Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = skin-aging enzyme inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2268 KB  
Article
Deciphering the Skin Anti-Aging and Hair Growth Promoting Mechanisms of Opophytum forskahlii Seed Oil via Network Pharmacology
by Shaimaa R. Ahmed, Hanan Khojah, Maram Aldera, Jenan Alsarah, Dai Alwaghid, Luluh Hamdan, Hadeel Aljuwair, Manal Alshammari, Hanadi Albalawi, Reema Aldekhail, Abdullah Alazmi and Sumera Qasim
Int. J. Mol. Sci. 2026, 27(1), 277; https://doi.org/10.3390/ijms27010277 - 26 Dec 2025
Viewed by 319
Abstract
Opophytum forskahlii has a well-established ethnopharmacological significance. This study aimed to assess the skin anti-aging and hair growth-promoting activities of O. forskahlii seed oil (OFSO) and the underlying mechanism. GC-MS profiling revealed high levels of unsaturated fatty acids, linoleic acid (55.46%), and oleic [...] Read more.
Opophytum forskahlii has a well-established ethnopharmacological significance. This study aimed to assess the skin anti-aging and hair growth-promoting activities of O. forskahlii seed oil (OFSO) and the underlying mechanism. GC-MS profiling revealed high levels of unsaturated fatty acids, linoleic acid (55.46%), and oleic acid (38.54%). The skin anti-aging activity of OFSO (3.125–100 µg/mL) was evaluated in normal human dermal fibroblasts (NHDFs) using MTT and enzyme inhibition assays. OFSO was non-cytotoxic and enhanced fibroblast proliferation in a dose-dependent manner, reaching 145.5% of control at 100 µg/mL (p < 0.05). OFSO significantly (p < 0.05) inhibited collagenase (48%), hyaluronidase (53%), elastase (57%), and tyrosinase (55%). The oil showed anti-inflammatory activity by inhibiting COX-1 and COX-2 (0.01–100 µg/mL) with IC50 = 0.125 and 0.014 µg/mL, respectively. The hair growth promoting efficacy was assessed using adult male Wistar rats, randomly divided into control, OFSO-treated, and 2% minoxidil-treated groups (5 rats/group). Hair growth was assessed through visual scoring over 14 days of topical application and confirmed by histological examination and hair follicle counting. On day 14, the OFSO-treated group displayed almost complete hair coverage (score about 5.0), exceeding minoxidil (about 4.0), and significantly increased hair follicle number (14.0 ± 1 vs. 9.2 ± 0.8, p < 0.05). Histology confirmed that OFSO promoted hair follicle growth, differentiation, and transition from the telogen to the anagen phase. Network pharmacology analysis, integrating targets predicted via SwissTargetPrediction and disease-associated genes from GeneCards, identified PPARG, ESR1, and IL6 as key hub genes underlying OFSO’s effects. PPARG enhances antioxidant defenses, anti-inflammatory responses, and sebaceous gland function; ESR1 supports collagen production, skin elasticity, and follicle vascularization; and IL6 modulates inflammation and triggers the anagen phase of hair growth. Functional enrichment revealed modulation of PPAR, estrogen, prolactin, and arachidonic acid metabolism pathways, suggesting that OFSO may regulate lipid metabolism, inflammation, hormonal signaling, and tissue regeneration. OFSO demonstrated promising anti-aging and hair growth activities, supporting further development and testing of cosmetic formulations. Full article
Show Figures

