Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,086)

Search Parameters:
Keywords = size-controlled nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 569 KB  
Article
Multi-Objective Preparation Process Optimization of Ultra-Small Manganese Ferrite Nanoparticles Using Probability-Based Method
by Danghua Zhao, Pengcheng He, Xiaoyan Cheng and Haipeng Teng
Processes 2026, 14(3), 535; https://doi.org/10.3390/pr14030535 - 3 Feb 2026
Abstract
With increasing demands for controllable synthesis of nanomaterials, it has become particularly important to develop efficient and accurate methods for optimizing preparation processes. This study focuses on the nucleation and growth stages in the synthesis of ultra-small manganese ferrite nanoparticles, aiming to clarify [...] Read more.
With increasing demands for controllable synthesis of nanomaterials, it has become particularly important to develop efficient and accurate methods for optimizing preparation processes. This study focuses on the nucleation and growth stages in the synthesis of ultra-small manganese ferrite nanoparticles, aiming to clarify the influence mechanisms of key parameters such as oleic acid dosage, precursor concentration, and aging temperature on the product size and properties and to optimize the preparation process accordingly. The probability-based multi-objective optimization method was adopted, using the above parameters as optimization variables to systematically design and screen the experimental conditions. The results show that this method can effectively achieve the optimization of multiple objectives in the preparation process, providing a reliable methodological framework for the controlled synthesis of ultra-small manganese ferrite nanoparticles. Full article
(This article belongs to the Special Issue Multi-Criteria Decision Making in Chemical and Process Engineering)
15 pages, 4426 KB  
Article
Eco-Friendly In Situ Fabrication of Silver Nanoparticle-Loaded Chitosan Nanogels for Antibacterial Applications
by Tianji Li, Minghui Zhao, Luohui Wang, Delong Dai, Youming Dong, Fei Xiao, Cheng Li, Xiuhong Zhu and Jianwei Zhang
Gels 2026, 12(2), 135; https://doi.org/10.3390/gels12020135 - 2 Feb 2026
Viewed by 30
Abstract
Eco-friendly chitosan nanogels (CSNG) with an average diameter of 48.5 nm were synthesized via alkali/urea dissolution and employed as templates for in situ silver nanoparticle fabrication. Silver nanoparticle size was controlled by adjusting CSNG to AgNO3 mass ratios, with the optimal ratio [...] Read more.
Eco-friendly chitosan nanogels (CSNG) with an average diameter of 48.5 nm were synthesized via alkali/urea dissolution and employed as templates for in situ silver nanoparticle fabrication. Silver nanoparticle size was controlled by adjusting CSNG to AgNO3 mass ratios, with the optimal ratio of 18:1 producing ultrasmall particles of 3.72 nm, uniformly dispersed in the matrix. The nanocomposites demonstrated superior antibacterial activity, with inhibition zones of 14.3 mm against E. coli and 12.1 mm against S. aureus, significantly exceeding pure CSNGs at 7.4 mm and 6.9 mm, respectively. Rheological analysis revealed shear-thinning behavior, with viscosity decreasing from 450 Pa·s to 0.1 Pa·s, confirming excellent injectability. Cytotoxicity evaluation showed cell viability exceeding 82.3% at 100 μg/mL, which was substantially superior to conventional silver formulations. Thermogravimetric analysis and FTIR spectroscopy verified enhanced thermal stability and coordination interactions between chitosan and silver species. This green synthesis approach yields injectable, size-tunable nanocomposites with combined antibacterial efficacy and biocompatibility for biomedical applications. Full article
Show Figures

