have been widely used in remote areas and extreme environments. However, the intermittent and uncertain output power may cause power grid fluctuations, leading to higher harmonics in electromechanical equipment, especially motors. For permanent magnet synchronous motor (PMSM) systems, an electromagnetic (EM) vibration can cause problems such as energy loss and mechanical wear. Therefore, it is necessary to design control algorithms that can effectively suppress EM vibration. To this end, a vibration suppression algorithm for fractional-slot permanent magnet synchronous motors based on a d-axis current injection is proposed in this paper. Firstly, this paper analyzes the radial electromagnetic force of the fractional-slot PMSM to identify the main source of EM vibration in fractional-slot PMSMs. Based on this, the intrinsic relationship between the EM vibration of fractional-slot PMSMs and the d-axis and q-axis currents is explored, and a method for calculating the d-axis current to suppress the vibration is proposed. Experimental verification shows that the proposed algorithm can effectively suppress EM vibration. Full article
Show Figures

Figure 1

30 pages, 6991 KiB  
Article
A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm
by Syed Abdullah Al Nahid and Junjian Qi
Energies 2025, 18(14), 3656; https://doi.org/10.3390/en18143656 - 10 Jul 2025
Viewed by 348
Abstract
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a [...] Read more.
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a centralized day-ahead optimal scheduling mechanism and EV shifting process based on mixed-integer linear programming (MILP) and (2) a distributed control strategy based on a genetic algorithm (GA) that dynamically adjusts the charging rate in real-time grid scenarios. The MILP minimizes energy imbalance at overloaded slots by reallocating EVs based on supply–demand mismatch. By combining full and minimum charging strategies with MILP-based shifting, the method significantly reduces network stress due to EV charging. The centralized model schedules time slots using valley-filling and EV-specific constraints, and the local GA-based distributed control adjusts charging currents based on minimum energy, system availability, waiting time, and a priority index (PI). This PI enables user prioritization in both the EV shifting process and power allocation decisions. The method is validated using demand data on a radial feeder with residential and commercial load profiles. Simulation results demonstrate that the proposed hybrid EV charging framework significantly improves grid-level efficiency and user satisfaction. Compared to the baseline without EV integration, the average-to-peak demand ratio is improved from 61% to 74% at Station-A, from 64% to 80% at Station-B, and from 51% to 63% at Station-C, highlighting enhanced load balancing. The framework also ensures that all EVs receive energy above their minimum needs, achieving user satisfaction scores of 88.0% at Stations A and B and 81.6% at Station C. This study underscores the potential of hybrid charging schemes in optimizing energy utilization while maintaining system reliability and user convenience. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

21 pages, 5776 KiB  
Article
Thermal Effects on Fines Migration: Insights from Sand Pack Experiments
by Fernando Rengifo Barbosa, Rahman Miri, Mahmood Salimi and Alireza Nouri
Energies 2025, 18(13), 3471; https://doi.org/10.3390/en18133471 - 1 Jul 2025
Viewed by 283
Abstract
Mobilisation of in situ fine particles within oil sands reservoirs plays a critical role in permeability reduction and pore throat blockage, ultimately impairing reservoir performance and diminishing well productivity during thermal recovery operations. Variations in reservoir fluid conditions, such as changes in salinity [...] Read more.
Mobilisation of in situ fine particles within oil sands reservoirs plays a critical role in permeability reduction and pore throat blockage, ultimately impairing reservoir performance and diminishing well productivity during thermal recovery operations. Variations in reservoir fluid conditions, such as changes in salinity and temperature, trigger the detachment, transport, and redeposition of fines within porous media. This study introduces a novel high-pressure high-temperature (HP-HT) sand retention testing (SRT) facility designed for evaluating formation damage by fines migration in SAGD producer wells, under salinity change and elevated temperature conditions. Such an integrated approach accounting for conditions closer to near-wellbore SAGD producers has not been explored in previous SRT methodologies. Laboratory tests were conducted on synthetic sand mixtures replicating the particle size distribution (PSD) and sand composition of the McMurray Formation, packed over a slotted liner coupon as a common sand control device used in SAGD producer wells. Produced fines concentration analysis, permeability measurements, and post-mortem retention profile analysis were employed to explain the fines transport mechanisms. The results highlighted the influence of repulsive electrostatic forces in mobilising, transport mechanisms and retention of fine particles at elevated temperature and low salinity conditions. The findings of this paper provide a deeper understanding of fines migration in SAGD reservoirs, delivering insights for optimising field strategies to mitigate fines-related flow restrictions and enhance bitumen recovery efficiency. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