Graphical abstract

17 pages, 3462 KB  
Article
β-Nicotinamide Mononucleotide Enhances Skin Barrier Function and Attenuates UV-B-Induced Photoaging in Mice
by Sung Jin Kim, Sullim Lee, Yea Jung Choi, Minseo Kang, Junghwan Lee, Gwi Seo Hwang, Seok-Seon Roh, Mu Hyun Jin, Sangki Park, Minji Park, Ho Song Cho and Ki Sung Kang
Antioxidants 2025, 14(12), 1424; https://doi.org/10.3390/antiox14121424 - 27 Nov 2025
Viewed by 2332
Abstract
Ultraviolet B (UV-B) radiation significantly contributes to skin photoaging, which is characterized by epidermal thickening, collagen degradation, wrinkle formation, barrier dysfunction, and oxidative stress. Nicotinamide mononucleotide (NMN), a key precursor of nicotinamide adenine dinucleotide, regulates cellular energy metabolism and antioxidant defense and demonstrates [...] Read more.
Ultraviolet B (UV-B) radiation significantly contributes to skin photoaging, which is characterized by epidermal thickening, collagen degradation, wrinkle formation, barrier dysfunction, and oxidative stress. Nicotinamide mononucleotide (NMN), a key precursor of nicotinamide adenine dinucleotide, regulates cellular energy metabolism and antioxidant defense and demonstrates anti-aging effects in animal models. Here, we investigated the protective effects of oral NMN supplementation against UV-B-induced photoaging in SKH-1 hairless mice. Over a 10-week experimental period, oral NMN administration significantly alleviated epidermal hypertrophy, reduced wrinkle formation and skin surface roughness, improved hydration and elasticity, and restored transepidermal water loss to near-normal levels. Histological analyses revealed marked preservation of collagen fiber density and attenuation of dermal matrix degradation. Furthermore, NMN supplementation inhibited the phosphorylation of MAPK signaling components (ERK, JNK, and p38), suppressed pro-inflammatory cytokine (TNF-α and IL-6) and matrix-degrading enzyme (MMP-1) expression, and restored hyaluronan synthase (HAS-1 and HAS-2) expression. Additionally, NMN enhanced the systemic antioxidant defense, as indicated by the restored superoxide dismutase activity. Thus, NMN has multi-layered protective effects against UV-B–induced skin aging by modulating oxidative stress, inflammatory signaling, extracellular matrix remodeling, and hyaluronic acid metabolism. Full article
(This article belongs to the Special Issue Antioxidants and Multifunction Photoprotection—2nd Edition)
Show Figures

Figure 1

29 pages, 1800 KB  
Review
An Insight on Ellagic Acid Formulations for the Management of Skin Diseases
by Rebecca Castellacci and Maria Camilla Bergonzi
Molecules 2025, 30(23), 4493; https://doi.org/10.3390/molecules30234493 - 21 Nov 2025
Cited by 1 | Viewed by 1748
Abstract
The skin is exposed to many environmental stressors, such as UV rays, pollution, and smoke, and psychological stress, which can compromise its structure and function. These factors can cause premature aging, weaken the skin barrier, worsen or induce pathological conditions such as acne [...] Read more.
The skin is exposed to many environmental stressors, such as UV rays, pollution, and smoke, and psychological stress, which can compromise its structure and function. These factors can cause premature aging, weaken the skin barrier, worsen or induce pathological conditions such as acne and eczema, hyperpigmentation, and melanoma, and slow healing. Ellagic acid (EA) is a polyphenol with various pharmacological effects important for the treatment of skin conditions. It has antioxidant, anti-inflammatory, and depigmenting properties, and it inhibits the enzyme tyrosinase, involved in melanin production, helping reduce dark spots and exhibiting antiproliferative effects against melanoma cells. With its antioxidant effect, it protects the skin against photoaging, combats oxidative stress and signs of aging, such as wrinkles and loss of elasticity, and strengthens collagen and elastin. However, the main limits of EA are its low aqueous solubility, instability, and poor skin permeability that limit its clinical efficacy. This review focuses on EA formulations developed to overcome these limitations and improve its therapeutic effects for skin diseases. Nano-delivery systems such as vesicles, lipidic and polymeric nanoparticles, nanospheres, cyclodextrins, and nanogels have been reported alongside other innovative preparations such as biscuits, sponges, and nanosheets and conventional ones such as ointments, creams, and films. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

