Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,929)

Search Parameters:
Keywords = skin sensitizers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 857 KiB  
Article
Orange Allergy Beyond LTP: IgE Recognition of Germin-like Proteins in Citrus Fruits
by M. Soledad Zamarro Parra, Montserrat Martínez-Gomaríz, Alan Hernández, Javier Alcover, Isabel Dobski, David Rodríguez, Ricardo Palacios and Antonio Carbonell
Curr. Issues Mol. Biol. 2025, 47(8), 621; https://doi.org/10.3390/cimb47080621 - 5 Aug 2025
Viewed by 24
Abstract
Orange allergy is estimated to account for up to 3–4% of food allergies. Major allergens identified in orange (Citrus sinensis) include Cit s 1 (germin-like protein) and Cit s 2 (profilin), while Cit s 3 (non-specific lipid transfer protein, nsLTP) and [...] Read more.
Orange allergy is estimated to account for up to 3–4% of food allergies. Major allergens identified in orange (Citrus sinensis) include Cit s 1 (germin-like protein) and Cit s 2 (profilin), while Cit s 3 (non-specific lipid transfer protein, nsLTP) and Cit s 7 (gibberellin-regulated protein) have also been described. The objective of this study was to investigate the presence and IgE-binding capacity of germin-like proteins in citrus fruits other than oranges. We describe five patients with immediate allergic reactions after orange ingestion. All patients underwent skin prick tests (SPT) to aeroallergens and common food allergens, prick-by-prick testing with orange, lemon, and mandarin (pulp, peel, seeds), total IgE, specific IgE (sIgE), anaphylaxis scoring (oFASS), and the Food Allergy Quality of Life Questionnaire (FAQLQ-AF). Protein extracts from peel and pulp of orange, lemon, and mandarin were analyzed by Bradford assay, SDS-PAGE, and IgE immunoblotting using patient sera. Selected bands were identified by peptide mass fingerprinting. A 23 kDa band was recognized by all five patients in orange (pulp and peel), lemon (peel), and mandarin (peel). This band was consistent with Cit s 1, a germin-like protein already annotated in the IUIS allergen database for orange but not for lemon or mandarin. Peptide fingerprinting confirmed the germin-like identity of the 23 kDa bands in all three citrus species. Germin-like proteins of approximately 23 kDa were identified as IgE-binding components in peel extracts of orange, lemon, and mandarin, and in orange pulp. These findings suggest a potential shared allergen across citrus species that may contribute to allergic reactions independent of LTP sensitization. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

14 pages, 5448 KiB  
Article
A Study of Climate-Sensitive Diseases in Climate-Stressed Areas of Bangladesh
by Ahammadul Kabir, Shahidul Alam, Nusrat Jahan Tarin, Shila Sarkar, Anthony Eshofonie, Mohammad Ferdous Rahman Sarker, Abul Kashem Shafiqur Rahman and Tahmina Shirin
Climate 2025, 13(8), 166; https://doi.org/10.3390/cli13080166 - 5 Aug 2025
Viewed by 70
Abstract
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of [...] Read more.
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of data on climate-sensitive diseases and related hospital visits in these areas. This study explored the prevalence of such diseases using the Delphi method through focus group discussions with 493 healthcare professionals from 153 hospitals in 156 upazilas across 21 districts and ten zones. Participants were selected by district Civil Surgeons. Key climate-sensitive diseases identified included malnutrition, diarrhea, pneumonia, respiratory infections, typhoid, skin diseases, hypertension, cholera, mental health disorders, hepatitis, heat stroke, and dengue. Seasonal surges in hospital visits were noted, influenced by factors like extreme heat, air pollution, floods, water contamination, poor sanitation, salinity, and disease vectors. Some diseases were zone-specific, while others were widespread. Regions with fewer hospital visits often had higher disease burdens, indicating under-reporting or lack of access. The findings highlight the need for area-specific adaptation strategies and updates to the Health National Adaptation Plan. Strengthening resilience through targeted investment and preventive measures is crucial to reducing health risks from climate change. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

