Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = singlet oxygen transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2398 KB  
Article
Synergistic Radical and Non-Radical Pathways in Phenol Degradation: Electron Transfer Mechanism Dominated by N-Doped Carbon/Peroxymonosulfate System
by Qiongqiong He, Xuewen Wu, Ping Ma, Xiaoqi Wu and Zhenyong Miao
Catalysts 2025, 15(10), 968; https://doi.org/10.3390/catal15100968 - 10 Oct 2025
Viewed by 447
Abstract
Phenolic compounds constitute the predominant group of recalcitrant organic contaminants in coal chemical wastewater. In this study, humic acid and urea were used as carbon and nitrogen sources to prepare nitrogen-doped carbon material (labeled as NC-800) through a two-step calcination process. Using this [...] Read more.
Phenolic compounds constitute the predominant group of recalcitrant organic contaminants in coal chemical wastewater. In this study, humic acid and urea were used as carbon and nitrogen sources to prepare nitrogen-doped carbon material (labeled as NC-800) through a two-step calcination process. Using this catalyst (NC-800) to activate PMS for phenol degradation achieved 100% phenol removal across a wide pH range (1–9). The removal rate remained at 99.62% even with high concentrations of inorganic anions or natural organic matter, breaking through the limitations of traditional Fenton-like reactions in terms of acid–base environment and anion influence. The quenching experiment and electron spin resonance (ESR) spectroscopy results indicated that the N-C/PMS system generated three active species hydroxyl radicals (•OH), superoxide radicals (O2•−), and singlet oxygen (1O2) through the active sites in electron-rich regions such as graphite nitrogen, pyrrole nitrogen, and C=O. An electrochemical test revealed that the system formed a metastable NC-800-PMS* complex during the reaction, indicating the existence of a non-radical pathway of electron transfer. The combination of free radicals (•OH, O2•−) and non-free radicals (1O2, electron transfer) facilitated the rapid degradation of phenol, providing a theoretical basis for phenol degradation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

16 pages, 3188 KB  
Article
Nitrogen-Enriched Porous Carbon from Chinese Medicine Residue for the Effective Activation of Peroxymonosulfate for Degradation of Organic Pollutants: Mechanisms and Applications
by Xiaoyun Lei, Dong Liu, Weixin Zhou, Xiao Liu, Xingrui Gao, Tongtong Wang and Xianzhao Shao
Catalysts 2025, 15(10), 926; https://doi.org/10.3390/catal15100926 - 1 Oct 2025
Viewed by 344
Abstract
Advanced oxidation processes (AOPs) utilizing peroxymonosulfate (PMS) have recently gained attention for effectively removing organic dyes. Biochar, a carbon-based material, can act as a catalyst carrier for PMS activation. This study developed a nitrogen-doped biochar catalyst (NCMR800–2) from waste Chinese medicine residue (CMR) [...] Read more.
Advanced oxidation processes (AOPs) utilizing peroxymonosulfate (PMS) have recently gained attention for effectively removing organic dyes. Biochar, a carbon-based material, can act as a catalyst carrier for PMS activation. This study developed a nitrogen-doped biochar catalyst (NCMR800–2) from waste Chinese medicine residue (CMR) through one-step pyrolysis to efficiently remove Rhodamine B (RhB) from wastewater. Results indicate that NCMR800–2 rapidly achieved complete removal of 20 mg/L Rhodamine B (RhB), the primary focus of this study, within 30 min, while maintaining high degradation efficiencies for other pollutants and significantly outperforming the unmodified material. The material demonstrates strong resistance to ionic interference and operates effectively across a wide pH range. Quenching experiments and in situ testing identified singlet oxygen (1O2) as the primary active species in RhB degradation. Electrochemical analysis showed that nitrogen doping significantly enhanced the electrical conductivity and electron transfer efficiency of the catalyst, facilitating PMS decomposition and RhB degradation. Liquid chromatography–mass spectrometry (LC-MS) identified intermediate products in the RhB degradation process. Seed germination experiments and TEST toxicity software confirmed a significant reduction in the toxicity of degradation products. In conclusion, this study presents a cost-effective, efficient catalyst with promising applications for removing persistent organic dyes. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Graphical abstract