17 pages, 4973 KB  
Article
Eleutheroside E Ameliorates D-Gal-Induced Senescence in Human Skin Fibroblasts Through PI3K/AKT Signaling
by Xiangyu Ma, Liu Han, Mengran Xu, Yuling Feng, Changsheng Liu, Yida Zhao, Min Zhang, Guanghua Xu and Xin Sun
Curr. Issues Mol. Biol. 2025, 47(11), 895; https://doi.org/10.3390/cimb47110895 - 28 Oct 2025
Cited by 1 | Viewed by 905
Abstract
Eleutheroside E (EE), a natural compound, shows promise in mitigating cellular senescence—a key factor in skin aging—though its mechanisms remain incompletely understood. This study integrated network pharmacology, molecular docking, and cellular experiments to explore the protective effects and mechanistic basis of EE against [...] Read more.
Eleutheroside E (EE), a natural compound, shows promise in mitigating cellular senescence—a key factor in skin aging—though its mechanisms remain incompletely understood. This study integrated network pharmacology, molecular docking, and cellular experiments to explore the protective effects and mechanistic basis of EE against D-galactose (D-gal)-induced senescence in human skin fibroblasts (HSFs). Network pharmacology analyses suggested EE’s involvement in inflammation-related pathways, especially phosphatidylinositol 3-kinase and protein kinase B (PI3K-AKT) and hypoxia-inducible factor 1 (HIF-1) signaling, which were corroborated by molecular docking revealing strong binding affinities between EE and key targets such as hypoxia-inducible factor 1-alpha (HIF1A), AKT serine/threonine kinase 1 (AKT1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PI3Kγ), and interleukin-6 (IL-6). Cellular assays showed that EE markedly lowered oxidative stress markers, including reactive oxygen species (ROS) and malondialdehyde (MDA), reduced senescence-associated beta-galactosidase (SA-β-gal) activity, and boosted antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT). Additionally, EE dose-dependently inhibited apoptosis and downregulated PI3K/AKT phosphorylation as well as the B-cell lymphoma 2-associated X protein/B-cell lymphoma-2 (Bax/Bcl-2) ratio. These findings suggest that EE alleviates cellular senescence in HSFs mainly via the PI3K/AKT pathway by attenuating oxidative stress and apoptosis, highlighting its potential as a therapeutic agent for anti-aging strategies. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 769 KB  
Article
Antioxidant, Anti-Melanogenic, and Anti-Aging Activities of the Aqueous–Ethanolic Dry Extract of Rosa lucieae with Phytochemical Profiling
by Yun Gyeong Park, Ji-Yul Kim, Seok-Chun Ko, Kyung Woo Kim, Dongwoo Yang, Du-Min Jo, Hyo-Geun Lee, Jeong Min Lee, Mi-Jin Yim, Chul Hwan Kim, Dae-Sung Lee, Hyun-Soo Kim and Gun-Woo Oh
Antioxidants 2025, 14(10), 1177; https://doi.org/10.3390/antiox14101177 - 26 Sep 2025
Viewed by 1113
Abstract
In this study, the cosmeceutical potential of a 70% ethanol extract of Rosa lucieae was investigated as a multifunctional bioactive ingredient. The extract was systematically evaluated for its antioxidant, anti-melanogenic, and anti-aging properties, and was comprehensively phytochemically profiled using ultra-high-performance liquid chromatography–quadrupole time-of-flight [...] Read more.
In this study, the cosmeceutical potential of a 70% ethanol extract of Rosa lucieae was investigated as a multifunctional bioactive ingredient. The extract was systematically evaluated for its antioxidant, anti-melanogenic, and anti-aging properties, and was comprehensively phytochemically profiled using ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. The analysis tentatively identified 21 metabolites, including phenolic acids (gallic acid, ellagic acid, and corilagin), flavonoids (catechin, rutin, quercetin, hyperoside, and quercitrin), and glycosidic derivatives (e.g., phlorizin), several of which are well-documented for their skin-protective effects. Quantitative measurements confirmed high polyphenol and flavonoid contents, correlating with strong radical-scavenging and reducing capacities in α-diphenyl-β-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, as well as ferric ion reducing antioxidant power assays. Moreover, the extract inhibited tyrosinase activity and 3,4-dihydroxyphenylalanine oxidation, thereby suppressing melanin biosynthesis. In addition, marked inhibitory effects against collagenase, elastase, and hyaluronidase were observed; these enzymes are critically involved in extracellular matrix degradation and skin aging. Taken together, these results indicate that the biological activities of R. lucieae are supported by a diverse polyphenol- and flavonoid-rich chemical profile, highlighting the potential of this plant as a natural multifunctional ingredient for cosmeceutical, nutraceutical, functional food, and preventive healthcare applications. Full article
Show Figures