Figure 1

27 pages, 5134 KB  
Review
Nanoplatforms for Multimodal Imaging and Targeted Cancer Therapy: Recent Advances and Future Perspectives
by Malairaj Sathuvan, Karthikeyan Narayanan, Kit-Leong Cheong and Ramar Thangam
Bioengineering 2026, 13(2), 174; https://doi.org/10.3390/bioengineering13020174 - 2 Feb 2026
Viewed by 46
Abstract
Recent advancements in nanotechnology have led to the development of multifunctional nanoplatforms that significantly enhance both cancer diagnosis and treatment. Gold-based nanoparticles, such as peptide-functionalized nanostructures and PEG-coated nanorods, offer improved tumor targeting, multimodal imaging (including photoacoustic and fluorescence), and effective photothermal therapy. [...] Read more.
Recent advancements in nanotechnology have led to the development of multifunctional nanoplatforms that significantly enhance both cancer diagnosis and treatment. Gold-based nanoparticles, such as peptide-functionalized nanostructures and PEG-coated nanorods, offer improved tumor targeting, multimodal imaging (including photoacoustic and fluorescence), and effective photothermal therapy. Similarly, ultrafine iron oxide nanoprobes provide superior tumor imaging, while silver-based nanoparticles exhibit rapid systemic circulation, near-infrared fluorescence, and powerful photothermal properties. Titanium-based nanoplatforms enable a combination of therapies and advanced imaging methods. On the therapeutic side, polymeric nanoparticles (PNPs), silica-based platforms, PEG-based nanoparticles, and graphene oxide-based systems each offer unique advantages for targeted drug delivery and theranostics. PNPs, with tunable size, shape, and surface chemistry, enable controlled drug release and reduced side effects, while silica-based nanoplatforms improve tumor targeting and imaging. PEG-based nanoparticles enhance drug release and tumor penetration, and graphene oxide-based systems facilitate subcellular targeting and synergistic therapies. Collectively, these innovations are paving the way for more efficient, precise, and safer cancer therapies, leading to improved clinical outcomes. Full article
(This article belongs to the Special Issue Engineering Biomaterials for Regenerative Medicine Applications)
Show Figures

Figure 1

18 pages, 6762 KB  
Article
Investigation of the Effect of Alkyl Chain Length on the Size and Distribution of Thiol-Stabilized Silver Nanoparticles for Proton Exchange Membrane Fuel Cell Applications
by Md Farabi Rahman, Haoyan Fang, Aniket Raut, Aaron Sloutski and Miriam Rafailovich
Membranes 2026, 16(2), 58; https://doi.org/10.3390/membranes16020058 - 2 Feb 2026
Viewed by 174
Abstract
This article reports on how the length of the alkyl chain influences the morphological properties of thiol-stabilized silver nanoparticles (Ag NPs) and their subsequent effects on the performance and durability of proton exchange membrane fuel cells (PEMFCs). We synthesized thiol-stabilized Ag NPs by [...] Read more.
This article reports on how the length of the alkyl chain influences the morphological properties of thiol-stabilized silver nanoparticles (Ag NPs) and their subsequent effects on the performance and durability of proton exchange membrane fuel cells (PEMFCs). We synthesized thiol-stabilized Ag NPs by varying the alkyl chain length: 1-hexane thiol (C6), 1-octanethiol (C8), 1-decanethiol (C10), 1-dodecanethiol (C12), and 1-tetradecanethiol (C14), which we achieved using the two–phase Brust–Schiffrin method. X-ray Diffraction (XRD) patterns confirm the formation of crystalline Ag NPs. A morphological study conducted using a Transmission Electron Microscope (TEM) demonstrated that smaller alkyl chain length thiols (C6, C8, and C10) tend to coalesce, while C12 shows better uniformity with no agglomeration. C14 produces larger nanoparticles. A distinct pressure-area isotherm was observed when Ag NPs were spread at the water/air interface of a Langmuir–Blodgett (LB) trough. After obtaining the monolayer formation pressure range, we coated the Nafion 117 membrane of a polymer electrolyte membrane fuel cell with these nanoparticles to form monolayers of different Ag NPs (C6, C8, C12, C14) at various surface pressures (2 mN/m, 6 mN/m and 10 mN/m). Maximum power output enhancement was observed for C12, while other nanoparticles (C6, C8, C10, C14) did not exhibit noticeable power enhancement for PEMFCs. C12 Ag NPs deposited at surface pressure 6 mN/m give maximum power density increase (26.5%) at the fuel cell test station. In addition, we examined the carbon monoxide (CO) resistance test by mixing 0.1% CO with hydrogen (H2), and C12 Ag NPs showed the highest resistance to CO poisoning. However, no enhancement in power or CO tolerance was observed when C12 Ag NPs were coated by spray coating. These outcomes showcase that alkyl chain length plays a critical role in controlling the size and distribution of thiol-stabilized nanoparticles, which eventually has a direct impact on the performance and CO resistance of PEMFCs when applied to polymer electrolyte (Nafion 117). In addition, surface pressure during monolayer formation controls the distribution of Ag NPs (the distance between nanoparticles at the membrane interface), which is necessary to achieve catalytic activity for power improvement and to prevent platinum (Pt) poisoning by CO oxidation at ambient conditions. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