20 pages, 4270 KB  
Article
Ammonia-Assisted Quadrupled-Yield ZIF-67 Derivation Enables Single Oxygen-Dominated Nonradical Oxidation for Enhanced Ciprofloxacin Degradation
by Xiaoxian Hu, Di Zhang, Xinyu Li, Junfeng Wu, Xiang Guo, Hongbin Gao, Minghui Hao, Yingchun Wang, Bang Li and Xinhai Zhang
Materials 2025, 18(18), 4337; https://doi.org/10.3390/ma18184337 - 16 Sep 2025
Viewed by 397
Abstract
The widespread contamination of aquatic systems by ciprofloxacin (CIP)—a persistent fluoroquinolone antibiotic—poses severe ecological risks due to its antibacterial resistance induction. Conventional sulfate radical-based advanced oxidation processes (SR-AOPs) suffer from inefficient catalyst synthesis, exemplified by low-yield ZIF-67 precursors (typically <25%). To address this, [...] Read more.
The widespread contamination of aquatic systems by ciprofloxacin (CIP)—a persistent fluoroquinolone antibiotic—poses severe ecological risks due to its antibacterial resistance induction. Conventional sulfate radical-based advanced oxidation processes (SR-AOPs) suffer from inefficient catalyst synthesis, exemplified by low-yield ZIF-67 precursors (typically <25%). To address this, a nitrogen-doped carbon composite Co3O4/N@C was synthesized via ammonia-assisted ligand exchange followed by pyrolysis, using N-doped ZIF-67 as a self-sacrificial template. The ammonia incorporation quadrupled precursor yield compared to ammonia-free methods. This catalyst activated peroxydisulfate (PDS) to degrade 95% CIP within 90 min under the optimized conditions (0.5 g/L catalyst, 2 mmol/L PDS, pH 5), representing a 30% enhancement over non-ammonia analogs. Mechanistic studies identified singlet oxygen (1O2) as the dominant reactive species, facilitated by N-doped carbon-mediated electron transfer. This strategy overcomes the scalability barrier of MOF-derived catalysts for practical antibiotic wastewater remediation. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

14 pages, 2007 KB  
Article
Graphene Oxide Promoted Light Activation of Peroxymonosulfate for Highly Efficient Triphenyl Phosphate Degradation
by Yilong Li, Yi Xie, Xuqian Wang and Yabo Wang
C 2025, 11(3), 65; https://doi.org/10.3390/c11030065 - 21 Aug 2025
Viewed by 922
Abstract
The treatment of organic phosphate ester (OPE) pollutants in water is a challenging but highly necessary task. In this study, an advanced oxidation process through light activation of peroxymonosulfate (PMS) involving graphene oxide (GO) as a promoter was developed to degrade OPE in [...] Read more.
The treatment of organic phosphate ester (OPE) pollutants in water is a challenging but highly necessary task. In this study, an advanced oxidation process through light activation of peroxymonosulfate (PMS) involving graphene oxide (GO) as a promoter was developed to degrade OPE in water, taking triphenyl phosphate (TPhP) as an example. The developed “Light+PMS+GO” system demonstrated good convenience, high TPhP degradation efficiency, tolerance in a near-neutral pH, satisfactory re-usability, and a low toxicity risk of degradation products. Under the investigated reaction conditions, viz., the full spectrum of a 300 W Xe lamp, PMS of 200 mg L−1, GO of 4 mg L−1, and TPhP of 10 μmol L−1, the “Light+PMS+GO” system achieved nearly 100% TPhP degradation efficiency during a 15 min reaction duration with a 5.81-fold enhancement in the reaction rate constant, compared with the control group without GO. Through quenching experiments and electron paramagnetic resonance studies, singlet oxygen was identified as the main reactive species for TPhP degradation. Further studies implied that GO could accumulate both oxidants and pollutants on the surface, providing additional reaction sites for PMS activation and accelerating electron transfer, which all contributed to the enhancement of TPhP degradation. Finally, the TPhP degradation pathway was proposed and a preliminary toxicity evaluation of degradation intermediates was conducted. The convenience, high removal efficiency, and good re-usability indicates that the developed “Light+PMS+GO” reaction system has great potential for future applications. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Graphical abstract

47 pages, 7003 KB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Cited by 1 | Viewed by 1202
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

