Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (427)

Search Parameters:
Keywords = skin fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3969 KiB  
Article
Evaluation of the Synthesis and Skin Penetration Pathway of Folate-Conjugated Polymeric Micelles for the Dermal Delivery of Irinotecan and Alpha-Mangostin
by Thanchanok Sirirak and Thirapit Subongkot
Pharmaceutics 2025, 17(8), 1014; https://doi.org/10.3390/pharmaceutics17081014 - 5 Aug 2025
Viewed by 75
Abstract
Background/Objectives: The present study aimed to synthesize folate-conjugated poloxamers and develop polymeric micelles for the dermal delivery of irinotecan and alpha-mangostin for the treatment of melanoma using poloxamer 188 and poloxamer 184, which have never been synthesized with folate before. Methods: [...] Read more.
Background/Objectives: The present study aimed to synthesize folate-conjugated poloxamers and develop polymeric micelles for the dermal delivery of irinotecan and alpha-mangostin for the treatment of melanoma using poloxamer 188 and poloxamer 184, which have never been synthesized with folate before. Methods: Poloxamer 188 and poloxamer 184 were synthesized with folate by esterification. The in vitro skin penetration enhancement of irinotecan- and alpha-mangostin-loaded folate-conjugated polymeric micelles was evaluated. The skin penetration pathway of folate-conjugated polymeric micelles was investigated by colocalization of multiple fluorescently labeled particles using confocal laser scanning microscopy (CLSM). Results: Folate-conjugated poloxamer 188 and poloxamer 184 were successfully synthesized. The prepared irinotecan- and alpha-mangostin-loaded folate-conjugated polymeric micelles from poloxamer 188 and poloxamer 184 had particle sizes of approximately 180 and 150 nm, respectively, indicating a positive charge with a narrow size distribution which could be easily taken up into cells. An in vitro skin penetration study revealed that folate-conjugated polymeric micelles from poloxamer 184 significantly enhanced the skin penetration of irinotecan and alpha-mangostin to a greater extent than the solution. CLSM visualization revealed that folate-conjugated polymeric micelles penetrated through the skin by the transfollicular pathway as the major penetration pathway, whereas penetration by the intercluster pathway, transcellular pathway and intercellular pathway constituted a minor pathway. Conclusions: Folate-conjugated poloxamer 184 polymeric micelles are promising candidates for the dermal delivery of anticancer drugs by the transfollicular pathway as the major skin penetration pathway. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

14 pages, 7022 KiB  
Article
Sensitive and Facile Detection of Aloin via N,F-CD-Coated Test Strips Coupled with a Miniaturized Fluorimeter
by Guo Wei, Chuanliang Wang, Rui Wang, Peng Zhang, Xuhui Geng, Jinhua Li, Abbas Ostovan, Lingxin Chen and Zhihua Song
Biomolecules 2025, 15(7), 1052; https://doi.org/10.3390/biom15071052 - 21 Jul 2025
Viewed by 301
Abstract
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects [...] Read more.
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects (increased carcinogenicity caused by excessive use of aloin) impacting human health. This investigation was inspired by the good fluorescence properties of carbon dots (CDs); CD-based sensors have aroused a great deal of interest due to their excellent sensitivity and selectivity. Thus, it is of great significance to develop novel CD-based sensors for aloin determination. Herein, N,F-CDs were designed and synthesized through a convenient hydrothermal strategy; the synthesized N,F-CDs possessed good fluorescence performance and a small particle size (near 4.3 nm), which demonstrated the successful preparation of N,F-CDs. The resulting N,F-CDs possessed a large Stokes shift and could emit a highly stable green fluorescence. The fluorescence of the N,F-CDs could be effectively quenched by aloin through the inner filter effect. Furthermore, the synthesis procedure was easy to operate. Finally, the N,F-CD-coated test strips were fabricated and combined with a miniaturized fluorimeter for the fluorescence detection of aloin via the inner filter effect for the first time. The N,F-CD-coated test strips were fabricated and used for the fluorescence sensing of aloin, and the results were compared with a typical ultraviolet (UV) method. The N,F-CD-coated test strips exhibited high recovery (96.9~106.1%) and sensitivity (31.8 nM, n = 3), good selectivity, low sample consumption (1 μL), high speed (5 min), good stability, and anti-interference properties. The results indicate that N,F-CD-coated test strips are applicable for the quantitative determination of aloin in bovine serum, orange juice, and urine samples. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

