Green Analytical Techniques and Their Applications

A special issue of Analytica (ISSN 2673-4532). This special issue belongs to the section "Sample Pretreatment and Extraction".

Deadline for manuscript submissions: 15 June 2025 | Viewed by 803

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, The Medical Campus, Tanta University, El-Geish Street, Tanta 31111, Egypt
Interests: green analytical chemsitry; pharmaceutical analysis; metal–organic frameworks; carbon quantum dots; microextraction; sensors

E-Mail Website
Guest Editor
Department of Pharmacy, University “G. d’Annunzio” of Chieti and Pescara, Chieti, Italy
Interests: innovative (micro)extraction procedures; hyphenated instrument configurations; bioactive compounds; characterization; fingerprints; method validation; HPLC; mass spectrometry; biological matrices; chromatography; analytical chemistry; sample preparation; green analytical methodologies
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
Interests: chromatography; spectroscopy; sample preparation; green analytical chemistry

Special Issue Information

Dear Colleagues,

This Special Issue, “Green Analytical Techniques and Their Applications”, aims to present innovative methodologies and applications in the field of green analytical chemistry. This issue will focus on the development and implementation of environmentally friendly analytical techniques and methods that minimize the use of hazardous substances and reduce waste. Topics will cover a range of areas, including the green synthesis of sorbents/probes, employment of sustainable materials, and application of eco-friendly analytical procedures. Contributions that showcase practical applications, case studies, and advancements in green analytical technologies across various industries such as pharmaceuticals, environmental monitoring, and food safety are particularly welcome. This Special Issue seeks to advance the understanding and application of green principles in analytical chemistry, promoting sustainability and environmental aspects in scientific research.

Dr. Fotouh Rashed
Dr. Marcello Locatelli
Dr. Alaa Bedair
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Analytica is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • green analytical chemistry
  • sustainable materials
  • eco-friendly synthesis
  • waste reduction
  • microextraction
  • green synthesis
  • bioanalytical methods
  • environmental monitoring
  • pharmaceutical analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 689 KiB  
Article
Simultaneous Determination of Quercetin and Trans-Resveratrol in Winemaking Waste by Solid Phase Microextraction Coupled to High-Performance Liquid Chromatography with Fluorescence and Ultraviolet Detection
by Antonella Maria Aresta, Giovanna Mancini, Nicoletta De Vietro and Carlo Zambonin
Analytica 2025, 6(2), 19; https://doi.org/10.3390/analytica6020019 - 17 May 2025
Viewed by 73
Abstract
A solid phase microextraction (SPME) method coupled with liquid chromatography (LC) and fluorescence/ultraviolet-diode array detection was developed for the simultaneous determination of quercetin and trans-resveratrol. The chromatographic, detection, and SPME extraction/desorption conditions were systematically optimized. The performance of four commercial SPME fibers—polyacrylate (PA), [...] Read more.
A solid phase microextraction (SPME) method coupled with liquid chromatography (LC) and fluorescence/ultraviolet-diode array detection was developed for the simultaneous determination of quercetin and trans-resveratrol. The chromatographic, detection, and SPME extraction/desorption conditions were systematically optimized. The performance of four commercial SPME fibers—polyacrylate (PA), polyethylene glycol (PEG), polydimethylsiloxane (PDMS), and polydimethylsiloxane-divinylbenzene (PDMS-DVB)—was evaluated and compared with a homemade polydopamine (PDA)-coated fiber. While all of the fibers successfully extracted the target analytes, their efficiencies varied significantly. The PA, PEG, and PDA fibers demonstrated superior performance, exhibiting wide linearity ranges (0.03–1 µg/mL (PA and PEG) and 0.06–1 µg/mL (PDA) for quercetin, 0.01–1 µg/mL for trans-resveratrol); high sensitivity (LODs of 0.01 µg/mL (PA and PEG) and 0.02 µg/mL (PDA) for quercetin, 0.003 µg/mL for trans-resveratrol); and excellent precision. Among these, the polyacrylate coating delivered the best analytical performance and was selected for further application. The optimized method was applied to analyze winemaking by-products (seeds, skins, and stalks) using SPME on ethanol-macerated extracts subjected to brief ultrasonication. Quercetin and trans-resveratrol were quantified in pomace extracts at concentrations of 104.3 ± 8.2 µg/g and 38.5 ± 4.1 µg/g, respectively. Recovery experiments confirmed the method’s accuracy, with recoveries of 99.1 ± 7.4% for quercetin and 98.5 ± 9.8% for trans-resveratrol. This study establishes a reliable, sensitive, and efficient approach for the determination of these bioactive compounds in complex matrices, with potential applications in the food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Green Analytical Techniques and Their Applications)
Show Figures

Figure 1

10 pages, 2871 KiB  
Article
Characterization of Multi-Pass Enhanced Raman Spectroscopy for Gaseous Measurement
by Miao Fan, Huinan Yang and Jun Chen
Analytica 2025, 6(2), 13; https://doi.org/10.3390/analytica6020013 - 16 Apr 2025
Viewed by 244
Abstract
With the rise in global temperatures, it is of great significance to achieve rapid and accurate detection of greenhouse gases, such as carbon dioxide and methane. Raman spectroscopy not only overcomes the weakness of absorption spectroscopy in simultaneously measuring homonuclear diatomic molecules but [...] Read more.
With the rise in global temperatures, it is of great significance to achieve rapid and accurate detection of greenhouse gases, such as carbon dioxide and methane. Raman spectroscopy not only overcomes the weakness of absorption spectroscopy in simultaneously measuring homonuclear diatomic molecules but also enables the simultaneous detection of multiple gases using a single-wavelength laser. However, due to the small Raman scattering cross-section and weak intensity of molecules, its application in gas detection is limited. To enhance the intensity of Raman scattering, this paper designs and constructs a multi-pass enhanced Raman spectroscopy setup. This study focuses on the effects of Raman scattering collection geometry, laser multi-pass patterns, and laser polarization relative to the Raman collection direction on signal intensity. Investigations into Raman scattering collection angles of 30°, 60°, and 90° reveal that the Raman scattering signal intensity increases as the collection angle decreases. Different laser multi-pass patterns also impact the signal, with the near-concentric linear multi-pass pattern found to collect more signals. To minimize the influence of excitation light on the signal, a side collection system is employed. Experiments show that the Raman scattering signal is stronger when the laser polarization is perpendicular to the collection direction. This study achieves overall system performance enhancement through coordinated optimization of multiple physical mechanisms, including Raman scattering collection geometry, laser multi-pass patterns, and laser polarization characteristics. The optimized setup was employed to characterize the laser power dependence for nitrogen, oxygen, and carbon dioxide detection. The results showed that the Raman scattering intensity varied linearly with the laser power of the gases, with linear fitting goodness R2 values of 0.9902, 0.9848, and 0.9969, respectively. Finally, by configuring different concentrations of carbon dioxide gas using nitrogen, it was found that the Raman scattering intensity varied linearly with the concentration of carbon dioxide, with a linear fitting goodness R2 of 0.9812. The system achieves a CO2 detection limit of 500 ppm at 200 s integration time, meeting the requirements for greenhouse gas emission monitoring applications. Full article
(This article belongs to the Special Issue Green Analytical Techniques and Their Applications)
Show Figures

Figure 1

Back to TopTop