16 pages, 4197 KiB  
Article
Optimization of Reinforcement Schemes for Stabilizing the Working Floor in Coal Mines Based on an Assessment of Its Deformation State
by Denis Akhmatnurov, Nail Zamaliyev, Ravil Mussin, Vladimir Demin, Nikita Ganyukov, Krzysztof Zagórski, Krzysztof Skrzypkowski, Waldemar Korzeniowski and Jerzy Stasica
Materials 2025, 18(13), 3094; https://doi.org/10.3390/ma18133094 - 30 Jun 2025
Cited by 1 | Viewed by 365
Abstract
In the Karaganda coal basin, deteriorating geomechanical conditions have been observed, including seam disturbances, diminished strength of argillite–aleurolite strata, water ingress, and pronounced floor heave, all of which markedly increase the labor intensity of maintaining developmental headings. The maintenance and operation of these [...] Read more.
In the Karaganda coal basin, deteriorating geomechanical conditions have been observed, including seam disturbances, diminished strength of argillite–aleurolite strata, water ingress, and pronounced floor heave, all of which markedly increase the labor intensity of maintaining developmental headings. The maintenance and operation of these entries for a reference coal yield of 1000 t necessitate 72–75 man-shifts, of which 90–95% are expended on mitigating ground pressure effects and restoring support integrity. Conventional heave control measures—such as relief drifts, slotting, drainage, secondary blasting, and the application of concrete or rock–bolt systems—deliver either transient efficacy or incur prohibitive labor and material expenditures while lacking unified methodologies for predictive forecasting and support parameter design. This study therefore advocates for an integrated framework that synergizes geomechanical characterization, deformation prognosis, and the tailored selection of reinforcement schemes (incorporating both sidewall and floor-anchoring systems with directed preloading), calibrated to seam depth, geometry, and lithological properties. Employing deformation state assessments to optimize reinforcement layouts for floor stabilization in coal mine workings is projected to curtail repair volumes by 30–40% whilst significantly enhancing operational safety, efficiency, and the punctuality of face preparation. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