15 pages, 980 KiB  
Article
Assessment of Microvascular Disturbances in Children with Type 1 Diabetes—A Pilot Study
by Anna Wołoszyn-Durkiewicz, Edyta Dąbrowska, Marcin Hellmann, Anna Jankowska, Mariusz J. Kujawa, Dominik Świętoń, Agata Durawa, Joanna Kuhn, Joanna Szypułowska-Grzyś, Agnieszka Brandt-Varma, Jacek Burzyński, Jędrzej Chrzanowski, Arkadiusz Michalak, Aleksandra Michnowska, Dalia Trzonek, Jacek Wolf, Krzysztof Narkiewicz, Edyta Szurowska and Małgorzata Myśliwiec
Biosensors 2025, 15(7), 439; https://doi.org/10.3390/bios15070439 - 8 Jul 2025
Viewed by 501
Abstract
Endothelial dysfunction appears early in type 1 diabetes (T1D). The detection of the first vascular disturbances in T1D patients is crucial, and the introduction of novel techniques, such as flow-mediated skin fluorescence (FMSF) and adaptive optics retinal camera (Rtx) imaging, gives hope for [...] Read more.
Endothelial dysfunction appears early in type 1 diabetes (T1D). The detection of the first vascular disturbances in T1D patients is crucial, and the introduction of novel techniques, such as flow-mediated skin fluorescence (FMSF) and adaptive optics retinal camera (Rtx) imaging, gives hope for better detection and prevention of angiopathies in the future. In this study, we aimed to investigate microcirculation disturbances in pediatric patients with T1D with the use of FMSF and Rtx imaging. This research focused especially on the relationship between microvascular parameters obtained in FMSF and Rtx measurements, and the glycemic control evaluated in continuous glucose monitoring (CGM) reports. We observed significantly increased wall thickness (WT) and wall-to-lumen ratio (WLR) values in T1D patients in comparison to the control group. Although we did not observe significant differences between the T1D and control groups in the FMSF results, a trend toward significance between the time in range (TIR) and hyperemic response (HRmax) and an interesting correlation between the carotid intima-media thickness (cIMTmax) and HRmax. were observed. In conclusion, FMSF and Rtx measurments are innovative techniques enabling the detection of early microvascular disturbances. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

14 pages, 2452 KiB  
Article
Fructose-Induced Glycation End Products Promote Skin-Aging Phenotypes and Senescence Marker Expression in Human Dermal Fibroblasts
by Antonella Rella, Dawn Layman, Rong Dang, Miriam Rafailovich, Robert Maidhof and Nadine Pernodet
Int. J. Mol. Sci. 2025, 26(13), 6162; https://doi.org/10.3390/ijms26136162 - 26 Jun 2025
Viewed by 583
Abstract
Skin aging is a multi-factorial process characterized by the progressive deterioration of biomechanical properties and cellular functionality. One such factor is the formation of advanced glycation end products (AGEs), which are known to have detrimental effects on the skin, including stiffening of the [...] Read more.
Skin aging is a multi-factorial process characterized by the progressive deterioration of biomechanical properties and cellular functionality. One such factor is the formation of advanced glycation end products (AGEs), which are known to have detrimental effects on the skin, including stiffening of the extracellular matrix (ECM) and reduction of cellular proliferation. AGEs accumulate because of sugar metabolism dysfunction; however, the direct impact of elevated sugar levels on cellular physiology requires further investigation. Here, we elucidated the effects of elevated fructose levels on skin cell function using in vitro models and hypothesized that high fructose levels adversely impact cell function. By fluorescence microscopy, we observed that high fructose induced different cellularity, cell morphology, and stress fiber appearance than the controls. Skin cells exposed to high fructose levels showed impaired growth and delayed closure in an artificial wound model. Mechanistically, high fructose conditions induce inflammatory cytokines and activate the NFκB pathway. Furthermore, we observed for the first time an increase in the senescence markers p16, p21, and p53 in response to high fructose levels. Taken together, we show that high fructose levels affect many critical skin functions that contribute to the aging process and recapitulate several aspects of aging related to AGEs. Full article
(This article belongs to the Special Issue Advanced Research of Skin Inflammation and Related Diseases)
Show Figures

