Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,673)

Search Parameters:
Keywords = slot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 34013 KiB  
Article
Vision-Based 6D Pose Analytics Solution for High-Precision Industrial Robot Pick-and-Place Applications
by Balamurugan Balasubramanian and Kamil Cetin
Sensors 2025, 25(15), 4824; https://doi.org/10.3390/s25154824 - 6 Aug 2025
Abstract
High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, [...] Read more.
High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, Horgen, Switzerland) robot arm to pick up metal plates from various locations and place them into a precisely defined slot on a brake pad production line. The system uses a fixed eye-to-hand Intel RealSense D435 RGB-D camera (manufactured by Intel Corporation, Santa Clara, California, USA) to capture color and depth data. A robust software infrastructure developed in LabVIEW (ver.2019) integrated with the NI Vision (ver.2019) library processes the images through a series of steps, including particle filtering, equalization, and pattern matching, to determine the X-Y positions and Z-axis rotation of the object. The Z-position of the object is calculated from the camera’s intensity data, while the remaining X-Y rotation angles are determined using the angle-of-inclination analytics method. It is experimentally verified that the proposed analytical solution outperforms the hybrid-based method (YOLO-v8 combined with PnP/RANSAC algorithms). Experimental results across four distinct picking scenarios demonstrate the proposed solution’s superior accuracy, with position errors under 2 mm, orientation errors below 1°, and a perfect success rate in pick-and-place tasks. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

18 pages, 404 KiB  
Article
Deterministic Scheduling for Asymmetric Flows in Future Wireless Networks
by Haie Dou, Taojie Zhu, Fei Li, Chen Liu and Lei Wang
Symmetry 2025, 17(8), 1246; https://doi.org/10.3390/sym17081246 - 6 Aug 2025
Abstract
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the [...] Read more.
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the coexistence of periodic and burst flows with varying latency, jitter, and deadline constraints, posing new challenges for deterministic transmission. Traditional time-sensitive networking (TSN) is well-suited for periodic flows but lacks the flexibility to effectively handle dynamic, asymmetric traffi. To address this limitation, we propose a two-stage asymmetric flow scheduling framework with dynamic deadline control, termed A-TSN. In the first stage, we design a Deep Q-Network-based Dynamic Injection Time Slot algorithm (DQN-DITS) to optimize slot allocation for periodic flows under varying network loads. In the second stage, we introduce the Dynamic Deadline Online (DDO) scheduling algorithm, which enables real-time scheduling for asymmetric flows while satisfying flow deadlines and capacity constraints. Simulation results demonstrate that our approach significantly reduces end-to-end latency, improves scheduling efficiency, and enhances adaptability to high-volume asymmetric traffic, offering a scalable solution for future deterministic wireless networks. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

26 pages, 9053 KiB  
Article
Numerical Study of the Use of a Flapping Foil in Energy Harvesting with Suction- and Blower-Based Control
by Yalei Bai, Huimin Yao and Min Zheng
Aerospace 2025, 12(8), 698; https://doi.org/10.3390/aerospace12080698 - 5 Aug 2025
Abstract
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to [...] Read more.
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to enhance the energy harvesting efficiency of flapping foils. Using an orthogonal experimental design and numerical methods, 49 representative combinations of SBC geometries were selected for numerical simulation. The effects and priority rankings of geometric parameters on foil performance were statistically analyzed. It was found that under the optimal geometry (the suction slot position is 0.54c, the injection slot position is 0.79c, the width of the slot is 0.015c, the angle of the suction slot is −3°, and the angle of the injection slot is −9°), the energy harvesting efficiency can reach 40.7%. Furthermore, under laminar flow conditions, the benefit of SBC increases with higher Reynolds numbers (Re). At Re = 2200, SBC maximized the improvement in energy harvesting efficiency by 76%. No significant correlation was observed between the flapping amplitude and the SBC effect. However, the reduced frequency significantly influences the efficiency improvement generated by SBC. The SBC method shifts the foil’s optimal operating region towards lower reduced frequencies, which benefits energy harvesting efficiency. The research presented herein may have potential applications in the development of marine energy systems and bio-inspired propulsion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 3788 KiB  
Article
An Optimization Design Method for Flat-Wire Motors Based on Combined Rotor Slot Structures
by Xiangjun Bi, Hongbin Yin, Yan Chen, Mingyang Luo, Xiaojun Wang and Wenjing Hu
World Electr. Veh. J. 2025, 16(8), 439; https://doi.org/10.3390/wevj16080439 - 4 Aug 2025
Abstract
To enhance the electromagnetic performance of flat-wire permanent magnet synchronous motors, three different groove structures were designed for the rotor, and a multi-objective optimization algorithm combining a genetic algorithm (GA) with the TOPSIS method was proposed. Firstly, an 8-pole 48-slot flat-wire motor model [...] Read more.
To enhance the electromagnetic performance of flat-wire permanent magnet synchronous motors, three different groove structures were designed for the rotor, and a multi-objective optimization algorithm combining a genetic algorithm (GA) with the TOPSIS method was proposed. Firstly, an 8-pole 48-slot flat-wire motor model was established, and the cogging torque was analytically calculated to compare the motor’s performance under different groove schemes. Secondly, global multi-objective optimization of the rotor groove dimensions was performed using a combined simulation approach involving Maxwell, Workbench, and Optislang, and the optimal rotor groove size structure was selected using the TOPSIS method. Finally, a comparative analysis of the motor’s performance under both rated-load and no-load conditions was conducted for the pre- and post-optimization designs, followed by verification of the mechanical strength of the optimized rotor structure. The research results demonstrate that the combined optimization approach utilizing the genetic algorithm and the TOPSIS method significantly enhances the torque characteristics of the motor. The computational results indicate that the average torque is increased to 165.32 N·m, with the torque ripple reduced from 28.37% to 13.32% and the cogging torque decreased from 896.88 mN·m to 187.9 mN·m. Moreover, the total distortion rates of the air-gap magnetic flux density and the no-load back EMF are significantly suppressed, confirming the rationality of the proposed motor design. Full article
Show Figures