Figure 1

15 pages, 3176 KB  
Article
Postbiotic Effects of Pediococcus acidophilus LS for Anti-Melanogenesis, Photoprotection, and Wound Repair
by Chiung-Hung Chang, Jai-Sing Yang, Yen-Ju Lai, Bi Yu and Yuan-Man Hsu
Microorganisms 2025, 13(9), 2207; https://doi.org/10.3390/microorganisms13092207 - 20 Sep 2025
Viewed by 939
Abstract
Skin health is significantly impacted by factors such as melanin production, UV-induced photodamage, and wound healing. Excessive melanin leads to hyperpigmentation, while UVA radiation accelerates skin aging and oxidative stress. This study investigated the multi-functional dermatological potential of S strain LS-derived cell-free supernatant [...] Read more.
Skin health is significantly impacted by factors such as melanin production, UV-induced photodamage, and wound healing. Excessive melanin leads to hyperpigmentation, while UVA radiation accelerates skin aging and oxidative stress. This study investigated the multi-functional dermatological potential of S strain LS-derived cell-free supernatant (CFS-LS) to address these concerns. Our findings demonstrate that CFS-LS effectively inhibits melanogenesis in B16F10 cells. It significantly reduced α-MSH-induced melanin synthesis, comparable to arbutin, by downregulating key melanogenic enzymes (tyrosinase, TRP-1, and TRP-2) and regulatory proteins (p-CREB, MITF, SOX9, and SOX10). Mechanistically, CFS-LS suppressed the phosphorylation of MEK, ERK, p38, and JNK, indicating a dual inhibitory effect on both PKA/CREB and MAPK pathways. Furthermore, CFS-LS mitigated UVA-induced photodamage in HaCaT cells by significantly reducing intracellular reactive oxygen species and suppressing the downstream phosphorylation of p53 and α-MSH levels. It also restored UVA-suppressed Nrf-2 and HO-1 expression, enhancing cellular antioxidant defenses. Lastly, CFS-LS promoted skin wound healing by significantly enhancing HaCaT cell migration in a scratch assay, associated with increased p-MEK1/2 and p-ERK1/2 levels, and notably elevated collagen type I synthesis. Collectively, these results highlight CFS-LS as a potent multi-functional agent for skin protection and repair, with significant potential for cosmetic and therapeutic applications. The active components of CFS-LS warrant further investigation. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 2662 KB  
Article
Notoginsenoside R1, a Metabolite from Panax notoginseng, Prevents Paclitaxel-Induced Peripheral Neuropathic Pain in Mice
by Muneerah Al-Musailem, Willias Masocha and Altaf Al-Romaiyan
Molecules 2025, 30(17), 3613; https://doi.org/10.3390/molecules30173613 - 4 Sep 2025
Viewed by 1670
Abstract
Development of paclitaxel-induced neuropathic pain (PINP) during chemotherapy may lead to paclitaxel discontinuation, potentially compromising effective anticancer therapy. PINP can manifest as allodynia. One recently discovered key factor in paclitaxel-induced mechanical allodynia (PIMA) pathogenesis is the elevated activity of monoacylglycerol lipase (MAGL), an [...] Read more.
Development of paclitaxel-induced neuropathic pain (PINP) during chemotherapy may lead to paclitaxel discontinuation, potentially compromising effective anticancer therapy. PINP can manifest as allodynia. One recently discovered key factor in paclitaxel-induced mechanical allodynia (PIMA) pathogenesis is the elevated activity of monoacylglycerol lipase (MAGL), an enzyme that metabolizes the endocannabinoid 2-arachidonoylglycerol (2-AG). Thus, inhibiting MAGL serves as a potential analgesic target. Notoginsenoside R1 (NGR1), a metabolite of Panax notoginseng, has shown promise in reducing oxidative stress and neuronal apoptosis in nerve injury models. However, its effects on PIMA and MAGL activity have not yet been explored. This study is a proof-of-concept preclinical study investigating the antiallodynic effects of NGR1 on PIMA in female BALB/c mice and also examining its effect on MAGL activity. The effect of treatment of mice with NGR1 intraperitoneally on the development of PIMA was evaluated. Molecular docking using CB-Dock2 compared the binding energies to MAGL of NGR1 and pristimerin, a triterpene MAGL inhibitor. The effects of NGR1 on human recombinant MAGL activity, as well as the MAGL activity in mice paw skin tissues, were assessed using MAGL inhibitor screening and MAGL activity assay kits, respectively. NGR1 prevented the development of PIMA in a dose-dependent manner. The docking scores showed that NGR1 has a good affinity for MAGL (−7.8 kcal/mol, binding energy) but less affinity than pristimerin (−10.3 kcal/mol). NGR1 inhibited the human recombinant MAGL activity in a reversible and concentration-dependent manner, although the inhibition was in a reverse order. Treatment of mice with NGR1 showed a non-significant trend in reducing the paclitaxel-induced increase in MAGL activity in the paw skin. This study shows for the first time that NGR1 prevents the development of PIMA and suggests that NGR1 has affinity for and inhibits human recombinant MAGL activity with a paradoxical inhibition pattern. More mechanistic studies are needed to fully elucidate the molecular mechanisms of NGR1 in preventing PIMA. Full article
(This article belongs to the Special Issue The Medicinal Value of Natural Products)
Show Figures