19 pages, 1683 KB  
Article
Photochemical Redox Reactions of 2,6-Dichlorophenolindophenol and Its Use to Detect Photoreduced Quinones
by Meredith G. Warsen, Soren Zimmer, Katherine Phan and Lisa M. Landino
Photochem 2025, 5(3), 19; https://doi.org/10.3390/photochem5030019 - 23 Jul 2025
Cited by 1 | Viewed by 1480
Abstract
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically [...] Read more.
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically relevant quinones mediated by photosensitizers, red light and electron donors. Herein we examined direct photoreduction of the quinone imine 2,6-dichlorophenolindophenol (DCPIP) using red light, methylene blue as the photosensitizer and ethylenediaminetetraacetic acid (EDTA) as the electron donor. Photoreduction of DCPIP by methylene blue and EDTA was very pH-dependent, with three-fold enhanced rates at pH 6.9 vs. pH 7.4. Photochemical redox cycling of DCPIP produced hydrogen peroxide via singlet oxygen-dependent reoxidation of reduced DCPIP. Histidine enhanced photoreduction by scavenging singlet oxygen, whereas increased molecular oxygen exposure slowed DCPIP photoreduction. Attempts to photoreduce DCPIP with pheophorbide A, a chlorophyll metabolite, and triethanolamine as the electron donor in 20% dimethylformamide were unsuccessful. Photoreduced benzoquinones including 2,3-dimethoxy-5-methyl-p-benzoquinone (CoQ0), methoxy-benzoquinone and methyl-benzoquinone were used to examine electron transfer to DCPIP. For photoreduced CoQ0 and methoxy-benzoquinone, electron transfer to DCPIP was rapid and complete, whereas for reduced methyl benzoquinone, it was incomplete due to differences in reduction potential. Nonetheless, electron transfer from photoreduced quinols to DCPIP is a rapid and sensitive method to investigate quinone photoreduction by chlorophyll metabolites. Full article
Show Figures

Figure 1

32 pages, 3005 KB  
Review
Photophysical Process of Hypocrellin-Based Photodynamic Therapy: An Efficient Antimicrobial Strategy for Overcoming Multidrug Resistance
by Pazhani Durgadevi, Koyeli Girigoswami and Agnishwar Girigoswami
Physics 2025, 7(3), 28; https://doi.org/10.3390/physics7030028 - 15 Jul 2025
Cited by 2 | Viewed by 1504
Abstract
The emergence of multidrug-resistant (MDR) bacteria and biofilm-associated infections has created a significant hurdle for conventional antibiotics, prompting the exploration of alternative strategies. Photodynamic therapy (PDT), a technique that utilizes photosensitizers activated by light to produce ROS, has emerged as a beacon of [...] Read more.
The emergence of multidrug-resistant (MDR) bacteria and biofilm-associated infections has created a significant hurdle for conventional antibiotics, prompting the exploration of alternative strategies. Photodynamic therapy (PDT), a technique that utilizes photosensitizers activated by light to produce ROS, has emerged as a beacon of hope in the fight against MDR microorganisms. Among the natural photosensitizers, hypocrellins (A and B) have shown remarkable potential with their dual-mode photodynamic action, generating ROS via both Type I (electron transfer) and Type II (singlet oxygen) pathways. This unique action disrupts bacterial biofilms and inactivates MDR pathogens. The amphiphilic nature of hypocrellins further enhances their promise, enabling deep biofilm penetration and ensuring potent antibacterial effects even in hypoxic environments, surpassing the capabilities of synthetic photosensitizers. This study critically examines the antimicrobial properties of hypocrellin-based PDT, emphasizing its mechanisms, advantages over traditional antibiotics, and effectiveness against MDR pathogens. Comparative analysis with other photosensitizers, the role of nanotechnology-enhanced delivery systems, and future clinical applications are explored. Its combination with nanotechnology enhances therapeutic outcomes, providing a viable alternative to conventional antibiotics. Further clinical research is essential to optimize its application and integration into antimicrobial treatment protocols. Full article
(This article belongs to the Section Biophysics and Life Physics)
Show Figures