Figure 1

16 pages, 497 KiB  
Article
Numerical Analysis of a SiN Digital Fourier Transform Spectrometer for a Non-Invasive Skin Cancer Biosensor
by Miguel Ángel Nava Blanco and Gerardo Antonio Castañón Ávila
Sensors 2025, 25(12), 3792; https://doi.org/10.3390/s25123792 - 18 Jun 2025
Viewed by 485
Abstract
Early detection and continuous monitoring of diseases are critical to improving patient outcomes, treatment adherence, and diagnostic accuracy. Traditional melanoma diagnosis relies primarily on visual assessment and biopsy, with reported accuracies ranging from 50% to 90% and significant inter-observer variability. Among emerging diagnostic [...] Read more.
Early detection and continuous monitoring of diseases are critical to improving patient outcomes, treatment adherence, and diagnostic accuracy. Traditional melanoma diagnosis relies primarily on visual assessment and biopsy, with reported accuracies ranging from 50% to 90% and significant inter-observer variability. Among emerging diagnostic technologies, Raman spectroscopy has demonstrated considerable promise for non-invasive disease detection, particularly in early-stage skin cancer identification. A portable, real-time Raman spectroscopy system could significantly enhance diagnostic precision, reduce biopsy reliance, and expedite diagnosis. However, miniaturization of Raman spectrometers for portable use faces significant challenges, including weak signal intensity, fluorescence interference, and inherent trade-offs between spectral resolution and the signal-to-noise ratio. Recent advances in silicon photonics present promising solutions by facilitating efficient light collection, enhancing optical fields via high-index-contrast waveguides, and allowing compact integration of photonic components. This work introduces a numerical analysis of an integrated digital Fourier transform spectrometer implemented on a silicon-nitride (SiN) platform, specifically designed for Raman spectroscopy. The proposed system employs a switch-based digital Fourier transform spectrometer architecture coupled with a single optical power meter for detection. Utilizing a regularized regression method, we successfully reconstructed Raman spectra in the 800 cm−1 to 1800 cm−1 range, covering spectra of both benign and malignant skin lesions. Our results demonstrate the capability of the proposed system to effectively differentiate various skin cancer types, highlighting its feasibility as a non-invasive diagnostic sensor. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 3356 KiB  
Article
Engineered Nanoclusters to Selectively Reduce Mesenchymal and Epithelial Melanoma Cell Viability
by Olga M. Rodríguez Martínez, Amy Wu-Wu, Valeria S. Arroyo Suárez, Karina Ruiz Rivera, Krystal A. Quirindongo Ortíz, Kiara Y. González Pérez and Miguel E. Castro Rosario
Cancers 2025, 17(12), 1903; https://doi.org/10.3390/cancers17121903 - 7 Jun 2025
Viewed by 615
Abstract
Melanoma is the most common type of skin cancer. Melanomas are well known for their ability to metastasize to other organs, including the lungs, liver, brain, and bones. The ability of melanoma cells to switch among different phenotypes is a key mechanism that [...] Read more.
Melanoma is the most common type of skin cancer. Melanomas are well known for their ability to metastasize to other organs, including the lungs, liver, brain, and bones. The ability of melanoma cells to switch among different phenotypes is a key mechanism that underscores their metastatic potential. The objective of this work is to report here on the effect of calcium sulfide (CaS) dispersions in melanoma cells. Melanomas with the epithelial- and mesenchymal-like phenotypes were observed during cell culture preparation. The dose-dependent viability was explored up to slightly less than 3% per volume of cell culture. The dispersion reduced the relative percentage of melanomas with the epithelial- and mesenchymal-like phenotypes to (57 ± 5) and (55 ± 5)%, respectively, at 24 h post treatment. In contrast, the viability of normal fibroblasts treated with the dispersion or melanoma cells treated with the reactants used to prepare the dispersion remained nearly constant, with a value range of (100.0 ± 0.2)% for the control and (97 ± 4)% and (93 ± 2)% for doses as high as 2 and 3% per volume of cell culture, respectively. Fluorescence imaging measurements were consistent with the release of cytochrome c from the mitochondria and its translocation to the cell nuclei. The average expression of caspases 3 and 9 was found to be 3 and 1.4 times higher than in the corresponding melanoma control, respectively, which was consistent with intrinsic apoptosis. The response of vinculin expression was slightly different in both cell phenotypes. Vinculin was found to delocalize in the cytoplasm of treated mesenchymal melanoma cells, with a slightly higher concentration at the end of the actin fibers. A statistically significant increase (p < 0.0001) in the number of focal adhesion points (FAP) at the edge of the cell membrane–external cellular matrix (ECM) interphase was observed in post-treated melanoma that exhibited the epithelial-like phenotype. The changes in vinculin expression and FAP and the reduced viability of the melanomas were consistent with regulation of proteins associated with programmed cell death. It is thus proposed that the sulfides produced from the reactions of the nanoclusters in the acidic environment facilitate the regulation of proteins required to initiate apoptosis, although other processes may also be involved. We conclude that CaS may be an adequate chemical to selectively reduce melanoma viability with little effect on benign fibroblasts. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Graphical abstract