Figure 1

20 pages, 1185 KB  
Communication
Anti-Aging Potential of Bioactive Peptides Derived from Casein Hydrolyzed with Kiwi Actinidin: Integration of In Silico and In Vitro Study
by Nicolas Caicedo, Lady L. Gamboa, Yhors Ciro, Constain H. Salamanca and Jose Oñate-Garzón
Cosmetics 2025, 12(5), 189; https://doi.org/10.3390/cosmetics12050189 - 1 Sep 2025
Viewed by 2000
Abstract
Background: Skin aging is mainly associated with oxidative stress and enzymatic degradation of collagen and elastin by protease activity. Peptides have antioxidant capacity and inhibitory effects on protease enzymes. Objective: The purpose of this study was to obtain peptides with in vitro anti-aging [...] Read more.
Background: Skin aging is mainly associated with oxidative stress and enzymatic degradation of collagen and elastin by protease activity. Peptides have antioxidant capacity and inhibitory effects on protease enzymes. Objective: The purpose of this study was to obtain peptides with in vitro anti-aging activity from the enzymatic hydrolysis of bovine casein with actinidin, a protease extracted from the green kiwi fruit (Actinidia deliciosa) Methodology: The enzyme actinidin was extracted from the pulp of the kiwi fruit, purified by ion exchange chromatography and characterized by polyacrylamide electrophoresis (SDS-PAGE). Subsequently, the extracted enzyme was used to hydrolyze commercial bovine casein at 37 °C for 30 min, precipitating the peptide fraction with trichloroacetic acid (TCA), and centrifuged. To determine the anti-aging potential of the peptides in vitro, antioxidant activity was evaluated using the ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) radical. Additionally, the inhibitory capacity of the peptides against collagenase and elastase enzymes was also studied. To complement the in vitro results, the enzymatic hydrolysis of casein with actinidin was simulated. The binding energy (ΔG) of each of the hydrolysates with the collagenase and elastase enzymes was calculated using molecular docking to predict the peptide sequences with the highest probability of interaction. Results: Actinidin was extracted and purified exhibiting a molecular weight close to 27 kDa. The enzyme hydrolyzed the substrate by 91.6%, and the resulting hydrolysates showed moderate in vitro anti-aging activity: antioxidant (17.5%), anticollagenase (18.55%), and antielastase (28.6%). In silico results revealed 66 peptide sequences of which 30.3% consisted of 4–8 amino acids, a suitable size to facilitate interaction with structural targets. The sequences with the highest affinity were FALPQYLK and VIPYVRYL for collagenase and elastase, respectively. Conclusions: Despite the modest inhibition values, the use of a fruit-derived enzyme and a food-grade substrate is in line with current trends in sustainable and natural cosmetics. These findings highlight the great potential for laying the groundwork for future research into actinidin-derived peptides as multifunctional and eco-conscious ingredients for the development of next-generation anti-aging formulations. Full article
(This article belongs to the Special Issue Functional Molecules as Novel Cosmetic Ingredients)
Show Figures

Graphical abstract

21 pages, 2609 KB  
Article
Comparative Analysis of Polyphenol-Rich Extracts from Hamamelis virginiana Leaves and Bark: ROS Scavenging and Anti-Inflammatory Effects on Skin Cells
by Magdalena Wójciak, Wiktoria Pacuła, Katarzyna Tyszczuk-Rotko, Aleksandra Ziemlewska, Martyna Zagórska-Dziok, Zofia Nizioł-Łukaszewska, Rafał Patryn, Anna Pacian and Ireneusz Sowa
Molecules 2025, 30(17), 3572; https://doi.org/10.3390/molecules30173572 - 31 Aug 2025
Cited by 1 | Viewed by 2631
Abstract
Hamamelis virginiana (witch hazel) is traditionally used in dermatology for its antibacterial and anti-inflammatory effects. However, the number of studies on its chemical composition and potentials in skin protection remains limited. This study aimed to investigate the qualitative and quantitative composition of polyphenolic [...] Read more.
Hamamelis virginiana (witch hazel) is traditionally used in dermatology for its antibacterial and anti-inflammatory effects. However, the number of studies on its chemical composition and potentials in skin protection remains limited. This study aimed to investigate the qualitative and quantitative composition of polyphenolic compounds in the leaves and bark of the plant, as well as to explore their antioxidant, anti-inflammatory, and extracellular matrix (ECM)-protective activities in skin-relevant cell models. Human dermal fibroblasts and keratinocytes were exposed to oxidative and inflammatory stimuli and pretreated with leaf and bark extracts. ROS levels, antioxidant enzyme activity (SOD, GPx, CAT), pro-inflammatory cytokines (IL-6, IL-1β, TNF-α), and inhibition of collagenase, hyaluronidase, and elastase were assessed. Both extracts strongly reduced ROS levels, enhanced SOD activity, and significantly decreased pro-inflammatory cytokines. Bark extract also exhibited potent inhibitory activity against collagenase and elastase. UPLC-DAD-MS analysis revealed that both plant parts contained high levels of tannins; however, the leaf extract showed a more diverse composition, including more complex tannin forms and a significant amount of flavonoids from the quercetin and kaempferol class. In conclusion, H. virginiana leaf and bark extracts demonstrate multifunctional antioxidant and anti-inflammatory properties, supporting their potential use in cosmeceuticals and dermatological formulations targeting skin aging and inflammation. Full article
Show Figures