23 pages, 11925 KiB  
Article
Design and Field Experiment of Synchronous Hole Fertilization Device for Maize Sowing
by Feng Pan, Jincheng Chen, Baiwei Wang, Ziheng Fang, Jinxin Liang, Kangkang He and Chao Ji
Agriculture 2025, 15(13), 1400; https://doi.org/10.3390/agriculture15131400 - 29 Jun 2025
Viewed by 494
Abstract
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming [...] Read more.
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming to reduce fertilizer application and increase efficiency through the precise alignment technology of the seed and fertilizer. This device integrates an electric drive precision seeding unit, a slot wheel hole fertilization unit, and a multi-sensor coordinated closed-loop control system. An STM32 single-chip micro-computer is used to dynamically analyze the seed–fertilizer timing signal, and a double closed-loop control strategy (the position loop priority is higher than the speed loop) is used to correct the spatial phase difference between the seed and fertilizer in real time to ensure the precise control of the longitudinal distance (40~70 mm) and the lateral distance (50~80 mm) of the seed and fertilizer. Through the Box–Behnken response surface method, a field multi-factor test was carried out to analyze the mechanism of influence of the implemented forward speed (A), per-hole target fertilizing amount (B), and plant spacing (fertilizer hole interval) (C) on the seed–fertilizer alignment qualification rate (Y1) and the coefficient of variation in the hole fertilizing amount (Y2). The results showed that the order of primary and secondary factors affecting Y1 was A > C > B, and that the order affecting Y2 was C > B > A; the comprehensive performance of the device was best with the optimal parameter combination of A = 4.2 km/h, B = 4.4 g, and C = 30 cm, with Y1 as high as 94.024 ± 0.694% and Y2 as low as 3.147 ± 0.058%, which is significantly better than the traditional strip application method. The device realizes the precise regulation of 2~6 g/hole by optimizing the structural parameters of the outer groove wheel (arc center distance of 25 mm, cross-sectional area of 201.02 mm2, effective filling length of 2.73~8.19 mm), which can meet the differentiated agronomic needs of ordinary corn, silage corn, and popcorn. Field verification shows that the device significantly improves the spatial distribution of the concentration of fertilizer, effectively reduces the amount of fertilizer applied, and improves operational stability and reliability in multiple environments. This provides technical support for the regional application of precision agricultural equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 6437 KiB  
Article
Distributed Multi-Agent Deep Reinforcement Learning-Based Transmit Power Control in Cellular Networks
by Hun Kim and Jaewoo So
Sensors 2025, 25(13), 4017; https://doi.org/10.3390/s25134017 - 27 Jun 2025
Viewed by 437
Abstract
In a multi-cell network, interference management between adjacent cells is a key factor that determines the performance of the entire cellular network. In particular, in order to control inter-cell interference while providing a high data rate to users, it is very important for [...] Read more.
In a multi-cell network, interference management between adjacent cells is a key factor that determines the performance of the entire cellular network. In particular, in order to control inter-cell interference while providing a high data rate to users, it is very important for the base station (BS) of each cell to appropriately control the transmit power in the downlink. However, as the number of cells increases, controlling the downlink transmit power at the BS becomes increasingly difficult. In this paper, we propose a multi-agent deep reinforcement learning (MADRL)-based transmit power control scheme to maximize the sum rate in multi-cell networks. In particular, the proposed scheme incorporates a long short-term memory (LSTM) architecture into the MADRL scheme to retain state information across time slots and to use that information for subsequent action decisions, thereby improving the sum rate performance. In the proposed scheme, the agent of each BS uses only its local channel state information; consequently, it does not need to receive signal messages from adjacent agents. The simulation results show that the proposed scheme outperforms the existing MADRL scheme by reducing the amount of signal messages exchanged between links and improving the sum rate. Full article
(This article belongs to the Special Issue Future Wireless Communication Networks: 3rd Edition)
Show Figures

Figure 1

34 pages, 6553 KiB  
Review
Recent Advances in Photonic Crystal Fiber-Based SPR Biosensors: Design Strategies, Plasmonic Materials, and Applications
by Ayushman Ramola, Amit Kumar Shakya, Vinay Kumar and Arik Bergman
Micromachines 2025, 16(7), 747; https://doi.org/10.3390/mi16070747 - 25 Jun 2025
Viewed by 1075
Abstract
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light [...] Read more.
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light guidance, dispersion management, and light confinement, making them highly suitable for applications in refractive index (RI) sensing, biomedical imaging, and nonlinear optical phenomena such as fiber tapering and supercontinuum generation. SPR is a highly sensitive optical phenomenon, which is widely integrated with PCFs to enhance detection performance through strong plasmonic interactions at metal–dielectric interfaces. The combination of PCF and SPR technologies has led to the development of innovative sensor geometries, including D-shaped fibers, slotted-air-hole structures, and internal external metal coatings, each optimized for specific sensing goals. These PCF-SPR-based sensors have shown promising results in detecting biomolecular targets such as excess cholesterol, glucose, cancer cells, DNA, and proteins. Furthermore, this review provides an in-depth analysis of key design parameters, plasmonic materials, and sensor models used in PCF-SPR configurations, highlighting their comparative performance metrics and application prospects in medical diagnostics, environmental monitoring, and chemical analysis. Thus, an exhaustive analysis of various sensing parameters, plasmonic materials, and sensor models used in PCF-SPR sensors is presented and explored in this article. Full article
Show Figures

