ijms-logo

Journal Browser

Journal Browser

Network Pharmacology: An Emerging Field in Drug Discovery (2nd Edition)

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 1391

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130012, China
Interests: the relationship between enzyme structure and function; computer-aided drug design; computational structural biology; machine learning
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Network pharmacology is an emerging interdisciplinary field that integrates systems biology, network analysis, and pharmacology to explore the complex interactions between drugs, targets, and diseases. By analyzing the intricate networks of biological systems, network pharmacology aims to provide a holistic understanding of drug actions and their effects on the body, thereby addressing the multifaceted nature of diseases. This approach has revolutionized traditional drug discovery by shifting the focus from single-target to multi-target strategies, enabling the identification of novel therapeutic agents and the optimization of existing ones.

The purpose of this Special Issue is to provide a comprehensive overview of the state of the art in network pharmacology methodologies and their applications in drug discovery and development. We welcome original research articles, review articles, and short communications on one or more of the following topics:

  1. Development, implementation, and application of network pharmacology databases;
  2. Development and application of new network analysis tools and algorithms;
  3. Integration of multi-omics data into network pharmacology studies;
  4. Construction, visualization, and analysis of drug–target interaction networks;
  5. Identification of novel drug targets and pathways through network pharmacology;
  6. Application of network pharmacology in understanding complex diseases and multi-target drug discovery;
  7. Development and application of computational models for predicting drug efficacy and safety;
  8. Case studies on the successful application of network pharmacology in drug discovery and repurposing.

We hope that this Special Issue will serve as an entry point for newcomers into the exciting world of network pharmacology as well as a valuable reference for more experienced practitioners in the field.

Prof. Dr. Weiwei Han
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • network pharmacology
  • machine learning
  • databases
  • drug discovery
  • computer-aided drug design (CADD)
  • data mining

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 15870 KB  
Article
Molecular Insights into Bromocriptine Binding to GPCRs Within Histamine-Linked Signaling Networks: Network Pharmacology, Pharmacophore Modeling, and Molecular Dynamics Simulation
by Doni Dermawan, Lamiae Elbouamri, Samir Chtita and Nasser Alotaiq
Int. J. Mol. Sci. 2025, 26(17), 8717; https://doi.org/10.3390/ijms26178717 - 7 Sep 2025
Viewed by 1015
Abstract
This study aimed to investigate the molecular binding mechanisms of bromocriptine toward histamine-associated targets, exploring both antagonist-like and other potential interaction modes that may support therapeutic repurposing. Network pharmacology was applied to identify histamine-related pathways and prioritize potential protein targets. CXCR4, GHSR, and [...] Read more.
This study aimed to investigate the molecular binding mechanisms of bromocriptine toward histamine-associated targets, exploring both antagonist-like and other potential interaction modes that may support therapeutic repurposing. Network pharmacology was applied to identify histamine-related pathways and prioritize potential protein targets. CXCR4, GHSR, and OXTR were selected based on combined docking scores and pharmacophore modeling evidence. Molecular dynamics (MD) simulations over 100 ns assessed structural stability, flexibility, compactness, and solvent exposure. Binding site contact analysis and MM/PBSA free binding energy calculations were conducted to characterize binding energetics and interaction persistence. Bromocriptine exhibited stable binding to all three receptors, engaging key residues implicated in receptor modulation (e.g., Asp187 in CXCR4, Asp99 in GHSR, Arg232 in OXTR). The MM/PBSA ΔG_binding values of bromocriptine were −22.67 ± 3.70 kcal/mol (CXCR4 complex), −22.11 ± 3.55 kcal/mol (GHSR complex), and −21.43 ± 2.41 kcal/mol (OXTR complex), stronger than standard agonists and comparable to antagonists. Contact profiles revealed shared and unique binding patterns across targets, reflecting their potential for diverse modulatory effects. Bromocriptine demonstrates high-affinity binding to multiple histamine-associated GPCR targets, potentially exerting both inhibitory and modulatory actions. These findings provide a molecular basis for further experimental validation and therapeutic exploration in histamine-related conditions. Full article
Show Figures

Figure 1

Back to TopTop