Figure 1

25 pages, 3037 KB  
Article
Bioactive Potential of Nepenthes miranda Flower Extracts: Antidiabetic, Anti-Skin Aging, Cytotoxic, and Dihydroorotase-Inhibitory Activities
by Kuan-Ming Lai, Yen-Hua Huang, Yi Lien and Cheng-Yang Huang
Plants 2025, 14(16), 2579; https://doi.org/10.3390/plants14162579 - 19 Aug 2025
Viewed by 1205
Abstract
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract [...] Read more.
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract exhibited the highest total phenolic content (18.2 mg GAE/g), flavonoid content (68.9 mg QUE/g), and antioxidant activity (DPPH IC50 = 66.9 μg/mL), along with strong antibacterial effects against Escherichia coli and Staphylococcus aureus. Cosmetically relevant enzyme inhibition assays revealed significant activity against tyrosinase (IC50 = 48.58 μg/mL), elastase (IC50 = 1.77 μg/mL), and hyaluronidase (IC50 = 7.33 μg/mL), supporting its potential as an anti-skin aging agent. For antidiabetic evaluation, the ethanol extract demonstrated potent α-glucosidase inhibition (IC50 = 24.53 μg/mL), outperforming standard inhibitors such as acarbose and quercetin. The extract also displayed marked cytotoxicity against A431 epidermoid carcinoma cells (IC50 = 90.61 μg/mL), inducing dose-dependent apoptosis, inhibiting cell migration and colony formation, and causing significant DNA damage as shown by comet assay. Furthermore, the ethanol extract strongly inhibited the activity of purified human dihydroorotase (IC50 = 25.11 μg/mL), indicating that disruption of pyrimidine biosynthesis may underlie its anticancer activity. Overall, this study provides the first characterization of N. miranda flower extracts, particularly the ethanol fraction, as a promising source of multifunctional bioactive compounds with possible applications in cosmetics, antidiabetic therapy, and cancer treatment. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

22 pages, 2511 KB  
Article
Bridging Phytochemistry and Cosmetic Science: Molecular Insights into the Cosmeceutical Promise of Crotalaria juncea L.
by Tanatchaporn Aree, Siripat Chaichit, Jintana Junlatat, Kanokwan Kiattisin and Aekkhaluck Intharuksa
Int. J. Mol. Sci. 2025, 26(16), 7716; https://doi.org/10.3390/ijms26167716 - 9 Aug 2025
Viewed by 991
Abstract
Crotalaria juncea L. (Fabaceae: Faboideae), traditionally used as green manure due to its nitrogen-fixing capacity, also exhibits therapeutic potential for conditions such as anemia and psoriasis. However, its cosmetic applications remain largely unexplored. This study examined the phytochemical profiles and biological activities of [...] Read more.
Crotalaria juncea L. (Fabaceae: Faboideae), traditionally used as green manure due to its nitrogen-fixing capacity, also exhibits therapeutic potential for conditions such as anemia and psoriasis. However, its cosmetic applications remain largely unexplored. This study examined the phytochemical profiles and biological activities of ethanolic extracts from the root, flower, and leaf of C. juncea, focusing on their potential use in cosmetic formulations. Soxhlet extraction with 95% ethanol was employed. Among the extracts, the leaf showed the highest total flavonoid content, while the root contained the highest total phenolic content. The root extract demonstrated the strongest antioxidant activity, as assessed by DPPH, FRAP, and lipid peroxidation assays, along with significant anti-tyrosinase and anti-aging effects via collagenase and elastase inhibition. LC-MS/QTOF analysis identified genistein and kaempferol as the major bioactive constituents in the root extract. Molecular docking confirmed their strong interactions with enzymes associated with skin aging. Additionally, the root extract exhibited notable anti-inflammatory activity. These results suggest that C. juncea root extract is a promising multifunctional natural ingredient for cosmetic applications due to its antioxidant, anti-tyrosinase, anti-aging, and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Biological Research on Plant Bioactive Compounds)
Show Figures