Graphical abstract

16 pages, 1630 KiB  
Article
Time Management in Wireless Sensor Networks for Industrial Process Control
by Andrei Rusu, Petru Dobra, Mihai Hulea and Radu Miron
Algorithms 2025, 18(7), 382; https://doi.org/10.3390/a18070382 - 24 Jun 2025
Viewed by 371
Abstract
This paper addresses the critical challenge of time management in wireless sensor networks (WSNs) applied to industrial process control. Although wireless technologies have gained ground in industrial monitoring, their adoption in control applications remains limited due to concerns around reliability and timing accuracy. [...] Read more.
This paper addresses the critical challenge of time management in wireless sensor networks (WSNs) applied to industrial process control. Although wireless technologies have gained ground in industrial monitoring, their adoption in control applications remains limited due to concerns around reliability and timing accuracy. This study proposes a practical, low-cost solution based on commercial off-the-shelf (COTS) components, leveraging the IEEE 802.15.4-2020 standard in Time-Slotted Channel-Hopping (TSCH) mode. A custom time management algorithm is developed and implemented on STM32 microcontrollers paired with AT86RF212B transceivers. The proposed system ensures a sub-millisecond synchronization drift across nodes by dividing communication into a structured slot frame and implementing precise scheduling and enhanced beacon-based synchronization. Validation is performed through experimental setups monitored with logic analyzers, demonstrating a time drift consistently below 600 microseconds. The results confirm the feasibility of using synchronized wireless nodes for real-time industrial control tasks, suggesting that further improvements in hardware precision could enable even tighter synchronization and broader applicability in fast and critical processes. Full article
Show Figures

Figure 1

14 pages, 1793 KiB  
Article
Similar Microsatellite Allelic Distribution Between Anopheles darlingi Population Collected by Human Landing Catch or Mosquito Magnet Traps in French Guiana
by Laetitia Ferraro, Sébastien Briolant, Mathieu Nacher, Samuel Vezenegho, Antoine Adde, Christophe Nguyen, Pascal Gaborit, Jean Issaly, Romuald Carinci, Vincent Pommier de Santi, Romain Girod, Isabelle Dusfour and Hervé Bogreau
Trop. Med. Infect. Dis. 2025, 10(6), 174; https://doi.org/10.3390/tropicalmed10060174 - 18 Jun 2025
Viewed by 337
Abstract
Anopheles darlingi is a major malaria vector in South America. Understanding its population dynamics is critical for designing effective vector control strategies. While various Anopheles collection methods exist, they may sample distinct populations. Microsatellite genotyping across nine loci was performed to characterize An. [...] Read more.
Anopheles darlingi is a major malaria vector in South America. Understanding its population dynamics is critical for designing effective vector control strategies. While various Anopheles collection methods exist, they may sample distinct populations. Microsatellite genotyping across nine loci was performed to characterize An. darlingi populations, which were collected in French Guiana between 6:30 p.m. and 7:00 a.m. using human landing catch (HLC) or Mosquito Magnet® (MM) traps. Traps were arranged in a 3 × 3 Latin square design to minimize possible effects of geographical position. Pairwise FST index and discriminant analyses of principal components (DAPC) were used to make comparisons. A total of 431 An. darlingi were analyzed. No significant genetic differentiation was observed between collection methods or time slots (FST values non-significant, p > 0.25), with DAPC revealing a single genetic cluster. Despite documented phenotypic variations, no significant population structure was detected among An. darlingi sampled in a rural village in French Guiana via collection methods or time slots. These findings confirm that mosquitoes collected with these various methods or time slots are suitable for the molecular studies of An. darlingi in French Guiana. In this context, Mosquito Magnet® traps could also represent an alternative to the now controversial human landing catch. Full article
Show Figures

Figure 1

Back to TopTop