21 pages, 2139 KiB  
Review
New Perspectives on Nutraceutical Insulin Sensitizing Agents in the Treatment of Psoriasis and Other Dermatological Diseases
by Pietro Morrone, Francesca Caroppo, Alberto De Pedrini, Alessandro Colletti and Germano Baj
Int. J. Mol. Sci. 2025, 26(15), 7538; https://doi.org/10.3390/ijms26157538 - 4 Aug 2025
Viewed by 140
Abstract
Insulin resistance (IR) plays a pivotal role in the pathogenesis of several dermatological diseases, including psoriasis, acne, acanthosis nigricans, and hidradenitis suppurativa (HS). These conditions are characterized by chronic inflammation, oxidative stress, and metabolic dysfunction, which are exacerbated by IR. This narrative review [...] Read more.
Insulin resistance (IR) plays a pivotal role in the pathogenesis of several dermatological diseases, including psoriasis, acne, acanthosis nigricans, and hidradenitis suppurativa (HS). These conditions are characterized by chronic inflammation, oxidative stress, and metabolic dysfunction, which are exacerbated by IR. This narrative review examines the emerging role of nutraceutical insulin-sensitizing agents (ISAs), including myo-inositol, alpha-lipoic acid, vitamin D, vitamin C, and folic acid, in managing IR-related dermatological disorders. A comprehensive literature search was conducted across Cochrane Library and MEDLINE (1965–May 2025), focusing on clinical trials involving nutraceutical ISAs in dermatological conditions associated with IR. Only human studies published in English were included. Evidence from randomized controlled trials (RCTs) and observational studies suggests that ISAs improve glycemic control, reduce oxidative stress, and modulate inflammatory pathways in IR-related dermatoses. Notably, myo-inositol combined with magnesium and folic acid has demonstrated significant reductions in acne severity, hirsutism, and quality-of-life impairments in women with polycystic ovary syndrome. Similar benefits have been observed in psoriasis and HS, though data remain limited. Nutraceutical ISAs offer a promising adjunctive approach for the management of IR-associated dermatological diseases, potentially addressing both metabolic dysfunction and skin inflammation. However, robust RCTs with long-term follow-up are needed to confirm these preliminary findings and to establish optimal treatment regimens. Full article
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Impact of Kickxia elatine In Vitro-Derived Stem Cells on the Biophysical Properties of Facial Skin: A Placebo-Controlled Trial
by Anastasia Aliesa Hermosaningtyas, Anna Kroma-Szal, Justyna Gornowicz-Porowska, Maria Urbanska, Anna Budzianowska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8625; https://doi.org/10.3390/app15158625 - 4 Aug 2025
Viewed by 176
Abstract
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various [...] Read more.
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various skin biophysical parameters. The cream was applied to the cheek once daily for six weeks on 40 healthy female volunteers between the ages of 40 to 49. The evaluated skin parameters including skin hydration, transepidermal water loss (TEWL), erythema intensity (EI), melanin intensity (MI), skin surface pH, and skin structure, wrinkle depth, vascular lesions, and vascular discolouration. The results indicated that significant improvements were observed in skin hydration (from 40.36 to 63.00 AU, p < 0.001) and there was a decrease in TEWL score (14.82 to 11.76 g/h/m2, p < 0.001), while the skin surface pH was maintained (14.82 to 11.76 g/h/m2, p < 0.001). Moreover, the K. elatine cell extract significantly improved skin structure values (9.23 to 8.50, p = 0.028), reduced vascular lesions (2.72 to 1.54 mm2, p = 0.011), and lowered skin discolouration (20.98% to 14.84%, p < 0.001), indicating its moisturising, protective, brightening, and soothing properties. These findings support the potential use of K. elatine cell extract in dermocosmetic formulations targeting dry, sensitive, or ageing skin. Full article
Show Figures