Figure 1

22 pages, 5623 KB  
Article
Lanthanides-Based Nanoparticles Conjugated with Rose Bengal for FRET-Mediated X-Ray-Induced PDT
by Batoul Dhaini, Joël Daouk, Hervé Schohn, Philippe Arnoux, Valérie Jouan-Hureaux, Albert Moussaron, Agnès Hagege, Mathilde Achard, Samir Acherar, Tayssir Hamieh and Céline Frochot
Pharmaceuticals 2025, 18(5), 672; https://doi.org/10.3390/ph18050672 - 1 May 2025
Viewed by 1061
Abstract
In order to find a good candidate for Förster Resonance Energy Transfer (FRET)-mediated X-ray-induced photodynamic therapy (X-PDT) for the treatment of cancer, lanthanide (Ln)-based AGuIX nanoparticles (NPs) conjugated with Rose Bengal (RB) as a photosensitizer (PS) were synthesized. X-PDT overcomes the problem of [...] Read more.
In order to find a good candidate for Förster Resonance Energy Transfer (FRET)-mediated X-ray-induced photodynamic therapy (X-PDT) for the treatment of cancer, lanthanide (Ln)-based AGuIX nanoparticles (NPs) conjugated with Rose Bengal (RB) as a photosensitizer (PS) were synthesized. X-PDT overcomes the problem of the poor penetration of visible light into tissues, which limits the efficacy of PDT in the treatment of deep-seated tumors. It is essential to optimize FRET efficiency by maximizing the overlap integral between donor emission and acceptor absorption and lengthening the duration of the donor emission. In this study, we optimized energy transfer between a scintillator (Sc) as a donor and a PS as an acceptor. Terbium (Tb) and Gadolinium (Gd) as Scs and Rose RB as a PS were chosen. The study of energy transfer between Tb, Gd and RB in solution and chelated on AGuIX NPs proved to be FRET-like. RB was conjugated directly onto AGuIX NPs (i.e., AGuIX Ln@RB), and the use of a spacer arm (i.e., AGuIX Ln@spacer arm-RB) increased FRET efficiency. Singlet oxygen production by these NPs was observed under UV–visible illumination and X-ray irradiation. The in vitro bioassay demonstrated 52% cell death of U-251MG derived from human malignant glioblastoma multiforme at a concentration of 1 μM RB after illumination and irradiation (2 Gy, 320 kV, 10 mA, 3 Gy/min at 47 cm). In addition, the RB-coupled NRP-1-targeting peptide (i.e., K(RB)DKPPR) was conjugated onto AGuIX NPs by a thiol-maleimide click chemistry reaction, and an affinity in the nM range was observed. Full article
(This article belongs to the Special Issue Photodynamic Therapy: 3rd Edition)
Show Figures

Graphical abstract

27 pages, 11438 KB  
Review
Advances in Activation of Persulfate by Novel Carbon-Based Materials: Degradation of Emerging Contaminants, Mechanisms, and Perspectives
by Lianghui Guo, Dong Liu, Runyao Han, Aoxiang Yin, Guifan Gong, Shi Li, Ruixuan Chen, Jianyu Yang, Zimeng Liu and Keke Zhi
Crystals 2025, 15(5), 432; https://doi.org/10.3390/cryst15050432 - 1 May 2025
Cited by 1 | Viewed by 2671
Abstract
Global industrialization has intensified the emission of emerging contaminants (ECs), posing a serious threat to the environment and human health. Persulfate-based advanced oxidation processes (PS-AOPs) have become a research hotspot due to their efficient degradation capability and environmentally friendly features; carbon-based materials are [...] Read more.
Global industrialization has intensified the emission of emerging contaminants (ECs), posing a serious threat to the environment and human health. Persulfate-based advanced oxidation processes (PS-AOPs) have become a research hotspot due to their efficient degradation capability and environmentally friendly features; carbon-based materials are ideal catalysts for activating persulfate (PS) due to their tunable electronic structure, abundant active sites, and low cost. This study summarizes the application of carbon-based materials (graphene, single-atom catalysts (SACs), etc.) in PS-AOPs, and provides insights into the degradation mechanisms of radicals (e.g., sulfate radical (SO4−·), hydroxyl radical (·OH)) and non-radicals (e.g., 1O2(singlet oxygen), electron transfer). The removal efficacy of carbon-based catalysts for antibiotics, phenols, and dyes was compared, and the key degradation pathways were elucidated. In addition, the activation of PS can be accelerated, and catalytic efficiency can be improved by synergizing with ancillary technologies (e.g., light, electricity). Despite the great potential of carbon-based catalysts, their large-scale application is limited by the complexity of the catalyst preparation process and the lack of selectivity for complex water qualities. Future studies can accelerate the practical application of PS-AOPs in wastewater treatment through the precise design of SACs and the construction of multi-mechanism synergistic activation systems. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Performance of Transition Metal Catalysts)
Show Figures

