Simultaneous Determination of Quercetin and Trans-Resveratrol in Winemaking Waste by Solid Phase Microextraction Coupled to High-Performance Liquid Chromatography with Fluorescence and Ultraviolet Detection
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Materials
2.2. HPLC Apparatus
2.3. Chromatographic and Detection Conditions
2.4. Solid Phase Micro Extraction
2.5. Sample Collection and Pre-Treatment
3. Results and Discussion
3.1. Optimization of Chromatographic Conditions
3.2. Optimization of the SPME Procedure
3.3. Winemaking Waste Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aresta, A.; Cotugno, P.; Massari, F.; Zambonin, C. Determination of Trans-resveratrol in Wines, Spirits, and Grape Juices Using Solid-Phase Micro Extraction Coupled to Liquid Chromatography with UV Diode-Array Detection. Food Anal. Methods 2018, 11, 426–431. [Google Scholar] [CrossRef]
- Tabrizi, R.; Tamtaji, O.R.; Mirhosseini, N.; Lankarani, K.B.; Akbari, M.; Heydari, S.T.; Dadgostar, E.; Asemi, Z. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 1855–1868. [Google Scholar] [CrossRef]
- Ulusoy, H.G.; Sanlier, N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020, 60, 3290–3303. [Google Scholar] [CrossRef]
- Zhu, X.; Ding, G.; Ren, S.; Xi, J.; Liu, K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem. 2024, 458, 140262. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Martinez, E.J.; Flores-Hernández, F.Y.; Salazar-Montes, A.M.; Nario-Chaidez, H.F.; Hernández-Ortega, L.D. Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules 2024, 29, 1000. [Google Scholar] [CrossRef] [PubMed]
- Ajami, M.; Sotoudeheian, M.; Houshiar-Rad, A.; Esmaili, M.; Naeini, F.; Nasrabadi, F.M.; Doaei, S.; Milani-Bonab, A. Quercetin may reduce the risk of developing the symptoms of COVID-19. Avicenna J. Phytomed. 2024, 14, 189–201. [Google Scholar]
- Yu, X.; Jia, Y.; Ren, F. Multidimensional biological activities of resveratrol and its prospects and challenges in the health field. Front. Nutr. 2024, 12, 1408651. [Google Scholar] [CrossRef]
- Hanzouli, F.; Zemni, H.; Gargouri, M.; Boubakri, H.; Mliki, A.; Vincenzi, S.; Daldoul, S. Evidence of an active role of resveratrol derivatives in the tolerance of wild grapevines (Vitis vinifera ssp. sylvestris) to salinity. J. Plant Res. 2024, 137, 265–277. [Google Scholar] [CrossRef]
- Samia, D.; Hanzouli, F.; Farès, N.; Tabbene, O.; Zemni, H.; Vincenzi, S.; Mliki, A.; Gargouri, M. Enhancing biological activities and phenolic content of wild grapevine roots by severe drought stress. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2024, 158, 344–353. [Google Scholar]
- Patel, K.R.; Brown, V.A.; Jones, D.J.; Britton, R.G.; Hemingway, D.; Miller, A.S.; West, K.P.; Booth, T.D.; Perloff, M.; Crowell, J.A.; et al. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res. 2010, 70, 7392–7399. [Google Scholar] [CrossRef]
- Kuršvietienė, L.; Stanevičienė, I.; Mongirdienė, A.; Bernatonienė, J. Multiplicity of effects and health benefits of resveratrol. Medicina 2016, 52, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.D.; Cheng, J.; Li, J.; Wu, S.X.; Xiong, R.G.; Huang, S.Y.; Cheung, P.C.; Li, H.B. Resveratrol and Its Analogues: Anti-ageing Effects and Underlying Mechanisms. Subcell. Biochem. 2024, 107, 183–203. [Google Scholar] [PubMed]