Figure 1

19 pages, 1370 KiB  
Article
Airborne-Platform-Assisted Transmission and Control Separation for Multiple Access in Integrated Satellite–Terrestrial Networks
by Chaoran Huang, Xiao Ma, Xiangren Xin, Weijia Han and Yanjie Dong
Sensors 2025, 25(15), 4732; https://doi.org/10.3390/s25154732 - 31 Jul 2025
Viewed by 246
Abstract
Currently, the primary random access protocol for satellite communications is Irregular Repetition Slotted ALOHA (IRSA). This protocol leverages interference cancellation and burst repetition based on probabilistic distributions, achieving up to 80% channel utilization in practical use. However, it faces three significant issues: (1) [...] Read more.
Currently, the primary random access protocol for satellite communications is Irregular Repetition Slotted ALOHA (IRSA). This protocol leverages interference cancellation and burst repetition based on probabilistic distributions, achieving up to 80% channel utilization in practical use. However, it faces three significant issues: (1) low channel utilization with smaller frame sizes; (2) drastic performance degradation under heavy load, where channel utilization can be lower than that of traditional Slotted ALOHA; and (3) even under optimal load and frame sizes, up to 20% of the valuable satellite channel resources are still wasted despite reaching up to 80% channel utilization. In this paper, we propose the Separated Transmission and Control ALOHA (STCA) protocol, which introduces a space–air–ground layered network and separates the access control process from the satellite to an airborne platform, thus preventing collisions in satellite channels. Additionally, the airborne-platform estimates the load to ensure maximum access rates. Simulation results demonstrate that the STCA protocol significantly outperforms the IRSA protocol in terms of channel utilization. Full article
Show Figures

Figure 1

34 pages, 2947 KiB  
Article
Optimization and Empirical Study of Departure Scheduling Considering ATFM Slot Adherence
by Zheng Zhao, Siqi Zhao, Yahao Zhang and Jie Leng
Aerospace 2025, 12(8), 683; https://doi.org/10.3390/aerospace12080683 - 30 Jul 2025
Viewed by 142
Abstract
Departure punctuality (KPI01) and ATFM slot adherence (KPI03) have been emphasized by the International Civil Aviation Organization as key performance indicators (KPIs) in the Global Air Navigation Plan. To address the inherent conflict between these two objectives in departure scheduling, a multi-objective optimization [...] Read more.
Departure punctuality (KPI01) and ATFM slot adherence (KPI03) have been emphasized by the International Civil Aviation Organization as key performance indicators (KPIs) in the Global Air Navigation Plan. To address the inherent conflict between these two objectives in departure scheduling, a multi-objective optimization model is proposed that aims to simultaneously enhance departure punctuality, ATFM slot adherence, and taxiing efficiency. A simulated annealing algorithm based on a resource transmission mechanism was developed to solve the model effectively. Based on full-scale operational data from Nanjing Lukou International Airport in June 2023, the empirical results confirm the model’s effectiveness in two primary dimensions: (1) Significant improvement in taxiing efficiency: The average unimpeded taxi-out time was reduced by 6.4% (from 17.2 to 16.1 min). The number of flights with taxi-out times exceeding 30 min decreased by 58%. For representative taxi routes (e.g., stand 118 to runway 6), the excess taxi-out time was reduced by 82.3% (from 5.61 to 1.10 min). (2) Enhanced operational punctuality: Departure punctuality improved by 10.7% (from 67.9% to 78.7%), while ATFM slot adherence increased by 31.2% (from 64.6% to 95.8%). This study presents an innovative departure scheduling approach and offers a practical framework for improving collaborative operational efficiency among airports, air traffic management units, and airlines. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

