Extracellular Vesicle for Drug Delivery

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 10 June 2025 | Viewed by 153

Special Issue Editor

Department of Biotechnology, College of Life Science, CHA University, Gyeonggi 13488, Republic of Korea
Interests: nanomaterial; drug delivery; nano biosensor; plasmonic
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Extracellular vesicles (EVs) are gaining attention as natural drug delivery systems due to their biocompatibility, targeted delivery capabilities, and minimal immunogenicity. Recent advancements in EV-based drug delivery highlight their potential for improving therapeutic outcomes in various diseases. This Special Issue focuses on the development and application of EVs for drug delivery, with an emphasis on innovative quantification techniques essential for standardizing their use in clinical and research settings. We welcome submissions on novel methods for EV quantification, quality control, and their role in optimizing EV-based drug delivery systems. You are invited to contribute to advancing this promising field of research.

Dr. Surin Hong
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • estracellular vesicle
  • exosomes
  • drug delivery
  • behavior
  • uptake
  • quantification
  • controlled release

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2419 KiB  
Article
Characterization and Specific Detection of Lactobacillus paracasei-Derived Extracellular Vesicles Using Anti-p40-Modified Au Thin Film
by Kyeongmin Lee, Eun-Gyung Cho, Youngbo Choi, Yunsik Kim, Jin Hee Lee and Surin Hong
Pharmaceutics 2025, 17(5), 654; https://doi.org/10.3390/pharmaceutics17050654 - 16 May 2025
Abstract
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic [...] Read more.
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic use. However, methods for specific detection and quantitative evaluation of Lp-EVs are still limited. This study aims to develop a surface plasmon resonance (SPR)-based sensor system for the precise and selective detection of Lp-EVs. Methods: Anti-p40 antibodies were immobilized on gold thin films to construct an SPR sensing platform. The overexpression of the p40 protein on Lp-EVs was confirmed using flow cytometry and Western blotting. For functional evaluation, Lp-EVs were applied to an artificial skin membrane mounted on a Franz diffusion cell, followed by SPR-based quantification and fluorescence imaging to assess their skin penetration behavior. Results: The developed SPR sensor demonstrated high specificity and a detection limit of 0.12 µg/mL, with a linear response range from 0.1 to 0.375 µg/mL. It successfully discriminated Lp-EVs from other bacterial EVs. In the skin diffusion assay, Lp-EVs accumulated predominantly in the epidermal layer without penetrating into the dermis, likely due to their negative surface charge and interaction with the hydrophobic epidermal lipid matrix. Fluorescence imaging confirmed this epidermal confinement, which increased over 24 h. Conclusions: This study presents a sensitive and selective SPR-based platform for detecting Lp-EVs and demonstrates their potential for targeted epidermal delivery. These findings support the use of Lp-EVs in skin-focused therapeutic and cosmetic applications. Future studies will explore strategies such as microneedle-assisted delivery to enhance transdermal penetration and efficacy. Full article
(This article belongs to the Special Issue Extracellular Vesicle for Drug Delivery)
Show Figures

Figure 1

Back to TopTop