32 pages, 2622 KB  
Review
Recent Advances in Nanoparticle-Based Drug Delivery Strategies to Cross the Blood–Brain Barrier in Targeted Treatment of Alzheimer’s Disease
by Hoa Le, Giang T. T. Vu, Amos Abioye and Adeboye Adejare
Pharmaceutics 2026, 18(2), 192; https://doi.org/10.3390/pharmaceutics18020192 - 1 Feb 2026
Viewed by 113
Abstract
The blood–brain barrier (BBB) is a major obstacle to the development of brain-targeted drug delivery systems, restricting greater than 98% of small molecules (<500 Da) and virtually all large-molecule drugs from entering the brain tissues from the bloodstream, resulting in suboptimal drug doses [...] Read more.
The blood–brain barrier (BBB) is a major obstacle to the development of brain-targeted drug delivery systems, restricting greater than 98% of small molecules (<500 Da) and virtually all large-molecule drugs from entering the brain tissues from the bloodstream, resulting in suboptimal drug doses and therapeutic failure in the treatment of Alzheimer’s disease (AD). However, the advent of nanotechnology has provided significant solutions to the BBB challenges, enabling particle size reduction, enhanced drug solubility, reduced premature drug degradation, extended and sustained drug release, enhanced drug transport across the BBB, increased drug target specificity and enhanced therapeutic efficacy. In corollary, a library of brain-targeted surface-functionalized nanotherapeutics has been widely reported in the current literature. These promising in vitro, in vivo and pre-clinical results from the existing literature provide quantitative evidence for the relative clinical utility of each of the techniques, indicating remarkable capacity for brain-targeted carrier systems; many of them are still being tested in human clinical trials. However, despite the recorded research successes in drug transport across the BBB, there are currently no clinically proven medications that can slow or reverse the progression of AD because most of the novel therapeutics have not been successful during the clinical trials. Therefore, the main option for the treatment of AD is symptomatic treatment using cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists. Although these therapies help to alleviate symptoms of AD and improve patients’ quality of life, they neither slow the progression of disease nor cure it. Thus, an effective disease-modifying therapy for the treatment of AD is an unmet clinical need. It is apparent that a deeper understanding of the structural complexity and controlling dynamic functions of the BBB in tandem with a comprehensive elucidation of AD pathogenesis are crucial to the development of novel nanocarriers for the effective treatment of AD. Therefore, this narrative review describes the contextual analysis of several promising strategies that enhance brain-targeted drug delivery across the BBB in AD treatment and recent research efforts on two major AD biomarkers that have revolutionized AD diagnosis, amyloid-beta plaques and phosphorylated tau protein tangle, as potential targets in AD drug development. This has led to the Food and Drug Administration (FDA)’s approval of two intravenous (IV) anti-amyloid monoclonal antibodies, Lecanemab (Leqembi®) and Donanemab (Kisunla®), which were developed based on the Aβ cascade hypothesis for the treatment of early AD. This review also discusses the recent shift in the Aβ cascade hypothesis to Aβ oligomer (conformer), a soluble intermediate of Aβ, which is the most toxic mediator of AD and could be the most potent drug target in the future for a more accurate and effective drug development model for the treatment of AD. Furthermore, various promising nanoparticle-based drug carriers (therapeutic nanoparticles) that were developed from intensive research are discussed, including their clinical utility, challenges and prospects in the treatment of AD. Overall, it suffices to state that the advent of nanotechnology provided several innovative techniques for overcoming the BBB and improving drug delivery to the brain; however, their long-term biosafety is a relevant concern. Full article
(This article belongs to the Special Issue Smart Polymeric Nanoparticle-Based Drug Delivery Systems)
11 pages, 4531 KB  
Article
Enhanced Flexible Vacuum-Ultraviolet Photodetectors Based on Hexagonal Boron Nitride Nanosheets via Al Nanoparticles
by Youwei Chen, Jiaxing Li, Qiang Li, Wannian Fang, Haifeng Liu, Ziyan Lin, Tao Wang and Feng Yun
Nanomaterials 2026, 16(3), 187; https://doi.org/10.3390/nano16030187 - 30 Jan 2026
Viewed by 179
Abstract
This work reports an enhanced flexible vacuum-ultraviolet (VUV) photodetector on a polyimide (PI) substrate based on hexagonal boron nitride nanosheets (BNNSs) with Al nanoparticles (Al NPs). The BNNS film were prepared via liquid-phase exfoliation combined with a self-assembly process, and size-controllable Al NPs [...] Read more.
This work reports an enhanced flexible vacuum-ultraviolet (VUV) photodetector on a polyimide (PI) substrate based on hexagonal boron nitride nanosheets (BNNSs) with Al nanoparticles (Al NPs). The BNNS film were prepared via liquid-phase exfoliation combined with a self-assembly process, and size-controllable Al NPs were constructed on the BNNS’s surface by electron-beam evaporation followed by thermal annealing. When the Al film thickness was 15 nm, the annealed Al NPs exhibited a pronounced enhancement of photoelectric effects at a wavelength of 185 nm. Combined with finite-difference time-domain (FDTD) simulations, it was confirmed that the localized surface plasmon resonance (LSPR) generated by Al NPs significantly enhanced the local electromagnetic field and effectively coupled into the interior of BNNSs. These exhibited a strong plasmon-enhanced absorption effect and thereby improved light absorption and carrier generation efficiency. The flexible photodetector based on this structure showed an increase in the photo-to-dark current ratio from 110.17 to 527.79 under a bias voltage of 20 V, while maintaining fast response and recovery times of 79.79 ms and 82.38 ms, respectively. In addition, the device demonstrated good stability under multiple bending angles and cyclic bending conditions, highlighting its potential applications in flexible solar-blind VUV photo ultraviolet. Full article
Show Figures