Figure 1

20 pages, 489 KiB  
Article
Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies
by Andrew J. Keebaugh, Megan L. Steele, Argel Islas-Robles, Jakeb Phillips, Allison Hilberer, Kayla Cantrell, Yaroslav G. Chushak, David R. Mattie, Rebecca A. Clewell and Elaine A. Merrill
Toxics 2025, 13(8), 660; https://doi.org/10.3390/toxics13080660 - 2 Aug 2025
Viewed by 208
Abstract
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may [...] Read more.
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may experience ACD at elevated rates compared to other occupations. We aimed to better understand the utility of non-animal testing methods in characterizing the sensitization potential of chemicals used during Air Force operations by evaluating the skin sensitization hazard of Air Force-relevant chemicals using new approach methodologies (NAMs) in a case study. We also evaluated the use of NAM data to develop preliminary candidate surface guidelines (PCSGs, maximum concentrations of chemicals on workplace surfaces to prevent induction of dermal sensitization) for chemicals identified as sensitizers. NAMs for assessing skin sensitization, including in silico models and experimental assays, were leveraged into an integrated approach to predict sensitization hazard for 19 chemicals. Local lymph node assay effective concentration values were predicted from NAM assay data via previously published quantitative models. The derived values were used to calculate PCSGs, which can be used to compare the presence of these chemicals on work surfaces to better understand the risk of Airmen developing ACD from occupational exposures. Full article
Show Figures

Figure 1

15 pages, 5468 KiB  
Article
Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties
by Xuanyu Pan, Hongyuan Zhu, Fufei Qin, Mingxing Jing, Han Wu and Zhuangzhi Sun
Sensors 2025, 25(15), 4765; https://doi.org/10.3390/s25154765 - 1 Aug 2025
Viewed by 298
Abstract
Ion-conductive-hydrogel strain sensors demonstrate broad application prospects in the fields of flexible sensing and bioelectric signal monitoring due to their excellent skin conformability and efficient signal transmission characteristics. However, traditional preparation methods face significant challenges in enhancing adhesion strength, conductivity, and mechanical stability. [...] Read more.
Ion-conductive-hydrogel strain sensors demonstrate broad application prospects in the fields of flexible sensing and bioelectric signal monitoring due to their excellent skin conformability and efficient signal transmission characteristics. However, traditional preparation methods face significant challenges in enhancing adhesion strength, conductivity, and mechanical stability. To address this issue, this study employed a freeze–thaw cycling method, using polyvinyl alcohol (PVA) as the matrix material, tannic acid (TA) as the adhesion reinforcement material, and lithium chloride (LiCl) as the conductive medium, successfully developing an ion-conductive hydrogel with superior comprehensive performance. Experimental data confirm that the PVA-TA-0.5/LiCl-1 hydrogel achieves optimal levels of adhesion strength (2.32 kPa on pigskin) and conductivity (0.64 S/m), while also exhibiting good tensile strength (0.1 MPa). Therefore, this hydrogel shows great potential for use in strain sensors, demonstrating excellent sensitivity (GF = 1.15), reliable operational stability, as the ΔR/R0 signal remains virtually unchanged after 2500 cycles of stretching, and outstanding strain sensing and electromyographic signal acquisition capabilities, fully highlighting its practical value in the fields of flexible sensing and bioelectric monitoring. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

16 pages, 1919 KiB  
Article
CampyTube: Seamless Integration of a Molecular Test and Lateral Flow Detection of Campylobacter in a Single Vial
by Natalia Sandetskaya, Andreas Kölsch, Kai Mattern, Vanessa Vater, Dirk Kuhlmeier and Florian Priller
Biosensors 2025, 15(8), 497; https://doi.org/10.3390/bios15080497 - 1 Aug 2025
Viewed by 135
Abstract
Background: The efficient control of hygiene and Campylobacter’s contamination status at various steps of poultry meat production is essential for the prevention of Campylobacter transmission to humans. Microbiological methods are laborious and time-consuming, and molecular methods of detection are often too skill- [...] Read more.
Background: The efficient control of hygiene and Campylobacter’s contamination status at various steps of poultry meat production is essential for the prevention of Campylobacter transmission to humans. Microbiological methods are laborious and time-consuming, and molecular methods of detection are often too skill- and infrastructure-demanding. Methods: We have developed CampyTube, a simple and user-friendly format for the integration of isothermal DNA amplification with embedded instrument-free detection on a miniaturized lateral flow test in a single vial. All test components, from the dry amplification reagents to the mini lateral flow tests, are incorporated into a standard single vial, which is closed after the addition of the liquid sample and never has to be opened again. This ensures the absolute prevention of carry-over contamination and makes the system very safe and simple to use in point-of-need settings. Results: As few as 60 Campylobacter genome copies per reaction could be successfully detected with CampyTube. We have primarily developed and evaluated CampyTube for the detection of Campylobacter in chicken neck skin samples and could reach 100% sensitivity and 100% specificity in the samples exceeding the regulatory limit of 1000 CFU/g confirmed microbiologically, while the sensitivity in all samples that tested positive using qPCR (1.4 × 102–2.5 × 106 genome copies/g) was 71.1%. We discuss the impact of sample preparation on CampyTube performance and suggest further options for test optimization. Conclusions: CampyTube is a highly versatile and efficient, yet simple, affordable, and material-saving system that can be adapted for other targets and sample types. Full article
(This article belongs to the Special Issue Biosensors for Monitoring and Diagnostics)
Show Figures