- Eity, T.A.; Bhuia, M.S.; Chowdhury, R.; Ahmmed, S.; Sheikh, S.; Akter, R.; Islam, M.T. Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono- or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. J. Trop. Med. 2024, 10, 5594462. [Google Scholar] [CrossRef]
- Chen, L.; Xu, W.; Yang, Z.; McClements, D.J.; Peng, X.; Xu, Z.; Meng, M.; Zou, Y.; Chen, G.; Jin, Z. Co-encapsulation of quercetin and resveratrol: Comparison in different layers of zein-carboxymethyl cellulose nanoparticles. Int. J. Biol. Macromol. 2024, 278, 134827. [Google Scholar] [CrossRef] [PubMed]
- More, K.S.; Kadavakollu, S.; Nigar, S.; Gul, K.; Sehrawat, R.; Mir, N.A. Encapsulation of resveratrol in alginate microcapsules using internal gelation technique: Fabrication, characterization and release kinetics. LWT 2024, 207, 116663. [Google Scholar] [CrossRef]
- Unnikrishnan Meenakshi, D.; Narde, G.K.; Ahuja, A.; Al Balushi, K.; Francis, A.P.; Khan, S.A. Therapeutic Applications of Nanoformulated Resveratrol and Quercetin Phytochemicals in Colorectal Cancer-An Updated Review. Pharmaceutics 2024, 16, 761. [Google Scholar] [CrossRef]
- Materska, M. Quercetin and its derivatives: Chemical structure and bioactivity-a review. Pol. J. Food Nutr. Sci. 2008, 58, 407–413. [Google Scholar]
- Lojkovà, L.; Pluhackovà, H.; Benesova, K.; Kudlackova, B.; Cerkal, R. The highest yield, or greener solvents? Latest trends in quercetin extraction methods. Trends Anal. Chem. 2023, 167, 117229. [Google Scholar] [CrossRef]
- Eftekhari, M.; Alizadeh, M.; Ebrahimi, P. Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind. Crops Prod. 2012, 38, 160–165. [Google Scholar] [CrossRef]
- Buiarelli, F.; Bernardini, F.; Di Filippo, P.; Riccardi, C.; Pomata, D.; Simonetti, G.; Risoluti, R. Extraction, Purification, and Determination by HPLC of Quercetin in Some Italian Wines. Food Anal. Methods 2018, 11, 3558–3562. [Google Scholar] [CrossRef]
- Careri, M.; Corradini, C.; Elviri, L.; Nicoletti, I.; Zagnoni, I. Direct HPLC Analysis of Quercetin and trans-Resveratrol in Red Wine, Grape, and Winemaking Byproducts. J. Agric. Food Chem. 2003, 51, 5226–5231. [Google Scholar] [CrossRef] [PubMed]
- Tzanova, M.; Peeva, P. Rapid HPLC Method for Simultaneous Quantification of trans-Resveratrol and Quercetin in the Skin of Red Grapes. Food Anal. Methods 2018, 11, 514–521. [Google Scholar] [CrossRef]
- Li, W.; Yuan, H.; Liu, Y.; Wang, B.; Xu, X.; Xu, X.; Hussain, D.; Ma, L.; Chen, D. Current analytical strategies for the determination of resveratrol in foods. Food Chem. 2024, 431, 137182. [Google Scholar] [CrossRef]
- Mansour, F.R.; Abdallah, I.A.; Bedair, A.; Hamed, M. Analytical methods for the determination of quercetin and quercetin glycosides in pharmaceuticals and biological samples. Crit. Rev. Anal. Chem. 2025, 55, 187–212. [Google Scholar] [CrossRef]