Figure 1

20 pages, 5502 KB  
Article
Laser-Assisted Synthesis of Polymer-Coated Gold Nanoparticles for Studying Gamma Radiation Resistance
by Alejandra Y. Díaz-Ortíz, Eugenio Rodríguez González, Rodrigo Melendrez-Amavizca, Elisa A. Cázares-López, Edgar G. Zamorano-Noriega, Ramón Ochoa-Landín, Santos J. Castillo, María L. Mota and Ana B. López-Oyama
Processes 2026, 14(3), 454; https://doi.org/10.3390/pr14030454 - 28 Jan 2026
Viewed by 128
Abstract
This study focuses on fabrication and comprehensive characterization of gold nanoparticles (AuNPs) stabilized with polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), correlating polymer degradation with colloidal stability and localized surface plasmon resonance (LSPR) behavior under controlled gamma doses from 5 to 125 Gy. AuNPs [...] Read more.
This study focuses on fabrication and comprehensive characterization of gold nanoparticles (AuNPs) stabilized with polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), correlating polymer degradation with colloidal stability and localized surface plasmon resonance (LSPR) behavior under controlled gamma doses from 5 to 125 Gy. AuNPs were synthesized via laser-assisted synthesis (LAS) in aqueous medium containing PVP or PEG as a stabilizing and capping agent. Morphology, size distribution, and surface functionalization of the resulting AuNPs@polymer-stabilized were verified through UV-Vis spectroscopy, FTIR, XRD, DLS, zeta potential, and TEM. Results show that the polymer shell effectively preserved the nanoparticles’ integrity by minimizing aggregation and maintaining LSPR features even after exposure to high gamma doses (>75 Gy). PVP demonstrated superior protection compared to PEG, due to the robustness of the solvation layer and carbonyl groups of PVP coating around the AuNPs. These findings highlight the potential of polymer-stabilized AuNPS for applications in radiation-rich environments, while demonstrating LAS as an environmentally friendly and efficient synthesis route. Full article
Show Figures