Figure 1

17 pages, 5703 KiB  
Review
IFN γ and the IFN γ Signaling Pathways in Merkel Cell Carcinoma
by Lina Song, Jinye Guan, Qunmei Zhou, Wenshang Liu, Jürgen C. Becker and Dan Deng
Cancers 2025, 17(15), 2547; https://doi.org/10.3390/cancers17152547 - 1 Aug 2025
Viewed by 198
Abstract
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, [...] Read more.
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, the role of innate immune signaling, particularly interferon-γ (IFN γ) and its downstream pathways, remains underexplored. This review summarizes recent findings on IFN-γ in MCC, highlighting its dual role in promoting both antitumor immunity and immune evasion. IFN-γ enhances cytotoxic T cell responses, upregulates MHC class I/II expression, and induces tumor cell apoptosis. Transcriptomic studies have shown that IFN-γ treatment upregulates immune-regulatory genes including PD-L1, HLA-A/B/C, and IDO1 by over threefold; it also activates APOBEC3B and 3G, contributing to antiviral defense and tumor editing. Clinically, immune checkpoint inhibitors (ICIs) such as pembrolizumab and avelumab yield objective response rates of 30–56% and two-year overall survival rates exceeding 60% in advanced MCC. However, approximately 50% of patients do not respond, in part due to IFN-γ signaling deficiencies. This review further discusses IFN-γ’s crosstalk with the STAT1/3/5 pathways and emerging combination strategies aimed at restoring immune sensitivity. Understanding these mechanisms may inform personalized immunotherapeutic approaches and guide the development of IFN-γ–based interventions in MCC. Full article
(This article belongs to the Special Issue Histopathology and Pathogenesis of Skin Cancer)
Show Figures

Figure 1

18 pages, 12329 KiB  
Article
Red Cabbage Anthocyanin-Loaded Bacterial Cellulose Hydrogel for Colorimetric Detection of Microbial Contamination and Skin Healing Applications
by Hanna Melnyk, Olesia Havryliuk, Iryna Zaets, Tetyana Sergeyeva, Ganna Zubova, Valeriia Korovina, Maria Scherbyna, Lilia Savinska, Lyudmila Khirunenko, Evzen Amler, Maria Bardosova, Oleksandr Gorbach, Sergiy Rogalsky and Natalia Kozyrovska
Polymers 2025, 17(15), 2116; https://doi.org/10.3390/polym17152116 - 31 Jul 2025
Viewed by 314
Abstract
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics [...] Read more.
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics the skin matrix. Biological activities of RCA extract in bacterial cellulose (BC) showed no cytotoxicity and skin-sensitizing potential to human cells at concentrations of RCAs similar to those released from BC/RCA dressings (4.0–40.0 µg/mL). A decrease in cell viability and apoptosis was observed in human cancer cells with RCAs. The invisible eye detection of the early color change signal from RCAs in response to pH alteration by bacteria was recorded with a smartphone application. The incorporation of RCAs into BC polymer has altered the morphology of its matrix, resulting in a denser cellulose microfibril network. The complete coincidence of the vibrational modes detected in the absorption spectra of the cellulose/RCA composite with the modes in RCAs most likely indicates that RCAs retain their structure in the BC matrix. Affordable, sensitive halochromic BC/RCA hydrogels can be recommended for online monitoring of microbial contamination, making them accessible to patients. Full article
Show Figures