- Merás, I.D.; Díaz, T.G.; Rodríguez, D.A. Determination of piceid by photochemically induced fluorescence and second-derivative: Response surface methodology for the optimization of a liquid–liquid extraction procedure for its analysis in wine samples. Talanta 2008, 74, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Moretón-Lamas, E.; Lago-Crespo, M.; Lage-Yusty, M.A.; López-Hernández, J. Comparison of methods for analysis of resveratrol in dietary vegetable supplements. Food Chem. 2017, 224, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Pillai, D.; Pandita, N. Validated high performance thin layer chromatography method for the quantification of bioactive marker compounds in Draksharishta, an ayurvedic polyherbal formulation. Rev. Bras. Farmacogn. 2016, 26, 558–563. [Google Scholar] [CrossRef]
- Zambonin, C.; Aresta, A. Review: Recent Applications of Solid Phase Microextraction coupled to Liquid Chromatography. Separation 2021, 8, 34. [Google Scholar] [CrossRef]
- Leszczyńska, D.; Hallmann, A.; Treder, N.; Bączek, T.; Roszkowska, A. Recent advances in the use of SPME for drug analysis in clinical, toxicological, and forensic medicine studies. Talanta 2024, 270, 125613. [Google Scholar] [CrossRef]
- Bojko, B.; Cudjoe, E.; Gómez-Ríos, G.A.; Gorynski, K.; Jiang, R.; Reyes-Garcés, N.; Risticevic, S.; Silva, É.A.S.; Togunde, O.; Vuckovic, D.; et al. SPME–Quo vadis? Anal. Chim. Acta 2012, 750, 132–151. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Zhou, L.-D.; Chen, H.; Wang, C.-Z.; Xia, Z.-N.; Yuan, C.-S. Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. TrAC Trends Anal. Chem. 2016, 80, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Zambonin, C.G.; Aresta, A. SPME-LC with UV detection to study delorazepam-serum albumin interactions. J. Pharm. Biomed. Anal. 2002, 29, 895–900. [Google Scholar] [CrossRef]
- Aresta, A.; Di Grumo, F.; Zambonin, C. Determination of Major Isoflavones in Soy Drinks by Solid-Phase Micro Extraction Coupled to Liquid Chromatography. Food Anal. Methods 2015, 9, 925–933. [Google Scholar] [CrossRef]
- Aresta, A.; Cicco, S.R.; Vona, D.; Farinola, G.M.; Zambonin, C. Mussel Inspired Polydopamine as Silica Fibers Coating for Solid-Phase Microextraction. Separations 2022, 9, 194. [Google Scholar] [CrossRef]
- Srinivas, K.; King, J.W.; Howard, L.R.; Monrad, J.K. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng. 2010, 100, 208–218. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. On the solubility of quercetin. J. Mol. Liq. 2014, 197, 157–159. [Google Scholar] [CrossRef]
- Lanati, D.; Cascio, P.; Pollón, M.; Corona, O.; Marchi, D. Solubility of Quercetin in Wines. S. Afr. J. Enol. Vitic. 2022, 43, 146–156. [Google Scholar] [CrossRef]
- Zhang, L.; Gionfriddo, E.; Acquaro, V., Jr.; Pawliszyn, J. Direct immersion solid-phase microextraction analysis of multi-class contaminants in edible seaweeds by gas chromatography-mass spectrometry. Anal. Chim. Acta 2018, 1031, 83–97. [Google Scholar] [CrossRef]
- Górecki, T. Effect of Sample Volume on Quantitative Analysis by Solid-phase Microextraction Part 1. Theoretical Considerations. Analyst 1997, 122, 1079–1086. [Google Scholar] [CrossRef]
- Kumar, A.; Malik, A.K.; Tewary, D.K. A new method for determination of myricetin and quercetin using solid phase microextraction–high performance liquid chromatography–ultra violet/visible system in grapes, vegetables and red wine samples. Anal. Chim. Acta 2009, 631, 177–181. [Google Scholar] [CrossRef]