Figure 1

21 pages, 6049 KB  
Article
Sustainable Treatment of Amoxicillin-Contaminated Wastewater Using Fe2+/H2O2/AC: Performance, Stability, and Environmental Impact
by Sumita, Jibran Ali Ghumro, Jingzhen Su, Cong Li, Zhengming He and Jieming Yuan
Processes 2025, 13(4), 1054; https://doi.org/10.3390/pr13041054 - 1 Apr 2025
Cited by 1 | Viewed by 1231
Abstract
This study investigates the activation mechanisms of hydrogen peroxide (H2O2) using iron-activated carbon (Fe2+/H2O2/AC) for the efficient degradation of amoxicillin (AM) in wastewater. The system achieved a high degradation efficiency of 90% under [...] Read more.
This study investigates the activation mechanisms of hydrogen peroxide (H2O2) using iron-activated carbon (Fe2+/H2O2/AC) for the efficient degradation of amoxicillin (AM) in wastewater. The system achieved a high degradation efficiency of 90% under alkaline conditions (pH 9), with singlet oxygen (1O2) and hydroxyl radicals (OH) identified as the dominant reactive species through scavenger experiments. High-performance liquid chromatography–mass spectrometry (HPLC-MS) analysis revealed degradation by-products and proposed reaction pathways, including the loss of amine groups, ring-opening oxidation, and bond cleavage. The structural and morphological properties of Fe2+/H2O2/AC were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) analysis. The BET surface area of Fe2+/H2O2/AC was determined to be 128.36 m2/g, with a mesoporous structure facilitating efficient mass transfer and adsorption. The system was systematically evaluated under varying conditions, including H2O2 concentration (25–250 mg/L), catalyst dosage (0.05–1.0 mg/L), and pH (3–10). Kinetic analysis revealed that the degradation process follows pseudo-second-order kinetics (R2 = 0.966), while adsorption isotherms were best described by the Langmuir model (R2 = 0.98). Ecotoxicity tests indicated that the degradation products are less harmful to aquatic organisms. The system demonstrated excellent stability over three consecutive cycles, highlighting its potential for long-term application in treating pharmaceutical-contaminated wastewater. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

12 pages, 1375 KB  
Article
An Electronic Structural Analysis of O2-Binding Dicopper Complex: Insights from Spin Magnetism and Molecular Orbitals
by Ryusei Morimoto, Kanami Sugiyama, Masahiro Higashi and Hirofumi Sato
Chemistry 2025, 7(2), 44; https://doi.org/10.3390/chemistry7020044 - 18 Mar 2025
Viewed by 880
Abstract
We investigated the geometry and electronic structure of the oxygen-bridged dicopper complex [CuII2(NH3)4O2]2+ and discussed how different DFT methods and basis sets, including dispersion corrections and dielectric media, affect the predicted structure and [...] Read more.
We investigated the geometry and electronic structure of the oxygen-bridged dicopper complex [CuII2(NH3)4O2]2+ and discussed how different DFT methods and basis sets, including dispersion corrections and dielectric media, affect the predicted structure and spin state. Our results showed that pure functionals yielded the closed-shell singlet character, whereas hybrid functionals presented a partial diradical character that coincided with increased spin contamination. Incorporating a polarizable continuum model further enhanced the diradical character and more closely reproduced the measured Cu–Cu distance with a bent Cu2O2 core. Analysis of the molecular orbitals and computed absorption spectra revealed how orbitals produce the key transition from ligand-to-metal charge transfer. These findings underscore how environmental effects influence the description of Cu2O2 chemistry. Full article
Show Figures