Graphical abstract

23 pages, 2113 KiB  
Article
Accumulation Kinetics and Biological Action of Doxorubicin in Rabbit Intervertebral Discs
by Eleni Mavrogonatou, Anastasios Kouroumalis, Lubna Khaldi, Christophoros Christophoridis and Dimitris Kletsas
Int. J. Mol. Sci. 2025, 26(15), 7386; https://doi.org/10.3390/ijms26157386 - 30 Jul 2025
Viewed by 178
Abstract
Doxorubicin (DOX) is widely used for the treatment of several tumors, but considerable dose-dependent side effects on many normal tissues, including bones, have been reported. The aim of the present study was to follow for the first time the kinetics of DOX accumulation/clearance [...] Read more.
Doxorubicin (DOX) is widely used for the treatment of several tumors, but considerable dose-dependent side effects on many normal tissues, including bones, have been reported. The aim of the present study was to follow for the first time the kinetics of DOX accumulation/clearance in the non-vascularized intervertebral disc (IVD), as well as to assess the drug’s biological action in the annulus fibrosus (AF) and nucleus pulposus (NP) IVD cells and tissues. DOX was administered intravenously to rabbits before the isolation of IVDs, in which DOX quantification was performed using a highly sensitive LC-HRMS/MS analytical method. The effect of the drug on IVD cells’ physiology was assessed in vitro, while IVD tissue quality post-DOX administration was studied in vivo through histological analysis. DOX delivery was found significantly lower in the IVD compared to the highly vascularized skin, declining from the outer AF to the inner NP. The low DOX concentrations reaching the IVDs had marginal effects on cells’ viability, intracellular redox status, and p38 MAPK activation, while they did not evoke cellular senescence. Most importantly, the drug did not negatively affect ECM integrity, as collagen and proteoglycan content remained stable in vitro and in vivo. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 4789 KiB  
Systematic Review
Efficacy of Combined Oral Isotretinoin and Desloratadine or Levocetirizine vs. Isotretinoin Monotherapy in Treating Acne Vulgaris: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Julia Woźna, Andrzej Bałoniak, Jan Stępka, Adriana Polańska, Ewa Mojs and Ryszard Żaba
Biomedicines 2025, 13(8), 1847; https://doi.org/10.3390/biomedicines13081847 - 30 Jul 2025
Viewed by 409
Abstract
Background/Objectives: Acne vulgaris is a widespread, chronic inflammatory skin condition that significantly impacts patients’ quality of life. Although oral isotretinoin remains the most effective treatment, recent evidence suggests that H1-antihistamines such as desloratadine and levocetirizine may enhance acne therapy. This study [...] Read more.
Background/Objectives: Acne vulgaris is a widespread, chronic inflammatory skin condition that significantly impacts patients’ quality of life. Although oral isotretinoin remains the most effective treatment, recent evidence suggests that H1-antihistamines such as desloratadine and levocetirizine may enhance acne therapy. This study assesses whether combining H1-antihistamines to isotretinoin enhances treatment efficacy in acne vulgaris compared to isotretinoin alone. Methods: Our analysis included 10 randomized controlled trials involving 675 patients collectively, predominantly from Asia and the Middle East. Data were extracted by two independent reviewers, with discrepancies resolved by a third. Risk of bias was assessed using the Cochrane RoB 2 tool. Analyses were performed using RevMan 5.4 with random-effects models, and heterogeneity was evaluated via I2 and Q tests. Sensitivity analyses were conducted to assess result robustness. Results: Combination therapy with isotretinoin and desloratadine showed a significantly greater reduction in GAGS (Global Acne Grading Scale) score by week 12 (p < 0.00001; MD 2.68, 95% CI 1.60 to 3.75; I2 = 0%) while earlier timepoints showed non-significant or borderline results. For inflammatory lesions, significant improvements with desloratadine emerged at weeks 4, 8, and 12 after excluding an influential outlier, with low heterogeneity and consistent direction of effect. Non-inflammatory lesions did not differ significantly at weeks 4 or 8. At week 12, a significant reduction was seen in the desloratadine subgroup (OR 2.61, p = 0.003, I2 = 11%) and in overall pooled analysis (OR 2.77, p < 0.0001, I2 = 2%). Among side effects, acne flare-ups, pruritus, and cheilitis were significantly reduced in the desloratadine group, as well as in pooled analysis. Xerosis did not consistently differ between groups. Overall, desloratadine improved tolerability and reduced mucocutaneous adverse events more than levocetirizine. Conclusions: Current evidence suggests that combining oral antihistamines with isotretinoin may offer therapeutic benefits in acne management, particularly in enhancing tolerability and potentially improving clinical outcomes, as reflected by significant reductions in GAGS scores and mucocutaneous adverse effects such as cheilitis, pruritus, and acne flare-ups. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