12 pages, 611 KiB  
Article
Cutaneous Allodynia of the Withers in Cattle: An Experimental In Vivo Neuroanatomical Preliminary Investigation of the Dichotomizing Sensory Neurons Projecting into the Reticulum and Skin of the Withers—A Case Study on Two Calves
by Roberto Chiocchetti, Luciano Pisoni, Monika Joechler, Adele Cancellieri, Fiorella Giancola, Giorgia Galiazzo, Giulia Salamanca, Rodrigo Zamith Cunha and Arcangelo Gentile
Animals 2025, 15(12), 1689; https://doi.org/10.3390/ani15121689 - 6 Jun 2025
Viewed by 585
Abstract
The presence of dichotomizing neurons in the dorsal root ganglia (DRG) of cattle, innervating both the reticulum and the withers, may indicate a pre-spinal convergence of visceral and cutaneous sensory information, i.e., that the DRG primary sensory neurons may elaborate the sensory information [...] Read more.
The presence of dichotomizing neurons in the dorsal root ganglia (DRG) of cattle, innervating both the reticulum and the withers, may indicate a pre-spinal convergence of visceral and cutaneous sensory information, i.e., that the DRG primary sensory neurons may elaborate the sensory information coming from two different anatomical areas before reaching the secondary sensory neurons within the spinal cord. This anatomical feature could be the underlying basis for the cutaneous allodynia observed in traumatic reticuloperitonitis, also known as the “Kalchschmidt pain test”. The aim of the study was to identify the DRG primary sensory neurons innervating the reticulum and the withers by using two different retrograde fluorescent tracers, Fast Blue (FB, affinity for cytoplasm) and Diamidino Yellow (DY, affinity for nucleus). In two anesthetized calves, FB and DY were injected into the reticulum and skin of the withers, respectively. At the end of the experimental period, the calves were deeply anesthetized and then euthanatized. The thoracic (T1–T8) DRG were collected and processed to obtain cryosections which were examined on a fluorescent microscope. A large number of neurons localized, especially in the T7 DRG, presented nuclei labeled with DY. On the contrary, only a few neurons localized exclusively in T6 and T7 DRG presented the cytoplasm labeled with FB. No neurons displayed FB and DY simultaneously within the cytoplasm and nucleus, respectively. The absence of double-labeled DRG neurons suggests that the convergence of visceral and somatic sensory inputs underlying the Kalchschmidt pain response likely does not occur at the level of individual DRG neurons. Rather, it may involve higher-order integrative centers, possibly including vagal pathways and brainstem nuclei which integrate the afferent information to coordinate respiratory movements of the diaphragm, intercostal muscles, and larynx. Although limited by the sample size, this case study provides a neuroanatomical basis for further investigation into central mechanisms of referred visceral pain in cattle. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

25 pages, 10794 KiB  
Article
Effects of Melatonin-Loaded Poly(N-vinylcaprolactam) Transdermal Gel on Sleep Quality
by Wei Zhao, Fengyu Wang, Liying Huang, Bo Song, Junzi Wu, Yongbo Zhang, Wuyi Du, Yan Li and Sen Tong
Gels 2025, 11(6), 435; https://doi.org/10.3390/gels11060435 - 5 Jun 2025
Viewed by 786
Abstract
The rapid pace of modern life has contributed to a significant decline in sleep quality, which has become an urgent global public health issue. Melatonin, an endogenous hormone that regulates circadian rhythms, is vital in maintaining normal sleep cycles. While oral melatonin supplementation [...] Read more.
The rapid pace of modern life has contributed to a significant decline in sleep quality, which has become an urgent global public health issue. Melatonin, an endogenous hormone that regulates circadian rhythms, is vital in maintaining normal sleep cycles. While oral melatonin supplementation is widely used, transdermal delivery systems present advantages that include the avoidance of first-pass metabolism effects and enhanced bioavailability. In this study, a novel melatonin transdermal delivery system was successfully developed using a thermosensitive poly(N-vinylcaprolactam) [p(NVCL)]-based carrier. The p(NVCL) polymer was synthesized through free radical polymerization and characterized for its structural properties and phase transition temperature, in alignment with skin surface conditions. Orthogonal optimization experiments identified 3% azone, 3% menthol, and 4% borneol as the optimal enhancer combination for enhanced transdermal absorption. The formulation demonstrated exceptional melatonin loading characteristics with high encapsulation efficiency and stable physicochemical properties, including an appropriate pH and optimal moisture content. Comprehensive in vivo evaluation using normal mouse models revealed significant sleep quality improvements, specifically a shortened sleep latency and extended non-rapid eye movement sleep duration, with elevated serum melatonin and serotonin levels. Safety assessments including histopathological examination, biochemical analysis, and 28-day continuous administration studies confirmed excellent biocompatibility with no adverse reactions or systemic toxicity. Near-infrared fluorescence imaging provided direct evidence of enhanced transdermal absorption and superior biodistribution compared to oral administration. These findings indicate that the p(NVCL)-based melatonin transdermal gel system offers a safe, effective and convenient non-prescription option for sleep regulation, with promising potential for clinical translation as a consumer sleep aid. Full article
Show Figures