19 pages, 3297 KiB  
Article
Secrecy Rate Maximization via Joint Robust Beamforming and Trajectory Optimization for Mobile User in ISAC-UAV System
by Lvxin Xu, Zhi Zhang and Liuguo Yin
Drones 2025, 9(8), 536; https://doi.org/10.3390/drones9080536 - 30 Jul 2025
Viewed by 154
Abstract
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall [...] Read more.
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall system performance in dynamic and complex environments. However, ensuring physical layer security (PLS) in such UAV-assisted ISAC systems remains a significant challenge, particularly in the presence of mobile users and potential eavesdroppers. This manuscript proposes a joint optimization framework that simultaneously designs robust transmit beamforming and UAV trajectories to secure downlink communication for multiple ground users. At each time slot, the UAV predicts user positions and maximizes the secrecy sum-rate, subject to constraints on total transmit power, multi-target sensing quality, and UAV mobility. To tackle this non-convex problem, we develop an efficient optimization algorithm based on successive convex approximation (SCA) and constrained optimization by linear approximations (COBYLA). Numerical simulations validate that the proposed framework effectively enhances the secrecy performance while maintaining high-quality sensing, achieving near-optimal performance under realistic system constraints. Full article
Show Figures

Figure 1

10 pages, 1977 KiB  
Proceeding Paper
Finite-Element and Experimental Analysis of a Slot Line Antenna for NV Quantum Sensing
by Dennis Stiegekötter, Jonas Homrighausen, Ann-Sophie Bülter, Ludwig Horsthemke, Frederik Hoffmann, Jens Pogorzelski, Peter Glösekötter and Markus Gregor
Eng. Proc. 2025, 101(1), 9; https://doi.org/10.3390/engproc2025101009 - 30 Jul 2025
Viewed by 206
Abstract
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by [...] Read more.
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by finite element method (FEM) for magnetic field amplitude and uniformity. A microstrip-to-slot-line converter with a 10 dB bandwidth of 3.2 GHz was implemented. Rabi oscillation measurements with an NV microdiamond on a glass fiber show uniform excitation over 1.5 MHz across the slot, allowing spin manipulation within the coherence time of the NV center. Full article
Show Figures

Figure 1

16 pages, 3042 KiB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 318
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

30 pages, 7092 KiB  
Article
Slotted Circular-Patch MIMO Antenna for 5G Applications at Sub-6 GHz
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Telecom 2025, 6(3), 53; https://doi.org/10.3390/telecom6030053 - 28 Jul 2025
Viewed by 261
Abstract
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input [...] Read more.
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input multiple-output (MIMO) systems to achieve adequate channel capacity. In this article, a 2-port MIMO system using two flipped parallel 1 × 2 arrays and a 2-port MIMO system using two opposite 1 × 4 arrays designed and fabricated antennas for 5G wireless communication in the sub-6 GHz band, are presented, overcoming the limitations of previous designs in gain, radiation efficiency and MIMO performance. The designed and fabricated single-element antenna features a circular microstrip patch design based on ROGER 5880 (RT5880) substrate, which has a thickness of 1.57 mm, a permittivity of 2.2, and a tangential loss of 0.0009. The 2-port MIMO of two 1 × 2 arrays and the 2-port MIMO of two 1 × 4 arrays have overall dimensions of 132 × 66 × 1.57 mm3 and 140 × 132 × 1.57 mm3, respectively. The MIMO of two 1 × 2 arrays and MIMO of two 1 × 4 arrays encompass maximum gains of 8.3 dBi and 10.9 dBi, respectively, with maximum radiation efficiency reaching 95% and 97.46%. High MIMO performance outcomes are observed for both the MIMO of two 1 × 2 arrays and the MIMO of two 1 × 4 arrays, with the channel capacity loss (CCL) ˂ 0.4 bit/s/Hz and ˂0.3 bit/s/Hz, respectively, an envelope correlation coefficient (ECC) ˂ 0.006 and ˂0.003, respectively, directivity gain (DG) about 10 dB, and a total active reflection coefficient (TARC) under −10 dB, ensuring impedance matching and effective mutual coupling among neighboring parameters, which confirms their effectiveness for 5G applications. The three fabricated antennas were experimentally tested and implemented using the MIMO Application Framework version 19.5 for 5G systems, demonstrating operational effectiveness in 5G applications. Full article
Show Figures