18 pages, 3577 KiB  
Article
Smart Thermoresponsive Sol–Gel Formulation of Polyhexanide for Rapid and Painless Burn and Wound Management
by Levent Alparslan, Gülşah Torkay, Ayca Bal-Öztürk, Çinel Köksal Karayıldırım and Samet Özdemir
Polymers 2025, 17(15), 2079; https://doi.org/10.3390/polym17152079 - 30 Jul 2025
Viewed by 466
Abstract
Traditional wound and burn treatments often fall short in balancing antimicrobial efficacy, patient comfort, and ease of application. This study introduces a novel, transparent, thermoresponsive sol–gel formulation incorporating polyhexamethylene biguanide (PHMB) for advanced topical therapy. Utilizing Poloxamer 407 as a biocompatible carrier, the [...] Read more.
Traditional wound and burn treatments often fall short in balancing antimicrobial efficacy, patient comfort, and ease of application. This study introduces a novel, transparent, thermoresponsive sol–gel formulation incorporating polyhexamethylene biguanide (PHMB) for advanced topical therapy. Utilizing Poloxamer 407 as a biocompatible carrier, the formulation remains a sprayable liquid at room temperature and instantly gels upon contact with body temperature, enabling painless, pressure-free application on sensitive, injured skin. Comprehensive in vitro and in vivo evaluations confirmed the formulation’s broad-spectrum antimicrobial efficacy (≥5 log10 reduction in 30 s), high biocompatibility (viability > 70% in fibroblasts), non-irritancy (OECD 425-compliant), and physical stability across three months. Importantly, the formulation maintained fibroblast migration capacity—crucial for wound regeneration—while exhibiting rapid sol-to-gel transition at ~34 °C. These findings highlight the system’s potential as a next-generation wound dressing with enhanced user compliance, transparent monitoring capability, and rapid healing support, particularly in disaster or emergency scenarios. Full article
(This article belongs to the Special Issue Functional Polymers and Novel Applications)
Show Figures

Graphical abstract

19 pages, 1159 KiB  
Article
Multifactorial Refractory Acne in Women: Insights from a Case Series Involving Hormonal-, Metabolic-, and Corticosteroid-Related Triggers
by Alexa Florina Bungau, Ruxandra Cristina Marin, Delia Mirela Tit, Gabriela Bungau, Ada Radu, Daciana Elena Branisteanu and Laura Maria Endres
Life 2025, 15(8), 1196; https://doi.org/10.3390/life15081196 - 28 Jul 2025
Viewed by 451
Abstract
Acne vulgaris is a multifactorial inflammatory skin disorder that significantly impairs quality of life and may signal underlying systemic dysfunction, particularly in adult women with treatment-resistant or atypical presentations. This case series presents three clinically and etiologically distinct examples of persistent acne in [...] Read more.
Acne vulgaris is a multifactorial inflammatory skin disorder that significantly impairs quality of life and may signal underlying systemic dysfunction, particularly in adult women with treatment-resistant or atypical presentations. This case series presents three clinically and etiologically distinct examples of persistent acne in female patients, each associated with different contributing factors: long-term topical corticosteroid misuse, polycystic ovary syndrome (PCOS), and metabolic syndrome with autoimmune thyroiditis. All cases underwent comprehensive dermatologic evaluation, endocrine/metabolic assessments, and personalized therapeutic interventions, ranging from corticosteroid withdrawal and barrier repair to hormonal modulation and insulin-sensitizing therapy. Clinical progression was monitored for up to six months, revealing favorable responses in all cases, with substantial lesion clearance and improved skin quality. These real-world cases highlight the importance of an integrative, interdisciplinary diagnostic approach in refractory acne and support the need for individualized, long-term management strategies tailored to underlying systemic contributors. Full article
Show Figures

