Nitrogen-Enriched Porous Carbon from Chinese Medicine Residue for the Effective Activation of Peroxymonosulfate for Degradation of Organic Pollutants: Mechanisms and Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.2. Evaluation of Catalyst Activation Performance
2.3. Practical Application of the NCMR800–2/PMS System in Water Treatment
2.4. Investigation of Active Species and Mechanistic Pathways
2.5. Possible Degradation Pathways
2.6. Evaluation of the Toxicity of RhB Degradation Products
3. Experiments
3.1. Chemicals
3.2. Preparation and Characterization of Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Y.; Wang, Z.; Wang, H.; Almatrafi, E.; Qin, H.; Huang, D.; Zhu, Y.; Zhou, C.; Tian, Q.; Xu, P.; et al. Confinement of ZIF-derived copper-cobalt-zinc oxides in carbon framework for degradation of organic pollutants. J. Hazard. Mater. 2022, 440, 129811. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, X.; Song, W.; Pan, Y.; Lambropoulou, D.; Zhong, Y.; Du, Y.; Nie, J.; Yang, X. Photochemical oxidation of PPCPs using a combination of solar irradiation and free available chlorine. Sci. Total Environ. 2019, 682, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; He, H.; Lei, L.; Zhu, K.; He, D.; Huang, J.; Ai, Y. Green synthesis of novel Fe nanoparticles embedded in N-doped biochar composites derived from bagasse for sulfadiazine degradation via peroxymonosulfate activator: Mechanism insight and performance assessment. J. Water Process Eng. 2022, 49, 103131. [Google Scholar] [CrossRef]
- Nghia, N.T.; Nguyen, V.D. Application of Response Surface Methodology for the Optimization of Basic Red 46 Dye Degradation in an Electrocoagulation–Ozonation Hybrid System. Molecules 2025, 30, 2627. [Google Scholar] [CrossRef] [PubMed]
- Faraos, A.; Maroulas, K.N.; Nikoloudakis, E.; Drivas, C.; Isaacs, M.A.; Kyzas, G.Z.; Ladomenou, K. Synergistic effect of porphyrin and NiO in chitosan/graphene oxide aerogels for enhanced photocatalytic degradation of cationic and anionic dyes. RSC Adv. 2025, 15, 27685–27699. [Google Scholar] [CrossRef]
- Yener, J.; Kopac, T.; Dogu, G.; Dogu, T. Dynamic analysis of sorption of Methylene Blue dye on granular and powdered activated carbon. Chem. Eng. J. 2008, 144, 400–406. [Google Scholar] [CrossRef]
- Islam, T.; Repon, M.R.; Islam, T.; Sarwar, Z.; Rahman, M.M. Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions. Environ. Sci. Pollut. Res. 2023, 30, 9207–9242. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Kurniawan, S.B.; Iwuozor, K.O.; Aniagor, C.O.; Ajala, O.J.; Oba, S.N.; Iwuchukwu, F.U.; Ahmadi, S.; Igwegbe, C.A. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Saf. Environ. Prot. 2022, 157, 37–58. [Google Scholar] [CrossRef]
- Nure, J.F.; Nkambule, T.T.I. The recent advances in adsorption and membrane separation and their hybrid technologies for micropollutants removal from wastewater. J. Ind. Eng. Chem. 2023, 126, 92–114. [Google Scholar] [CrossRef]
- Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Emerging contaminants of high concern and their enzyme-assisted biodegradation–A review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef]
- Song, X.; Shi, Y.; Wu, Z.; Huang, B.; Wang, X.; Zhang, H.; Zhou, P.; Liu, W.; Pan, Z.; Xiong, Z.; et al. Unraveling the discriminative mechanisms for peroxy activation via atomically dispersed Fe-N5 sites for tunable water decontamination. Appl. Catal. B Environ. 2024, 340, 123240. [Google Scholar] [CrossRef]
- Di, X.; Zeng, X.; Zhang, X.; Tang, T.; Zhao, Z.; Wang, W.; Liu, Z.; Jin, L.; Ji, X.; Shao, X. Nitrogen-phosphorus codoped biochar prepared from tannic acid for degradation of trace antibiotics in wastewater. Environ. Res. 2025, 266, 120589. [Google Scholar] [CrossRef]
- Gao, X.; Liu, C.; Di, X.; Shi, Y.; Liu, D.; Yang, J.; Zhao, Z.; Wang, W.; Ji, X.; Shao, X. Non-radical pathway dominated mechanism of nitrogen-phosphorus co-doped porous carbon activated peroxymonosulfate: Synergistic regulation of N-P and ecological toxicity reduction. J. Environ. Chem. Eng. 2025, 13, 119005. [Google Scholar] [CrossRef]
- Li, X.; Zhuang, Q.; Yuan, X.; Wang, N.; Wu, J.; Lian, X.; Miao, K.; Feng, G.; Luo, X. Achieving a balance between catalytic activity and stability of MnCo2O4 for sustainable flow-through wastewater treatment in peroxymonosulfate-advanced oxidation process. Chem. Eng. J. 2025, 505, 159580. [Google Scholar] [CrossRef]