Figure 1

18 pages, 2972 KB  
Article
Phytochemical Constituents from Cercidiphyllum japonicum Exhibit Bioactive Potential Against Skin Aging and Inflammation in Human Dermal Fibroblasts
by Minseo Kang, Sanghyun Lee, Dae Sik Jang, Sullim Lee and Daeyoung Kim
Curr. Issues Mol. Biol. 2025, 47(8), 631; https://doi.org/10.3390/cimb47080631 - 7 Aug 2025
Viewed by 932
Abstract
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a [...] Read more.
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a tumor necrosis factor-alpha (TNF-α)-stimulated normal human dermal fibroblast (NHDF) model. The aerial parts of C. japonicum were extracted and analyzed by high-performance liquid chromatography (HPLC), leading to the identification of four major compounds: maltol, chlorogenic acid, ellagic acid, and quercitrin. Each compound was evaluated for its antioxidant and anti-aging activities in TNF-α-stimulated NHDFs. Among them, ellagic acid exhibited the most potent biological activity and was selected for further mechanistic analysis. Ellagic acid significantly suppressed intracellular reactive oxygen species (ROS) generation and matrix metalloproteinase-1 (MMP-1) secretion (both p < 0.001), while markedly increasing type I procollagen production (p < 0.01). Mechanistic studies demonstrated that ellagic acid inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinases (MAPKs), downregulated cyclooxygenase-2 (COX-2), and upregulated heme oxygenase-1 (HO-1), a key antioxidant enzyme. Additionally, ellagic acid attenuated the mRNA expression of inflammatory cytokines, including interleukin-6 (IL-6) and interleukin-8 (IL-8), indicating its broad modulatory effects on oxidative and inflammatory pathways. Collectively, these findings suggest that ellagic acid is a promising plant-derived bioactive compound with strong antioxidant and anti-inflammatory properties, offering potential as a therapeutic agent for the prevention and treatment of skin aging. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 3187 KB  
Article
Green Extract from Pre-Harvest Tobacco Waste as a Non-Conventional Source of Anti-Aging Ingredients for Cosmetic Applications
by Mariana Leal, María A. Moreno, María E. Orqueda, Mario Simirgiotis, María I. Isla and Iris C. Zampini
Plants 2025, 14(14), 2189; https://doi.org/10.3390/plants14142189 - 15 Jul 2025
Viewed by 1332
Abstract
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the [...] Read more.
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the growth of the lower leaves. This study explores the potential of apical leaves from Nicotiana tabacum var. Virginia, discarded during the budding stage (pre-harvest waste). The leaves were extracted using environmentally friendly solvents (green solvents), including distilled water (DW) and two natural deep eutectic solvents (NaDESs), one consisting of simple sugars, fructose, glucose, and sucrose (FGS) and the other consisting of choline chloride and urea (CU). The anti-inflammatory and anti-aging potential of these green extracts was assessed by the inhibition of key enzymes related to skin aging. The xanthine oxidase and lipoxygenase activities were mostly inhibited by CU extracts with IC50 values of 63.50 and 8.0 μg GAE/mL, respectively. The FGS extract exhibited the greatest hyaluronidase inhibition (49.20%), followed by the CU extract (33.20%) and the DW extract (20.80%). Regarding elastase and collagenase inhibition, the CU extract exhibited the highest elastase inhibition, while all extracts inhibited collagenase activity, with values exceeding 65%. Each extract had a distinct chemical profile determined by LC-ESI-QTOF-MS/MS and spectrophotometric methods, with several shared compounds present in different proportions. CU extract is characterized by high concentrations of rutin, nicotiflorin, and azelaic acid, while FGS and DW extracts share major compounds such as quinic acid, fructosyl pyroglutamate, malic acid, and gluconic acid. Ames test and Caenorhabditis elegans assay demonstrated that at the concentrations at which the green tobacco extracts exhibit biological activities, they did not show toxicity. The results support the potential of N. tabacum extracts obtained with NaDESs as antiaging and suggest their promising applications in the cosmetic and cosmeceutical industries. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