Graphical abstract

22 pages, 4846 KB  
Article
Carbon-NiTiO2 Nanosorbent as Suitable Adsorbents for the Detoxification of Zn2+ Ions via Combined Metal–Oxide Interfaces
by Azizah A. Algreiby, Abrar S. Alnafisah, Muneera Alrasheedi, Tahani M. Alresheedi, Ajayb Alresheedi, Abuzar Albadri and Abueliz Modwi
Inorganics 2026, 14(2), 36; https://doi.org/10.3390/inorganics14020036 - 26 Jan 2026
Viewed by 157
Abstract
Metal ions exemplify one of the most harmful and environmentally detrimental contaminants of water systems. This work describes the creation of an innovative chelated carbon-doped nickel and titanium oxide (C-NiTiO2) hybrid as an adsorbent for the effective elimination of metal ions. [...] Read more.
Metal ions exemplify one of the most harmful and environmentally detrimental contaminants of water systems. This work describes the creation of an innovative chelated carbon-doped nickel and titanium oxide (C-NiTiO2) hybrid as an adsorbent for the effective elimination of metal ions. The dominance of the TiO2 anatase phase with a ≈ 61 nm crystallite size was verified by XRD and Raman investigation. Morphology investigations exposed polygonal nanoparticles consisting of Ti, C, Ni, and O. The nanostructure exhibited a surface area of 17 m2·g−1, a pore diameter of ≈1.5 nm, and a pore volume of 0.0315 cm3·g−1. The nanostructure was evaluated for the elimination of Zn (II) ions from an aqueous solution. The metal ion adsorption onto the hybrid nanomaterial was described and comprehended using adsorption kinetics and equilibrium models. The adsorption data matched well with the pseudo-second-order kinetics and Langmuir adsorption models, indicating a monolayer chemisorption mechanism and achieving a maximum Zn (II) ion elimination of 369 mg·g−1. Mechanistic investigation indicated film diffusion-controlled adsorption through inner-sphere complexation. The nanosorbent could be regenerated and reused for four rounds without appreciable activity loss, thus demonstrating its potential for water cleanup applications. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

23 pages, 3151 KB  
Article
Nanoformulations of the Piper auritum Kunth (Piperales: Piperaceae) Essential Oil for the Control of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)
by Josefina Barrera-Cortés, Jocelyn Sosa-Trejo, Isabel M. Sánchez-Barrera, Laura P. Lina-García, Fabiola D. León Navarrete and María E. Mancera-López
Agriculture 2026, 16(3), 308; https://doi.org/10.3390/agriculture16030308 - 26 Jan 2026
Viewed by 194
Abstract
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is an agricultural pest of global economic importance. Its ability to reproduce, adapt, and develop resistance necessitates the creation of effective and environmentally friendly alternative control strategies. This study aimed to evaluate the larvicidal activity of three [...] Read more.
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is an agricultural pest of global economic importance. Its ability to reproduce, adapt, and develop resistance necessitates the creation of effective and environmentally friendly alternative control strategies. This study aimed to evaluate the larvicidal activity of three nanoformulations (NFs) based on the essential oil (70% safrole) of Piper auritum Kunth (Piperales: Piperaceae), nanoemulsion (NE), microemulsion (ME), and silver nanoparticles (AgNPs), against second-instar larvae of S. frugiperda. The NFs were prepared using a combination of low- and high-energy methods, using Tween 80 and Span 80 as stabilizing agents. The droplet sizes of the NFs ranged from 19 to 48 nm. Stability analysis of the formulations maintained for 60 days in open systems at room temperature allowed the identification of remaining oxidized sesquiterpenes and phenylpropanoids. In in vitro bioassays, the NE demonstrated the highest larvicidal activity, with an LD50 of 0.97 µg cm−2, outperforming the other formulations by a factor of ten. Observations of morphological damage to larval and pupal tissues, along with deformation of adult specimens, confirming the toxicity of the NFs. These findings highlight the potential of essential oil-based NFs derived from P. auritum as sustainable biopesticides for integrated pest management. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