Graphical abstract

18 pages, 2314 KB  
Article
Photochemical Redox Cycling of Naphthoquinones Mediated by Methylene Blue and Pheophorbide A
by Lisa M. Landino and Joseph A. Reed
Molecules 2025, 30(6), 1351; https://doi.org/10.3390/molecules30061351 - 18 Mar 2025
Cited by 1 | Viewed by 1278
Abstract
The photoreduction of plastoquinone, a para-benzoquinone, by chlorophyll initiates photosynthesis in chloroplasts. The direct photoreduction of biologically relevant quinones by dietary chlorophyll metabolites has been reported and may influence health outcomes. We examined red light-mediated photoreduction of ortho- and para-naphthoquinones including vitamin K [...] Read more.
The photoreduction of plastoquinone, a para-benzoquinone, by chlorophyll initiates photosynthesis in chloroplasts. The direct photoreduction of biologically relevant quinones by dietary chlorophyll metabolites has been reported and may influence health outcomes. We examined red light-mediated photoreduction of ortho- and para-naphthoquinones including vitamin K3 using the photosensitizers methylene blue and pheophorbide A, a chlorophyll metabolite. Naphthoquinone reduction was monitored by UV/Visible spectroscopy and required a photosensitizer, red light and a tertiary amine electron donor. Combinations of methylene blue and ethylenediaminetetraacetic acid or pheophorbide A and triethanolamine in 20% dimethylformamide were employed for all photoreduction experiments. Hydrogen peroxide was generated during the photochemical reactions by singlet oxygen-dependent oxidation of the reduced naphthoquinones. Hydrogen peroxide was quantified with horseradish peroxidase following irradiation; the reduced naphthoquinones acted as peroxidase co-substrates. Histidine, a singlet oxygen scavenger, enhanced the rate of photoreduction by limiting the re-oxidation process. Catalase slowed the rate of photoreduction by regenerating molecular oxygen from hydrogen peroxide so that it could be photoexcited to singlet oxygen. The rates and extent of naphthoquinone photoreduction were dependent on molecular oxygen exposure in different reaction formats including in a cuvette and a plate well. Reduction of the tetrazolium salt MTT to the formazan via electron transfer from the photoreduced quinones was also used to quantitate the extent of photoreduction. Full article
Show Figures

Graphical abstract

11 pages, 1925 KB  
Article
Concentration-Dependent Photoproduction of Singlet Oxygen by Common Photosensitizers
by Grzegorz Szewczyk and Krystian Mokrzyński
Molecules 2025, 30(5), 1130; https://doi.org/10.3390/molecules30051130 - 1 Mar 2025
Cited by 5 | Viewed by 1850
Abstract
Singlet oxygen quantum yield (ΦΔ) is a critical parameter in photodynamic studies, particularly for evaluating photosensitizers’ efficiency in diverse applications such as photodynamic therapy and environmental remediation. Standard photosensitizers, including Rose Bengal, Methylene Blue, and porphyrins, are widely employed as benchmarks [...] Read more.
Singlet oxygen quantum yield (ΦΔ) is a critical parameter in photodynamic studies, particularly for evaluating photosensitizers’ efficiency in diverse applications such as photodynamic therapy and environmental remediation. Standard photosensitizers, including Rose Bengal, Methylene Blue, and porphyrins, are widely employed as benchmarks for determining ΦΔ. However, accurate determination of ΦΔ relies not only on the intrinsic properties of these photosensitizers but also on their experimental conditions, such as concentration. This study investigated the influence of photosensitizer concentration on singlet oxygen quantum yield using several standard photosensitizers. Our findings revealed a significant decrease in ΦΔ with increasing photosensitizer concentrations across all tested compounds. This decline was attributed to self-quenching effects and molecular aggregation, which reduced the efficiency of energy transfer from the excited triplet state of the photosensitizer to molecular oxygen. The results emphasize the importance of optimizing photosensitizer concentration to ensure reliable ΦΔ measurements and avoid underestimations. This work underscores the need to consider concentration-dependent effects in future studies to ensure accurate and reproducible outcomes. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