Figure 1

13 pages, 8086 KiB  
Article
Flexible FLIG-Based Temperature Sensor Enabled by Femtosecond Laser Direct Writing for Thermal Monitoring in Health Systems
by Huansheng Wu, Cong Wang, Linpeng Liu and Ji’an Duan
Sensors 2025, 25(15), 4643; https://doi.org/10.3390/s25154643 - 26 Jul 2025
Viewed by 370
Abstract
In this study, a facile and mask-free femtosecond laser direct writing (FLDW) approach is proposed to fabricate porous graphene (FLIG) patterns directly on polyimide (PI) substrates. By systematically adjusting the laser scanning spacing (10–25 μm), denser and more continuous microstructures are obtained, resulting [...] Read more.
In this study, a facile and mask-free femtosecond laser direct writing (FLDW) approach is proposed to fabricate porous graphene (FLIG) patterns directly on polyimide (PI) substrates. By systematically adjusting the laser scanning spacing (10–25 μm), denser and more continuous microstructures are obtained, resulting in significantly enhanced thermal sensitivity. The optimized sensor demonstrated a temperature coefficient of 0.698% °C−1 within the range of 40–120 °C, with response and recovery times of 10.3 s and 20.9 s, respectively. Furthermore, it exhibits remarkable signal stability across multiple thermal cycles, a testament to its reliability in extreme conditions. Moreover, the sensor was successfully integrated into a 3D-printed robotic platform, achieving both contact and non-contact temperature detection. These results underscore the sensor’s practical adaptability for real-time thermal sensing. This work presents a viable and scalable methodology for fabricating high-performance FLIG-based flexible temperature sensors, with extensive application prospects in wearable electronics, electronic skin, and intelligent human–machine interfaces. Full article
(This article belongs to the Special Issue State of the Art in Wearable Sensors for Health Monitoring)
Show Figures

Figure 1

21 pages, 2352 KiB  
Article
Saponins from Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh: Comparative Assessment of Cytotoxic Potential Against a Wide Panel of Cancer Cell Lines
by Karolina Grabowska, Adam Mynarski, Agnieszka Galanty, Dagmara Wróbel-Biedrawa, Paweł Żmudzki and Irma Podolak
Molecules 2025, 30(15), 3126; https://doi.org/10.3390/molecules30153126 - 25 Jul 2025
Viewed by 158
Abstract
Two triterpene saponins, hederagenin glucosides, including a novel monodesmoside: 3-O-β-D-glucopyranosyl(1→3)-β-D-glucopyranosyl] hederagenin (compound 1), were isolated from the fruits of Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh (Amaranthaceae). These compounds, together with hederagenin itself (compound 4) and a commercially available [...] Read more.
Two triterpene saponins, hederagenin glucosides, including a novel monodesmoside: 3-O-β-D-glucopyranosyl(1→3)-β-D-glucopyranosyl] hederagenin (compound 1), were isolated from the fruits of Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh (Amaranthaceae). These compounds, together with hederagenin itself (compound 4) and a commercially available 28-O-β-D-glucopyranosyl hederagenin ester (compound 3), were evaluated for cytotoxicity and selectivity across a wide panel of human cancer cell lines (skin, prostate, gastrointestinal, thyroid, and lung). All four compounds exhibited dose- and time-dependent effects, with varying potency depending on the specific cancer type. The isolated bidesmosidic saponin (3-O-β-D-glucopyranosyl(1→3)-β-D-glucopyranosyl] hederagenin 28-O-β-D-glucopyranosyl ester—compound 2) showed the strongest activity and selectivity, with an IC50 = 6.52 μg/mL after 48 h incubation against WM793 melanoma, and almost no effect on normal HaCaT skin cells (IC50 = 39.94 μg/mL). Multivariate analysis of the obtained data using principal component analysis (PCA) and hierarchical cluster analysis (HCA) supported the assumption that cytotoxicity is influenced by the type of compound, its concentration, and the intrinsic sensitivity of the cell line. Structure-activity observations between closely related hederagenin derivatives are also briefly presented. Full article
Show Figures

Graphical abstract

Back to TopTop