8 pages, 3364 KB  
Proceeding Paper
Effect of Stirring Efficiency on Fatigue Behavior of Graphene Nanoplatelets-Reinforced Friction Stir Spot Welded Aluminum Sheets
by Amir Alkhafaji and Daniel Camas
Eng. Proc. 2026, 124(1), 6; https://doi.org/10.3390/engproc2026124006 - 23 Jan 2026
Viewed by 128
Abstract
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot [...] Read more.
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot welding (RSW). The FSSW technique, however, includes some structural defects imbedded within the weld joint, such as keyhole formation, hook crack, and bond line oxidation challenging the joint strength. The unique properties of nanomaterials in the reinforcement of metal matrices motivated researchers to enhance the FSSW joints’ strength. Previous studies successfully fabricated nano-reinforced FSSW joints. At different volumetric ratios of nano-reinforcement, nanoparticles may agglomerate due to inefficient stirring of the welding tool pin, forming stress concentration sites and brittle phases, affecting tensile and fatigue strength under static and cyclic loading conditions, respectively. This work investigated how the welding tool pin affects stirring efficiency by controlling the distribution of a nano-reinforcing material within the joint stir zone (SZ), and thus the tensile and fatigue strength of the FSSW joints. Sheets of AA6061-T6 of 1.8 mm thickness were used as a base material. In addition, graphene nanoplatelets (GNPs) with lateral sizes of 1–10 µm and thicknesses of 3–9 nm were used as nano-reinforcements. GNP-reinforced FSSW specimens were prepared and successfully fabricated. Optical microscope (OM) and field emission scanning electron microscope (FE-SEM) methods were employed to visualize the GNPs’ incorporation into the SZs of the FSSW joints. Micrographs of as-welded specimens showed lower formations of scattered, clustered GNPs achieved by the threaded pin tool compared to continuous agglomerations observed when the cylindrical pin tool was used. Tensile test results revealed a significant improvement of about 30% exhibited by the threaded pin tool compared to the cylindrical pin tool, while fatigue test showed an improvement of 46–24% for the low- and high-cycle fatigue, respectively. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

26 pages, 5269 KB  
Article
Development and Optimization of Resveratrol-Loaded NLCs via Low-Energy Methods: A Promising Alternative to Conventional High-Energy or Solvent-Based Techniques
by Nicoly T. R. Britto, Lilian R. S. Montanheri, Juliane N. B. D. Pelin, Raquel A. G. B. Siqueira, Matheus de Souza Alves, Tereza S. Martins, Ian W. Hamley, Patrícia S. Lopes, Vânia R. Leite-Silva and Newton Andreo-Filho
Processes 2026, 14(2), 393; https://doi.org/10.3390/pr14020393 - 22 Jan 2026
Viewed by 189
Abstract
High-energy methods dominate the development of lipid nanoparticles but often require specialized equipment that increases production costs. Low-energy approaches, particularly those free of organic solvents, offer a promising alternative. This study aimed to obtain nanostructured lipid carriers (NLCs) using a solvent-free, low-energy process [...] Read more.
High-energy methods dominate the development of lipid nanoparticles but often require specialized equipment that increases production costs. Low-energy approaches, particularly those free of organic solvents, offer a promising alternative. This study aimed to obtain nanostructured lipid carriers (NLCs) using a solvent-free, low-energy process combining microemulsification and phase inversion. Cetearyl alcohol and PEG-40 hydrogenated castor oil were selected as the solid lipid and surfactant, respectively; the formulation and process were optimized through a Box–Behnken Design. Incorporation of the ionic surfactant extended colloidal stability, while the poloxamer in the aqueous phase enhanced steric stabilization. Resveratrol was efficiently encapsulated (E.E. = 98%), contributing to reduced particle size (291 nm), improved homogeneity (PDI = 0.25), and positive surface charge (+43 mV). Scale-up yielded stable particles carrying resveratrol with a mean size of 507 nm, PDI = 0.24, and ZP = +52 mV. The optimized formulation remained stable for 90 days at 8 °C. In vitro release demonstrated a sustained and controlled release profile, with significantly lower resveratrol release compared to the free compound. Thermal analysis confirmed drug incorporation within the lipid matrix, while transmission electron microscopy (TEM) revealed spherical particles (~200 nm) and SAXS indicated a nanostructure of ~50 nm. Overall, this study demonstrates that solvent-free, low-energy processing can produce stable and scalable NLC formulations, successfully encapsulating resveratrol with favorable physicochemical properties and controlled release behavior. These findings highlight a simple, cost-effective strategy for developing lipid-based nanocarriers with potential applications in drug delivery. Full article
Show Figures