Figure 1

29 pages, 1659 KiB  
Article
A Mixed-Integer Programming Framework for Drone Routing and Scheduling with Flexible Multiple Visits in Highway Traffic Monitoring
by Nasrin Mohabbati-Kalejahi, Sepideh Alavi and Oguz Toragay
Mathematics 2025, 13(15), 2427; https://doi.org/10.3390/math13152427 - 28 Jul 2025
Viewed by 314
Abstract
Traffic crashes and congestion generate high social and economic costs, yet traditional traffic monitoring methods, such as police patrols, fixed cameras, and helicopters, are costly, labor-intensive, and limited in spatial coverage. This paper presents a novel Drone Routing and Scheduling with Flexible Multiple [...] Read more.
Traffic crashes and congestion generate high social and economic costs, yet traditional traffic monitoring methods, such as police patrols, fixed cameras, and helicopters, are costly, labor-intensive, and limited in spatial coverage. This paper presents a novel Drone Routing and Scheduling with Flexible Multiple Visits (DRSFMV) framework, an optimization model for planning drone-based highway monitoring under realistic operational constraints, including battery limits, variable monitoring durations, recharging at a depot, and target-specific inter-visit time limits. A mixed-integer nonlinear programming (MINLP) model and a linearized version (MILP) are presented to solve the problem. Due to the NP-hard nature of the underlying problem structure, a heuristic solver, Hexaly, is also used. A case study using real traffic census data from three Southern California counties tests the models across various network sizes and configurations. The MILP solves small and medium instances efficiently, and Hexaly produces high-quality solutions for large-scale networks. Results show clear trade-offs between drone availability and time-slot flexibility, and demonstrate that stricter revisit constraints raise operational cost. Full article
Show Figures

Figure 1

18 pages, 3199 KiB  
Article
Geomechanical Basis for Assessing Open-Pit Slope Stability in High-Altitude Gold Mining
by Farit Nizametdinov, Rinat Nizametdinov, Denis Akhmatnurov, Nail Zamaliyev, Ravil Mussin, Nikita Ganyukov, Krzysztof Skrzypkowski, Waldemar Korzeniowski, Jerzy Stasica and Zbigniew Rak
Appl. Sci. 2025, 15(15), 8372; https://doi.org/10.3390/app15158372 - 28 Jul 2025
Viewed by 278
Abstract
The development of mining operations in high-altitude regions is associated with a number of geomechanical challenges caused by increased rock fracturing, adverse climatic conditions, and high seismic activity. These issues are particularly relevant for the exploitation of gold ore deposits, where the stability [...] Read more.
The development of mining operations in high-altitude regions is associated with a number of geomechanical challenges caused by increased rock fracturing, adverse climatic conditions, and high seismic activity. These issues are particularly relevant for the exploitation of gold ore deposits, where the stability of open-pit slopes directly affects both safety and extraction efficiency. The aim of this study is to develop and practically substantiate a comprehensive approach to assessing and ensuring slope stability, using the Bozymchak gold ore deposit—located in a high-altitude and seismically active zone—as a case study. The research involves the laboratory testing of rock samples obtained from engineering–geological boreholes, field shear tests on rock prisms, laser scanning of pit slopes, and digital geomechanical modeling. The developed calculation schemes take into account the structural features of the rock mass, geological conditions, and the design contours of the pit. In addition, special bench excavation technologies with pre-shear slotting and automated GeoMoS monitoring are implemented for real-time slope condition tracking. The results of the study make it possible to reliably determine the strength characteristics of the rocks under natural conditions, identify critical zones of potential collapse, and develop recommendations for optimizing slope parameters and mining technologies. The implemented approach ensures the required level of safety. Full article
(This article belongs to the Special Issue Latest Advances in Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