21 pages, 6099 KB  
Article
Peroxymonosulfate Activation by Fe/C Composites for Paracetamol Degradation: Performance Evaluation and Mechanism Insight
by Yujun Zhuo, Hong Meng, Yongqing Zhang, Yu Chen and Jiaqi Cui
Catalysts 2025, 15(3), 217; https://doi.org/10.3390/catal15030217 - 26 Feb 2025
Cited by 3 | Viewed by 1237
Abstract
Peroxymonosulfate-based advanced oxidation processes (PMS-AOPs) relying on non-radical pathways offer advantages such as resistance to interference, efficient oxidant utilization, and selective degradation of pollutants. In this study, an Fe, N co-doped activator (Fe-N-C1.5) was synthesized using a simple mixed solvent pyrolysis [...] Read more.
Peroxymonosulfate-based advanced oxidation processes (PMS-AOPs) relying on non-radical pathways offer advantages such as resistance to interference, efficient oxidant utilization, and selective degradation of pollutants. In this study, an Fe, N co-doped activator (Fe-N-C1.5) was synthesized using a simple mixed solvent pyrolysis method. The Fe-N-C1.5 exhibited excellent PMS activation activity. A total of 100% of paracetamol (PCT, 10 ppm) was degraded in the Fe-N-C1.5/PMS system in 7 min. Furthermore, this oxidation system maintained effective PCT removal even in the presence of background ions and in real water matrices. In addition, the leached Fe concentration after 60 min was only 0.084 mg/L, and 94% of PCT could still be removed during the fourth cyclic use of the catalyst. Quenching experiments, electron paramagnetic resonance (EPR), and electrochemical analysis revealed that the Fe-N-C1.5/PMS/PCT system predominantly relies on non-radical pathways, including singlet oxygen (1O2) and catalyst-interface-mediated electron transfer process (ETP). X-ray photoelectron spectroscopy (XPS) analysis and KSCN toxicity experiment confirmed that the graphitic N, carbonyl (C=O), and Fe-Nx were the main PMS activation sites. This study provides an understanding of degradation mechanisms of the Fe-N-C1.5/PMS/PCT system and offers insights into the design of iron–carbon composite catalysts that carry out non-radical PMS activation. Full article
Show Figures

Figure 1

23 pages, 3606 KB  
Article
Indium Imidazo[4,5,-b]porphyrins as Photocatalysts for Oxidation of Sulfides
by Inna A. Abdulaeva, Mikhail A. Filatov, Azhar Kechiche and Alla Bessmertnykh-Lemeune
Molecules 2025, 30(4), 864; https://doi.org/10.3390/molecules30040864 - 13 Feb 2025
Cited by 3 | Viewed by 1220
Abstract
Over the past two decades, the application of photocatalytic reactions in organic synthesis has increased remarkably. Porphyrins, renowned for their exceptional photophysical properties, photostability, and prevalence in natural catalytic processes, are attracting significant attention as promising photocatalysts for reactions proceeding through energy transfer [...] Read more.
Over the past two decades, the application of photocatalytic reactions in organic synthesis has increased remarkably. Porphyrins, renowned for their exceptional photophysical properties, photostability, and prevalence in natural catalytic processes, are attracting significant attention as promising photocatalysts for reactions proceeding through energy transfer and one-electron transfer. In this work, we synthesized the indium(III) complex of 2-[4-(diethoxyphosphoryl)phenyl]-1H-imidazo[4,5-b]-5,10,15,20-tetramesitylporphyrin (InTMPIP) and explored its application as a photocatalyst for the oxidation of sulfides by dioxygen or air. Complex InTMPIP was found to generate singlet oxygen with quantum yield of 0.92 (toluene) and enables efficient photooxidation of sulfides to sulfoxides by dioxygen in “green” acetonitrile/water (4:1 v/v) or methanol/chloroform (2:1 v/v) solvent mixtures with almost quantitative yield. Furthermore, InTMPIP was grafted onto hydrated mesoporous titania and materials InTMPIP/TiO2-1 and InTMPIP/TiO2-2 with different In/Ti ratios were obtained and investigated. The composition and structure of the materials were studied using a combination of elemental analysis, various spectroscopic methods, gas adsorption measurements, and SEM imaging. Finally, the photocatalytic efficiency of InTMPIP/TiO2-2 was explored in aerobic photooxidation of sulfides. The heterogenized complex enables selective synthesis of sulfoxides under “green” conditions; however, it is prone to leaching into the solution when irradiated with both blue and red LEDs. Full article
(This article belongs to the Special Issue Catalysts: New Materials for Green Chemistry)
Show Figures

Graphical abstract

Back to TopTop