Figure 1

15 pages, 3071 KB  
Article
Green-Synthesized TiO2 Nanoparticles Improve Mechanical Performance of Glass Ionomer Cements
by Nevra Karamüftüoğlu, Süha Kuşçu, İpek Kuşçu and Nesrin Korkmaz
Polymers 2026, 18(2), 295; https://doi.org/10.3390/polym18020295 - 22 Jan 2026
Viewed by 135
Abstract
Glass ionomer cements (GICs) are widely used in restorative and luting dentistry due to their fluoride release and chemical adhesion to dental tissues; however, their limited mechanical strength necessitates reinforcement strategies. The objective of this study was to investigate the effects of hemp-derived, [...] Read more.
Glass ionomer cements (GICs) are widely used in restorative and luting dentistry due to their fluoride release and chemical adhesion to dental tissues; however, their limited mechanical strength necessitates reinforcement strategies. The objective of this study was to investigate the effects of hemp-derived, green-synthesized titanium dioxide (TiO2) nanoparticles on the surface and mechanical properties of two commercially available GICs with different clinical indications. TiO2 nanoparticles were synthesized using Cannabis sativa leaf extract via a biogenic reduction method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), confirming anatase-phase crystallinity, spherical morphology, and nanoscale particle size (28–49 nm). The nanoparticles were incorporated into Ketac™ Molar Easymix (restorative) and Ketac™ Cem Radiopaque (luting) GICs at 1%, 3%, and 5% (w/w), with nanoparticle-free formulations serving as controls (n = 10). Surface roughness, Vickers microhardness, and flexural strength were evaluated. Surface roughness increased in a concentration-dependent manner in both materials, with the highest values observed at 5% TiO2 incorporation. In Ketac™ Molar Easymix, 1% and 3% TiO2 significantly enhanced flexural strength and microhardness, whereas 5% resulted in reduced performance, consistent with SEM-observed nanoparticle agglomeration. In contrast, Ketac™ Cem Radiopaque exhibited no significant changes in flexural strength, although maximum microhardness values were recorded at 1% TiO2 concentration. These findings demonstrate that low concentrations of hemp-derived TiO2 nanoparticles can effectively reinforce restorative GICs and highlight the potential of green nanotechnology as a sustainable approach for improving dental biomaterials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

20 pages, 2267 KB  
Article
Design and Physicochemical Characterization of Hybrid PLGA–Curcumin/Carbon Dot Nanoparticles for Sustained Galantamine Release: A Proof-of-Concept Study
by Christina Samiotaki, Stavroula Nanaki, Rizos Evangelos Bikiaris, Evi Christodoulou, George Z. Kyzas, Panagiotis Barmpalexis and Dimitrios N. Bikiaris
Biomolecules 2026, 16(1), 176; https://doi.org/10.3390/biom16010176 - 21 Jan 2026
Viewed by 226
Abstract
The present study reports the design and physicochemical characterization of a hybrid nanoparticle system for the potential intranasal delivery of galantamine (GAL), aimed at improving its bioavailability. Carbon dots (CDs) were used to load GAL, enhancing its dissolution and stability, and were subsequently [...] Read more.
The present study reports the design and physicochemical characterization of a hybrid nanoparticle system for the potential intranasal delivery of galantamine (GAL), aimed at improving its bioavailability. Carbon dots (CDs) were used to load GAL, enhancing its dissolution and stability, and were subsequently incorporated into a poly(lactic-co-glycolic acid)–curcumin (PLGA–Cur) conjugate matrix. The successful formation of the PLGA-Cur conjugate was verified via 1H-NMR and FTIR spectroscopy, while the loading of GAL and its physical state in the CDs was assessed via FTIR and pXRD, respectively. The resulting GAL-CD/PLGA–Cur nanoparticles were spherical, with particle sizes varying from 153.7 nm to 256.3 nm, a uniform morphology and a narrow size distribution. In vitro release studies demonstrated a multi-phase sustained release pattern extending up to 12 days. Spectroscopic and thermal analyses confirmed successful conjugation and molecular interactions between GAL and the carrier matrix. This proof-of-concept hybrid system demonstrates promising controlled, multi-phase sustained galantamine release in vitro, highlighting the role of curcumin conjugation in modulating polymer structure and release kinetics and providing a foundation for future biological evaluation. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