- Zambonin, C.G. Coupling solid-phase microextraction to liquid chromatography. A review. Anal. Bioanal. Chem. 2003, 375, 73–80. [Google Scholar] [CrossRef] [PubMed]
Analyte | N | k’ | SW0.05h |
---|---|---|---|
R | 5642 | 1.260 | 0.58 |
Q | 6431 | 3.726 | 0.56 |
Time (min) | Quercetin | Trans-Resveratrol | ||||
---|---|---|---|---|---|---|
Temperature (°C) | ||||||
18 °C | 37 °C | 100 °C | 18 °C | 37 °C | 100 °C | |
0 | 64,941 ± 1948 | 64,850 ± 1944 | 63,992 ± 1920 | 200,540 ± 3709 | 220,540 ± 3902 | 198,540 ± 3527 |
30 | 65,989 ± 1978 | 59,861 ± 1788 | 27,133 ± 904 | 190,890 ± 3948 | 207,738 ± 3740 | 197,738 ± 3348 |
60 | 64,905 ± 1947 | 39,103 ± 1173 | 9925 ± 277 | 201,000 ± 3704 | 190,623 ± 3481 | 201,359 ± 3950 |
120 | 63,941 ± 1916 | 5623 ± 190 | 196,540 ± 3547 | 195,961 ± 3500 | 214,217 ± 3845 |
Fiber | Dynamic | Static | Carry-Over | |||
---|---|---|---|---|---|---|
Q | R | Q | R | Q | R | |
PDMS/DVB | 1.34 | 0.79 | 0.62 | 0.61 | 36% | 23% |
PEG | 1.68 | 1.27 | 0.62 | 0.61 | 63% | 52% |
PDMS | 0.76 | 0.73 | 0.60 | 0.60 | 19% | 18% |
PA | 0.84 | 0.81 | 0.61 | 0.61 | 27% | 25% |
PDA | 3.33 | 0.81 | 0.61 | 0.61 | 82% | 25% |
Fiber | Analyte | Range Linearity (μg/mL) | Equation (Area vs. μg/mL) | R2 | LOD (μg/mL) | Intra-Day (n = 5) (%RSD) |
---|---|---|---|---|---|---|
PA | Q | 0.03–1 | y = 150022 x − 1095 | 0.9980 | 0.010 | 4.5 |
R | 0.01–1 | y = 667322 x + 18583 | 0.9982 | 0.003 | 3.4 | |
PEG | Q | 0.03–1 | y = 47038 x − 1025 | 0.9956 | 0.010 | 8.0 |
R | 0.01–1 | y = 598123 x + 20145 | 0.9978 | 0.003 | 9.8 | |
PDA | Q | 0.06–1 | y = 42747 x + 1356 | 0.9938 | 0.020 | 8.2 |
R | 0.01–1 | y = 653660 x + 2010 | 0.9986 | 0.003 | 9.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aresta, A.M.; Mancini, G.; De Vietro, N.; Zambonin, C. Simultaneous Determination of Quercetin and Trans-Resveratrol in Winemaking Waste by Solid Phase Microextraction Coupled to High-Performance Liquid Chromatography with Fluorescence and Ultraviolet Detection. Analytica 2025, 6, 19. https://doi.org/10.3390/analytica6020019
Aresta AM, Mancini G, De Vietro N, Zambonin C. Simultaneous Determination of Quercetin and Trans-Resveratrol in Winemaking Waste by Solid Phase Microextraction Coupled to High-Performance Liquid Chromatography with Fluorescence and Ultraviolet Detection. Analytica. 2025; 6(2):19. https://doi.org/10.3390/analytica6020019
Chicago/Turabian StyleAresta, Antonella Maria, Giovanna Mancini, Nicoletta De Vietro, and Carlo Zambonin. 2025. "Simultaneous Determination of Quercetin and Trans-Resveratrol in Winemaking Waste by Solid Phase Microextraction Coupled to High-Performance Liquid Chromatography with Fluorescence and Ultraviolet Detection" Analytica 6, no. 2: 19. https://doi.org/10.3390/analytica6020019
APA StyleAresta, A. M., Mancini, G., De Vietro, N., & Zambonin, C. (2025). Simultaneous Determination of Quercetin and Trans-Resveratrol in Winemaking Waste by Solid Phase Microextraction Coupled to High-Performance Liquid Chromatography with Fluorescence and Ultraviolet Detection. Analytica, 6(2), 19. https://doi.org/10.3390/analytica6020019