Graphical abstract

19 pages, 2591 KiB  
Article
Natural Mineral Water–Plant Extract Combinations as Potential Anti-Aging Ingredients: An In Vitro Evaluation
by Carolina P. Gomes, Ana S. Oliveira, Joana Rolo, Tayse F. F. da Silveira, Rita Palmeira de Oliveira, Maria José Alves, Paula Plasencia and Ana Palmeira de Oliveira
Cosmetics 2025, 12(3), 113; https://doi.org/10.3390/cosmetics12030113 - 28 May 2025
Cited by 1 | Viewed by 2398
Abstract
Natural mineral waters (NMWs) and plant extracts have long been valued for their therapeutic properties and skin benefits. This study investigated, in vitro, the role of five Portuguese NMWs (A-E), combined with plant extracts from five species (Ficus carica L., Rubus idaeus [...] Read more.
Natural mineral waters (NMWs) and plant extracts have long been valued for their therapeutic properties and skin benefits. This study investigated, in vitro, the role of five Portuguese NMWs (A-E), combined with plant extracts from five species (Ficus carica L., Rubus idaeus L., Vaccinium myrtillus, Cistus ladanifer and Thymus x citriodorus) as bioactive ingredients. Antioxidant capacity was assessed using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method. Cellular biocompatibility was evaluated in fibroblasts (L929) and macrophages (RAW 264.7). Skin-repairing and anti-senescence properties were evaluated in L929 cells through the scratch-wound method and β-galactosidase assay. Superoxide dismutase (SOD) was quantified using a commercial kit, and lipopolysaccharide-induced reactive oxygen species (ROS) were quantified using a fluorescent probe (H2DCFDA) in RAW 264.7. The results highlighted the beneficial impact of extracts combined with NMWs. An increase in antioxidant capacity of up to 90% was observed in mixtures comprising Ficus carica L., compared with NMWs alone. In contrast, mixtures with Cistus ladanifer showed promising anti-aging potential, with a 40% decrease in senescent cells and a 33% ROS reduction. Rubus idaeus L. extract produced an increase in cell migration capacity (up to 50%), depending on the NMW. This study highlights the potential synergism of natural ingredients with plant extracts for anti-aging. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

14 pages, 3580 KiB  
Article
Cinnamomum cassia Alleviates Neuropsychiatric Lupus in a Murine Experimental Model
by Georges Maalouly, Youakim Saliba, Joelle Hajal, Anna Zein-El-Din, Luana Fakhoury, Rouaa Najem, Viviane Smayra, Hussein Nassereddine and Nassim Fares
Nutrients 2025, 17(11), 1820; https://doi.org/10.3390/nu17111820 - 27 May 2025
Viewed by 556
Abstract
Background: The pathogenesis of neuropsychiatric lupus erythematosus (NPSLE) is very complex and is associated with neuroinflammation and blood–brain barrier compromise. Experimental investigations of NPSLE have classically relied on spontaneous models. Recently, TLR7 agonist-induced lupus has been shown to exhibit similar neuropsychiatric manifestations to [...] Read more.
Background: The pathogenesis of neuropsychiatric lupus erythematosus (NPSLE) is very complex and is associated with neuroinflammation and blood–brain barrier compromise. Experimental investigations of NPSLE have classically relied on spontaneous models. Recently, TLR7 agonist-induced lupus has been shown to exhibit similar neuropsychiatric manifestations to spontaneous ones. Cinnamon is a widespread spice and natural flavoring agent. It has been proven to modulate vascular endothelial tight junctions, neuroinflammation, and autoimmunity pathways, but it has never been tested in relation to lupus. Hypothesis/Purpose: In this pilot study, we aimed to explore the disease-modifying effect of Cinnamomum cassia on NPSLE in a TLR7 agonist-induced model. Study Design: An experimental design was followed in this study. Methods: Lupus was induced in C57BL/6J female mice via the direct application of imiquimod, a TLR7 agonist (5% imiquimod cream, 1.25 mg three times weekly), to the skin. Mice were divided into five groups (n = 8 per group): a sham group (S), a sham group supplemented with cinnamon (SC), an imiquimod-treated group (L), an imiquimod-treated group supplemented with cinnamon starting from induction (LC), and an imiquimod-treated group supplemented with cinnamon beginning two weeks prior to induction (CLC). This protocol was followed for six consecutive weeks. Cinnamomum cassia powder was administered orally at 200 mg/kg, 5 days per week. Results: Behavioral alterations were significantly ameliorated in the CLC group compared to lupus mice. Neuronal shrinkage and nuclear chromatin condensation were visible in the hippocampal cornu ammonis and dentate gyrus zones of lupus mice, with an increased expression of TLR7 and NLRP3, versus significantly less neurodegeneration and TLR7 and NLRP3 expression in the CLC group. In addition, the expression of the blood–brain barrier endothelial cell tight junction proteins claudin-1, occludin, and ZO-1 was abnormally modified in lupus mice and was restored in the CLC group. Moreover, while the cell–cell border delocalization of claudin-1 was documented in cultured blood–brain barrier endothelial cells treated with the plasma of lupus mice to a punctate intracytoplasmic fluorescence pattern, only cells treated with the plasma of the CLC group exhibited a complete reversal of this redistribution of claudin-1. Finally, cinnamaldehyde seemed to interact with TLR7 at multiple sites. Conclusions:Cinnamomum cassia seems to alleviate the pathogenesis of NPSLE. Supplementation with Cinnamomum cassia could be of great interest to modulate the activity and severity of the disease. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