- Manickavasagam, G.; Saaid, M.; Oh, W.-D. Hydrochar as sustainable redox catalyst for advanced oxidation processes-based wastewater treatment. Pure Appl. Chem. 2025. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Zhao, H.; Qi, W.; Tan, X.; Xu, X.; Song, F.; Shao, X. Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chin. Chem. Lett. 2025, 36, 110898. [Google Scholar] [CrossRef]
- Lei, X.; Zhao, H.; Bai, C.; Geng, L.; Xu, X. Wood-derived catalysts for green and stable Fenton-like chemistry: From basic mechanisms to catalytic modules and future inspiration. Chin. Chem. Lett. 2025, 36, 111550. [Google Scholar] [CrossRef]
- Oluyinka, O.A.; Oke, E.A.; Oyelude, E.O.; Abugri, J.; Raheem, S.A. Recapitulating potential environmental and industrial applications of biomass wastes. J. Mater. Cycles Waste Manag. 2022, 24, 2089–2107. [Google Scholar] [CrossRef]
- Cavali, M.; Libardi Junior, N.; de Sena, J.D.; Woiciechowski, A.L.; Soccol, C.R.; Belli Filho, P.; Bayard, R.; Benbelkacem, H.; de Castilhos Junior, A.B. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Sci. Total Environ. 2023, 857, 159627. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Z.; Kang, R.; Wang, J.; Lu, Q.; Wang, T.; Tian, D.; Xu, Y.; Wang, Z.; Ding, H. N-Rich Algal Sludge Biochar for Peroxymonosulfate Activation toward Sulfadiazine Removal. Coatings 2023, 13, 431. [Google Scholar] [CrossRef]
- Xu, S.; Wang, P.; Mi, X.; Bao, Y.; Zhang, H.; Mo, F.; Zhou, Q.; Zhan, S. N, S, and Cl tri-doped carbon boost the switching of radical to non-radical pathway in Fenton-like reactions: Synergism of N species and defects. J. Hazard. Mater. 2024, 466, 133321. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qiao, J.; Yuan, J.; Tang, Z.; Chu, T.; Lin, R.; Wen, H.; Zheng, C.; Chen, H.; Xie, H.; et al. Novel chitosan-modified biochar prepared from a Chinese herb residue for multiple heavy metals removal: Characterization, performance and mechanism. Bioresour. Technol. 2024, 402, 130830. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, C.; Tang, Z.; Chu, T.; Zheng, C.; Han, Q.; Chen, H.; Tan, Y. Biochar derived from traditional Chinese medicine residues: An efficient adsorbent for heavy metal Pb(II). Arab. J. Chem. 2024, 17, 105606. [Google Scholar] [CrossRef]
- Li, P.; Zhao, Z.; Zhang, M.; Su, H.; Zhao, T.; Feng, W.; Zhang, Z. Exploring the Potential of Biochar Derived from Chinese Herbal Medicine Residue for Efficient Removal of Norfloxacin. Molecules 2024, 29, 2063. [Google Scholar] [CrossRef]
- Wang, Z.; Du, C.; Yang, S.; Li, X.; Chen, R.; Ding, D. Active surface area determines the activity of biochar in Fenton-like oxidation processes. J. Hazard. Mater. 2025, 487, 137272. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, X.; Zhao, H.; Yang, C. Synergistic advanced oxidation process for enhanced degradation of organic pollutants in spent sulfuric acid over recoverable apricot shell-derived biochar catalyst. RSC Adv. 2022, 12, 1904–1913. [Google Scholar] [CrossRef]
- Ramirez, L.A.; Alvarez, M.; Gutierrez, V.S. From agro-alimentary residue to catalyst: Transforming sunflower seed husk waste into modified biochar for efficient ibuprofen degradation in water. J. Water Process Eng. 2025, 72, 107458. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Jing, J.; Song, G.; Zhang, X.; Zhou, M.; Dewil, R. Synergistically S/N self-doped biochar as a green bifunctional cathode catalyst in electrochemical degradation of organic pollutant. Green Energy Environ. 2025, 10, 214–230. [Google Scholar] [CrossRef]
- Wu, J.; Wen, Y.; Leng, Z.; Zhang, S.; Li, S.; Zhou, Z.; Zhou, Z.; Zhou, N. Enhanced atrazine degradation in water by N, P co-doped biochar based on peroxymonosulfate: Performance, mechanism and phytotoxicity reduction. J. Environ. Chem. Eng. 2025, 13, 116002. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, J. Degradation of sulfamethoxazole using peroxymonosulfate activated by nitrogen-doped biochar: Insights into the active sites and activation mechanism. Chem. Eng. J. 2025, 508, 161020. [Google Scholar] [CrossRef]