21 pages, 7459 KiB  
Article
Design and Analysis of a Bearing-Integrated Rotary Transformer
by Xiaoou Fan, Shaohua Ma, Dezhi Chen and Chaoqun Liu
Energies 2025, 18(15), 3991; https://doi.org/10.3390/en18153991 - 25 Jul 2025
Viewed by 232
Abstract
In this paper, a bearing- and transformer-integrated electric excitation synchronous motor excitation system (bearing-integrated rotary transformer) is proposed to support the motor rotor and energy transmission of excitation systems. Firstly, the working principle of the bearing-integrated rotary transformer is discussed. Secondly, the structure [...] Read more.
In this paper, a bearing- and transformer-integrated electric excitation synchronous motor excitation system (bearing-integrated rotary transformer) is proposed to support the motor rotor and energy transmission of excitation systems. Firstly, the working principle of the bearing-integrated rotary transformer is discussed. Secondly, the structure and electromagnetism of the bearing-integrated rotary transformer are designed through the processes and principles of pole slot matching, stator/rotor size, winding, and the magnetic regulating needle. Thirdly, the bearing-integrated rotary transformer undergoes an electromagnetic–thermal simulation. Finally, a prototype of the bearing-integrated rotary transformer is manufactured, and the electromagnetic and transmission characteristics are tested, verifying the correctness of the proposed scheme and providing additional ideas for the improvement of synchronous motor excitation systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 4826 KiB  
Article
Study on Optimal Adaptive Meta-Model and Performance Optimization of Built-In Permanent Magnet Synchronous Motor
by Chuanfu Jin, Wei Zhou, Wei Yang, Yao Wu, Jinlong Li, Yongtong Wang and Kang Li
Actuators 2025, 14(8), 373; https://doi.org/10.3390/act14080373 - 25 Jul 2025
Viewed by 145
Abstract
To overcome the limitations of single-objective optimization in permanent magnet synchronous motor (PMSM) performance enhancement, this study proposes an adaptive moving least squares (AMLS) for a 12-pole/36-slot built-in PMSM. Through comprehensive exploration of the design space, a systematic approach is established for holistic [...] Read more.
To overcome the limitations of single-objective optimization in permanent magnet synchronous motor (PMSM) performance enhancement, this study proposes an adaptive moving least squares (AMLS) for a 12-pole/36-slot built-in PMSM. Through comprehensive exploration of the design space, a systematic approach is established for holistic motor performance improvement. The Gaussian weight function is modified to improve the model’s fitting accuracy, and the decay rate of the control weight is optimized. The optimal adaptive meta-model for the built-in PMSM is selected based on the coefficient of determination. Subsequently, sensitivity analysis is conducted to identify the parameters that most significantly influence key performance indicators, including torque ripple, stator core loss, electromagnetic force amplitude, and average output torque. These parameters are then chosen as the optimal design variables. A multi-objective optimization framework, built upon the optimal adaptive meta-model, is developed to address the multi-objective optimization problem. The results demonstrate increased output torque, along with reductions in stator core loss, torque ripple, and radial electromagnetic force, thereby significantly improving the overall performance of the motor. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

15 pages, 4646 KiB  
Article
A Wideband Magneto-Electric (ME) Dipole Antenna Enabled by ME Resonance and Aperture-Coupled Excitation
by Hyojin Jang, Seyeon Park, Junghyeon Kim, Kyounghwan Kim and Sungjoon Lim
Micromachines 2025, 16(8), 853; https://doi.org/10.3390/mi16080853 - 24 Jul 2025
Viewed by 366
Abstract
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the [...] Read more.
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the electric dipole and a pair of vertical metal patches forming the magnetic dipole. A key innovation is the aperture-coupled feeding mechanism, where electromagnetic energy is transferred from a tapered microstrip line to the dipole structure through a slot etched in the ground plane. This design not only excites the characteristic ME resonances effectively but also significantly improves impedance matching, delivering a markedly broader impedance bandwidth. To validate the proposed concept, a prototype antenna was fabricated and experimentally characterized. Measurements show an impedance bandwidth of 84.48% (3.61–8.89 GHz) for S11 ≤ −10 dB and a maximum in-band gain of 7.88 dBi. The antenna also maintains a stable, unidirectional radiation pattern across the operating band, confirming its potential for wideband applications such as 5G wireless communications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

Back to TopTop