11 pages, 689 KiB  
Article
Simultaneous Determination of Quercetin and Trans-Resveratrol in Winemaking Waste by Solid Phase Microextraction Coupled to High-Performance Liquid Chromatography with Fluorescence and Ultraviolet Detection
by Antonella Maria Aresta, Giovanna Mancini, Nicoletta De Vietro and Carlo Zambonin
Analytica 2025, 6(2), 19; https://doi.org/10.3390/analytica6020019 - 17 May 2025
Viewed by 959
Abstract
A solid phase microextraction (SPME) method coupled with liquid chromatography (LC) and fluorescence/ultraviolet-diode array detection was developed for the simultaneous determination of quercetin and trans-resveratrol. The chromatographic, detection, and SPME extraction/desorption conditions were systematically optimized. The performance of four commercial SPME fibers—polyacrylate (PA), [...] Read more.
A solid phase microextraction (SPME) method coupled with liquid chromatography (LC) and fluorescence/ultraviolet-diode array detection was developed for the simultaneous determination of quercetin and trans-resveratrol. The chromatographic, detection, and SPME extraction/desorption conditions were systematically optimized. The performance of four commercial SPME fibers—polyacrylate (PA), polyethylene glycol (PEG), polydimethylsiloxane (PDMS), and polydimethylsiloxane-divinylbenzene (PDMS-DVB)—was evaluated and compared with a homemade polydopamine (PDA)-coated fiber. While all of the fibers successfully extracted the target analytes, their efficiencies varied significantly. The PA, PEG, and PDA fibers demonstrated superior performance, exhibiting wide linearity ranges (0.03–1 µg/mL (PA and PEG) and 0.06–1 µg/mL (PDA) for quercetin, 0.01–1 µg/mL for trans-resveratrol); high sensitivity (LODs of 0.01 µg/mL (PA and PEG) and 0.02 µg/mL (PDA) for quercetin, 0.003 µg/mL for trans-resveratrol); and excellent precision. Among these, the polyacrylate coating delivered the best analytical performance and was selected for further application. The optimized method was applied to analyze winemaking by-products (seeds, skins, and stalks) using SPME on ethanol-macerated extracts subjected to brief ultrasonication. Quercetin and trans-resveratrol were quantified in pomace extracts at concentrations of 104.3 ± 8.2 µg/g and 38.5 ± 4.1 µg/g, respectively. Recovery experiments confirmed the method’s accuracy, with recoveries of 99.1 ± 7.4% for quercetin and 98.5 ± 9.8% for trans-resveratrol. This study establishes a reliable, sensitive, and efficient approach for the determination of these bioactive compounds in complex matrices, with potential applications in the food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Green Analytical Techniques and Their Applications)
Show Figures