21 pages, 2229 KB  
Article
Unlocking the Skin Health-Promoting Ingredients of Honeysuckle (Lonicera japonica Thunberg) Flower-Loaded Polyglycerol Fatty Acid Ester-Based Low-Energy Nanoemulsions
by Nara Yaowiwat, Pingtawan Bunmark, Siripat Chaichit, Worrapan Poomanee and Karnkamol Trisopon
Cosmetics 2025, 12(4), 151; https://doi.org/10.3390/cosmetics12040151 - 15 Jul 2025
Viewed by 3290
Abstract
This study aims to provide a comprehensive evaluation of the bioactive compounds present in honeysuckle flower (Lonicera japonica Thunb.) extract (HSF) and their remarkable antioxidant activity. A docking simulation was performed to clarify the binding affinities of the identified phytochemicals to enzymes [...] Read more.
This study aims to provide a comprehensive evaluation of the bioactive compounds present in honeysuckle flower (Lonicera japonica Thunb.) extract (HSF) and their remarkable antioxidant activity. A docking simulation was performed to clarify the binding affinities of the identified phytochemicals to enzymes associated with anti-aging and anti-inflammatory activities. In addition, the low-energy nanoemulsions based on optimally formulated polyglycerol fatty acid esters (PGFEs), developed through D-optimality, were designed for the incorporation of HSF extract. The result revealed that HSF is a rich source of diverse phenolic and flavonoid compounds that contribute to its remarkable antioxidant capacity. Molecular docking analysis indicates that its compounds exhibit anti-aging and anti-inflammatory activities, particularly through collagenase, hyaluronidase, and TNF-α inhibition. Furthermore, D-optimality revealed that HSF-loaded nanoemulsions can be fabricated by a surfactant to oil ratio (SOR) of 2:1 with a ratio of low hydrophilic-lipophilic balance (HLB) surfactant to high HLB surfactant (LHR) of 1:2. Polyglyceryl-6 laurate as a high HLB surfactant produced the optimal nanoemulsion with small particle size and possessed an encapsulation efficiency (EE) of 74.32 ± 0.19%. This is the first report to combine D-optimal design-based nanoemulsion development with a multi-level analysis of HSF, including phytochemical profiling, antioxidant evaluation, and in silico molecular docking. These findings highlight that HSF-loaded polyglycerol fatty acid ester-based nanoemulsions could be a skin health-promoting ingredient and effective alternative for a variety of skincare applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

16 pages, 2791 KB  
Article
Low-Molecular-Weight Collagen Peptide Improves Skin Dehydration and Barrier Dysfunction in Human Dermal Fibrosis Cells and UVB-Exposed SKH-1 Hairless Mice
by Eunjung Choi, Heeyeon Joo, Myunghee Kim, Do-Un Kim, Hee-Chul Chung and Jae Gon Kim
Int. J. Mol. Sci. 2025, 26(13), 6427; https://doi.org/10.3390/ijms26136427 - 3 Jul 2025
Cited by 4 | Viewed by 4780
Abstract
Ultraviolet B (UVB), a component of solar ultraviolet light, is a major contributor to skin photodamage. UVB exposure primarily affects the epidermis, which leads to wrinkle formation, loss of skin elasticity, oxidative stress, and inflammation. Prolonged or intense UVB exposure can increase the [...] Read more.
Ultraviolet B (UVB), a component of solar ultraviolet light, is a major contributor to skin photodamage. UVB exposure primarily affects the epidermis, which leads to wrinkle formation, loss of skin elasticity, oxidative stress, and inflammation. Prolonged or intense UVB exposure can increase the risk of skin cancer. Collagen peptides are known as functional foods that improve skin dryness and wound healing. In this study, we aimed to investigate the protective and ameliorative effects of a low-molecular-weight collagen peptide (LMWCP) with a high absorption rate and photodamage. In vitro analysis using human dermal fibroblasts (HDFs) demonstrated that LMWCP promoted skin protection by increasing procollagen type I production, enhancing cell proliferation and migration, and inhibiting MMP-1 activity. Furthermore, LMWCP intake was indicated by improved skin hydration, reduced trans-epidermal water loss (TEWL), and changes in the clinical parameters, including skin elasticity, erythema, and scaling scores in UVB-exposed hairless mice. In the UVB-damaged tissues, an increase in skin elasticity-related enzymes was observed along with a decrease in aging-related and pro-inflammatory gene expression. Histological analysis revealed an increase in collagen content and restoration of dermal thickness. These findings suggested that LMWCP has significant benefits in preventing and improving UVB-induced skin damage. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

Back to TopTop