17 pages, 4803 KB  
Article
An Efficient and Green Ag/AgCl Nanoparticle Derived from Ginger Straw Waste Against Crop Soil-Borne Pathogens
by Zhuhua Gong, Mingwan Liu, Qi Zhang, Yu Yu, Qinhong Liao, Lihui Jiang, Honglei Li, Zhexin Li, Ke Huang, Wenlin Zhang and Yiqing Liu
Agronomy 2026, 16(2), 254; https://doi.org/10.3390/agronomy16020254 - 21 Jan 2026
Viewed by 110
Abstract
Soil-borne pathogens significantly threaten crop production and global food security, while high-performance antipathogenic materials are scarce. In this study, green and efficient Ag/AgCl nanoparticles (Ag/AgCl-NPs) were developed using an aqueous extract of ginger-straw waste as the raw material. The synthesized Ag/AgCl-NPs exhibited a [...] Read more.
Soil-borne pathogens significantly threaten crop production and global food security, while high-performance antipathogenic materials are scarce. In this study, green and efficient Ag/AgCl nanoparticles (Ag/AgCl-NPs) were developed using an aqueous extract of ginger-straw waste as the raw material. The synthesized Ag/AgCl-NPs exhibited a spherical morphology with an average size of approximately 40 nm, good crystal structure, and abundant surface groups. Additionally, they exhibited excellent antimicrobial activity against representative soil-borne pathogens, including Ralstonia solanacearum (MIC = 20 μg/mL; MBC = 40 μg/mL) and Fusarium oxysporum (spore MIC = 20 μg/mL; mycelial EC50 = 64.596 μg/mL). The antimicrobial mechanism was attributed to cell membrane disruption and oxidative stress induction. This study provides an excellent antimicrobial agent for controlling crop soil-borne pathogens. Full article
Show Figures

Figure 1

30 pages, 6458 KB  
Review
Carbon Dots and Biomimetic Membrane Systems: Mechanistic Interactions and Hybrid Nano-Lipid Platforms
by Nisreen Nusair and Mithun Bhowmick
Nanomaterials 2026, 16(2), 140; https://doi.org/10.3390/nano16020140 - 20 Jan 2026
Viewed by 212
Abstract
Carbon dots (CDs) have emerged as a distinct class of fluorescent nanomaterials distinguished by their tunable physicochemical properties, ultrasmall size, exceptional photoluminescence, versatile surface chemistry, high biocompatibility, and chemical stability, positioning them as promising candidates for biomedical applications ranging from sensing and imaging [...] Read more.
Carbon dots (CDs) have emerged as a distinct class of fluorescent nanomaterials distinguished by their tunable physicochemical properties, ultrasmall size, exceptional photoluminescence, versatile surface chemistry, high biocompatibility, and chemical stability, positioning them as promising candidates for biomedical applications ranging from sensing and imaging to drug delivery and theranostics. As CDs increasingly transition toward biological and clinical use, a fundamental understanding of their interactions with biological membranes becomes essential, as cellular membranes govern nanoparticle uptake, intracellular transport, and therapeutic performance. Model membrane systems, such as phospholipid vesicles and liposomes, offer controllable platforms to elucidate CD-membrane interactions by isolating key physicochemical variables otherwise obscured in complex biological environments. Recent studies demonstrate that CD surface chemistry, charge, heteroatom doping, size, and hydrophobicity, together with membrane composition, packing density, and phase behavior, dictate nanoparticle adsorption, insertion, diffusion, and membrane perturbation. In addition, CD-liposome hybrid systems have gained momentum as multifunctional nanoplatforms that couple the fluorescence and traceability of CDs with the encapsulation capacity and biocompatibility of lipid vesicles, enabling imaging-guided drug delivery and responsive theranostic systems. This review consolidates current insights into the mechanistic principles governing CD interactions with model membranes and highlights advances in CD-liposome hybrid nanostructures. By bridging fundamental nanoscale interactions with translational nanomedicine strategies, this work provides a framework for the rational design of next-generation CD-based biointerfaces with optimized structural, optical, and biological performance. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

Back to TopTop