Figure 1

18 pages, 2419 KiB  
Article
Characterization and Specific Detection of Lactobacillus paracasei-Derived Extracellular Vesicles Using Anti-p40-Modified Au Thin Film
by Kyeongmin Lee, Eun-Gyung Cho, Youngbo Choi, Yunsik Kim, Jin Hee Lee and Surin Hong
Pharmaceutics 2025, 17(5), 654; https://doi.org/10.3390/pharmaceutics17050654 - 16 May 2025
Viewed by 622
Abstract
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic [...] Read more.
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic use. However, methods for specific detection and quantitative evaluation of Lp-EVs are still limited. This study aims to develop a surface plasmon resonance (SPR)-based sensor system for the precise and selective detection of Lp-EVs. Methods: Anti-p40 antibodies were immobilized on gold thin films to construct an SPR sensing platform. The overexpression of the p40 protein on Lp-EVs was confirmed using flow cytometry and Western blotting. For functional evaluation, Lp-EVs were applied to an artificial skin membrane mounted on a Franz diffusion cell, followed by SPR-based quantification and fluorescence imaging to assess their skin penetration behavior. Results: The developed SPR sensor demonstrated high specificity and a detection limit of 0.12 µg/mL, with a linear response range from 0.1 to 0.375 µg/mL. It successfully discriminated Lp-EVs from other bacterial EVs. In the skin diffusion assay, Lp-EVs accumulated predominantly in the epidermal layer without penetrating into the dermis, likely due to their negative surface charge and interaction with the hydrophobic epidermal lipid matrix. Fluorescence imaging confirmed this epidermal confinement, which increased over 24 h. Conclusions: This study presents a sensitive and selective SPR-based platform for detecting Lp-EVs and demonstrates their potential for targeted epidermal delivery. These findings support the use of Lp-EVs in skin-focused therapeutic and cosmetic applications. Future studies will explore strategies such as microneedle-assisted delivery to enhance transdermal penetration and efficacy. Full article
(This article belongs to the Special Issue Extracellular Vesicle for Drug Delivery)
Show Figures

Figure 1

12 pages, 503 KiB  
Article
Assessment of Vascular Circulation in Alopecia Areata Using the FMSF Technique
by Anna Woźniacka, Kamila Tokarska and Bartlomiej Żmuda
J. Clin. Med. 2025, 14(10), 3469; https://doi.org/10.3390/jcm14103469 - 15 May 2025
Viewed by 1064
Abstract
Background: Alopecia areata is regarded as a T cell-mediated autoimmune disorder, but the exact etiopathogenesis of the disease has not been completely elucidated. The aim of the study was to assess vascular circulation using Flow-Mediated Skin Fluorescence (FMSF) in alopecia patients compared to [...] Read more.
Background: Alopecia areata is regarded as a T cell-mediated autoimmune disorder, but the exact etiopathogenesis of the disease has not been completely elucidated. The aim of the study was to assess vascular circulation using Flow-Mediated Skin Fluorescence (FMSF) in alopecia patients compared to healthy volunteers, which could explain disease pathogenesis. Methods: FMSF is a new non-invasive method for assessing vascular circulation. The study recruited thirty women and four men. In our group, the most common clinical pattern of hair loss was alopecia with circular patches (AA), recognizable in 26 patients: twenty-two women and four men. Alopecia universalis (AU) was diagnosed in eight patients: all women. Results: The most pronounced differences between experimental group participants and controls are seen in the flowmotion (FM), neurogenic oscillation (NEURO), and normoxia oscillatory index (NOI) parameters characterizing microcirculation oscillations. In alopecia, microcirculation oscillations characterized by the FM and NEURO parameters are significantly decreased. Conclusions: This observation may suggest that neuroinflammation is an important factor responsible for alopecia pathogenesis. The women with alopecia areata have dysfunctional microcirculatory function. FMSF could serve as a useful tool for monitoring patients with alopecia. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

18 pages, 5594 KiB  
Article
Intradermal Injection of a Protein Alone Without Additional Adjuvants Using a Needle-Free Pyro-Drive Jet Injector Induces Potent CD8+ T Cell-Mediated Antitumor Immunity
by Jukito Sonoda, Izuru Mizoguchi, Natsuki Yamaguchi, Eri Horio, Satomi Miyakawa, Mingli Xu, Toshihiko Yoneto, Yasuhiro Katahira, Hideaki Hasegawa, Takashi Hasegawa, Kunihiko Yamashita and Takayuki Yoshimoto
Int. J. Mol. Sci. 2025, 26(9), 4442; https://doi.org/10.3390/ijms26094442 - 7 May 2025
Viewed by 842
Abstract
Vaccines usually contain an adjuvant that activates innate immunity to promote the acquisition of adaptive immunity. Aluminum and lipid nanoparticles have been used for this purpose, but their accumulation or widespread circulation in the body can lead to adverse effects. In contrast, physical [...] Read more.
Vaccines usually contain an adjuvant that activates innate immunity to promote the acquisition of adaptive immunity. Aluminum and lipid nanoparticles have been used for this purpose, but their accumulation or widespread circulation in the body can lead to adverse effects. In contrast, physical adjuvants, which use physical energy to transiently stress tissues, do not persist in exposed tissues or cause lasting adverse effects. Herein, we investigate the effects of intradermal injection of endotoxin-free ovalbumin (OVA) protein alone without additional adjuvants using a needle-free pyro-drive jet injector (PJI) on tumor vaccination efficacy. Intradermal injection of OVA protein alone using PJI significantly increased OVA-specific CD8+ T cell expansion in the lymph node, although lymph node swelling was much less than when aluminum hydroxide was used. The injection also induced OVA-specific killing activity and antibody production and showed strong CD8+ T cell-dependent prophylactic antitumor effects against transplanted E.G7-OVA tumors. In particular, intradermal injection of the fluorescent OVA protein significantly enhanced its uptake by XCR1+ dendritic cells, which have a strong ability to cross-present extracellular proteins in the skin and draining lymph nodes. In addition, the injection increased the expression of HMGB1, one of the potent danger signals whose expression has been reported to increase in response to shear stress. Thus, intradermal injection of OVA protein alone without any additional adjuvants using PJI induces potent CD8+ T cell-mediated antitumor immunity by enhancing its uptake into XCR1+ dendritic cells, which have a high cross-presentation capacity accompanied by an increased expression of shear stress-induced HMGB1. Full article
(This article belongs to the Special Issue The Discovery and Characterization of New Oncological Molecules)
Show Figures

Figure 1

23 pages, 6860 KiB  
Article
Cosmetic Potential of Haberlea rhodopensis Extracts and Extracellular Vesicles in Human Fibroblast Cells
by Milena Georgieva, Bela Vasileva, Penyo Ivanov, Kamelia Hristova-Panusheva, Tsvetelina Paunova-Krasteva, Ivan Lesov, Zlatina Gospodinova, Natalia Krasteva, George Miloshev and Vasil Georgiev
Cosmetics 2025, 12(3), 90; https://doi.org/10.3390/cosmetics12030090 - 1 May 2025
Viewed by 2287
Abstract
Skin ageing is a complex biological process influenced by cellular senescence, oxidative stress, and extracellular matrix degradation. Emerging evidence suggests that plant-derived bioactive compounds and extracellular vesicles (EVs) play a crucial role in modulating cellular homeostasis, promoting tissue regeneration, and counteracting age-related morphological [...] Read more.
Skin ageing is a complex biological process influenced by cellular senescence, oxidative stress, and extracellular matrix degradation. Emerging evidence suggests that plant-derived bioactive compounds and extracellular vesicles (EVs) play a crucial role in modulating cellular homeostasis, promoting tissue regeneration, and counteracting age-related morphological and functional changes. This study investigates the impact of Haberlea rhodopensis in vitro culture extracts, native and enriched with EVs, on key cellular processes, including morphology, mitochondrial dynamics, lysosomal activity, gene expression, and genotoxicity in human dermal fibroblasts. The extracellular vesicles were identified in terms of shape, size, and morphology using dynamic light scattering, negative staining and observation under a transmission electron microscope. A comprehensive in vitro analysis was conducted utilizing light microscopy to assess cellular morphology and lysosomal mass, fluorescence microscopy for actin cytoskeletal organization, mitochondrial integrity, and nuclear morphology, and gene expression profiling for markers associated with collagen synthesis (COL1A1, COL3A1), senescence (CDKN1A), and oxidative stress response (NFE2L2). Additionally, cell cycle progression was evaluated, and genotoxicity was assessed using the neutral comet assay. Haberlea rhodopensis in vitro culture extracts and EVs were found to preserve fibroblast morphology, enhance mitochondrial mass, and upregulate collagen-related gene expression. These effects were concentration-dependent. The extracts exhibited biocompatibility with minimal genotoxic effects, indicating their potential as safe bioactive agents for skin rejuvenation. The findings suggest that Haberlea rhodopensis in vitro culture extracts and their enrichment with extracellular vesicles hold promise for cosmetic and dermatological applications, particularly in enhancing collagen production, preserving cellular integrity, and mitigating age-related alterations in skin fibroblasts. Further studies are warranted to elucidate the underlying molecular mechanisms and optimize formulation strategies for clinical translation. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

Back to TopTop