- Meng, Z.; Mo, R.; Wang, Q.; Zheng, K.; Li, W.; Qin, C. Nitrogen-doped porous carbon derived from graphite of solid waste for activating peroxymonosulfate to degradation tetracycline. Colloids Surf. A Physicochem. Eng. Asp. 2023, 662, 130984. [Google Scholar] [CrossRef]
- Kifle, G.A.; Huang, Y.; Xiang, M.; Tesfamichael, T.; Wang, W.; Wei, Y.; Wang, C.; Li, C.; Li, H. Synergistic enhancement of peroxymonosulfate activation by bimetallic (Bi, Fe) supported NaHCO3 activated and urea-modified biochar for sulfamethoxazole degradation: DFT calculations, toxicity assessments, and mechanistic studies. J. Environ. Chem. Eng. 2024, 12, 111675. [Google Scholar] [CrossRef]
- Huang, J.; Wang, M.; Luo, S.; Li, Z.; Ge, Y. In situ preparation of highly graphitized N-doped biochar geopolymer composites for efficient catalytic degradation of tetracycline in water by H2O. Environ. Res. 2023, 219, 115166. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Wu, F.; Yin, Z.; He, C.; Qian, J.; Mao, Y.; You, X.; Lin, G.; Yang, X.; Huang, B. Activation of peroxymonosulfate by tannin-derived porous carbon for enhanced bisphenol A degradation: Synergistic effect of surface nitrogen and oxygen functional groups. Appl. Surf. Sci. 2023, 640, 158308. [Google Scholar] [CrossRef]
- Yan, B.; Li, Q.; Chen, X.; Deng, H.; Feng, W.; Lu, H. Application of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Highly Concentrated Organic Wastewater: A Review. Separations 2022, 9, 444. [Google Scholar] [CrossRef]
- Deepika, R.; Sethuraman, M.G. Unleashing the potential of carbon dots bound Pd/CeO2@zeolite 13X as an oxone activator for the degradation of methylene blue dye: Insights into the catalytic mechanism and toxicity assessment. J. Water Process Eng. 2025, 74, 107817. [Google Scholar] [CrossRef]
- Du, Y.; Wang, W.-L.; Wang, Z.-W.; Yuan, C.-J.; Ye, M.-Q.; Wu, Q.-Y. Overlooked Cytotoxicity and Genotoxicity to Mammalian Cells Caused by the Oxidant Peroxymonosulfate during Wastewater Treatment Compared with the Sulfate Radical-Based Ultraviolet/Peroxymonosulfate Process. Environ. Sci. Technol. 2023, 57, 3311–3322. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Hu, J. Performance comparison of O3 and O3/Peroxymonosulfate (PMS) advanced oxidation processes for the antibiotics removal in wastewater treatment. J. Hazard. Mater. 2025, 496, 139248. [Google Scholar] [CrossRef]
- Hwang, S.; Chen, X.; Zhou, G.; Su, D. In Situ Transmission Electron Microscopy on Energy-Related Catalysis. Adv. Energy Mater. 2020, 10, 1902105. [Google Scholar] [CrossRef]
- Abdel-Salam, M.O.; Farghal, H.H.; El Sawy, E.; Yoon, T.; El-Sayed, M.M.H. Activation of peroxymonosulfate for rhodamine-B removal from water: Enhanced efficiency with cobalt-enriched, magnetically recoverable CNTs. RSC Adv. 2025, 15, 6371–6383. [Google Scholar] [CrossRef]
- El-Nahhal, I.M.; Salem, J.K.; Kuhn, S.; Hammad, T.; Hempelmann, R.; Al Bhaisi, S. Synthesis and characterization of silica-, meso-silica- and their functionalized silica-coated copper oxide nanomaterials. J. Sol.-Gel. Sci. Technol. 2016, 79, 573–583. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, H.; Yuan, L.; Ding, X.; Zhang, S.; Li, K.; Sun, J.; Liu, Q. Temperature-Dependent Structural Evolution of Coal-Based Graphite During Synthetic Graphitization Process. Energy Fuels 2024, 38, 17370–17379. [Google Scholar] [CrossRef]
- Huang, A.; Tu, Y.; Yu, Q. Preparation and electrochemical properties of nitrogen-doped starch hard carbon anode materials for lithium-ion battery. Int. J. Electrochem. Sci. 2024, 19, 100774. [Google Scholar] [CrossRef]
- Liu, H.; Kaya, H.; Lin, Y.-T.; Ogrinc, A.; Kim, S.H. Vibrational spectroscopy analysis of silica and silicate glass networks. J. Am. Ceram. Soc. 2022, 105, 2355–2384. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Shahab, A.; Zhang, K.; Zeng, H.; Bacha, A.-U.-R.; Nabi, I.; Ullah, H. Comparative study on characterization and adsorption properties of phosphoric acid activated biochar and nitrogen-containing modified biochar employing Eucalyptus as a precursor. J. Clean. Prod. 2021, 303, 127046. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, L.; Li, H.; Xu, X.; Shang, Y.; Xu, Y.; Cao, X.; Liu, H.; Zhang, J. Unraveling the metal size-dependent origin in activating peracetic acid with cobalt single atoms: Collaboration of radical and non-radical mechanisms. Appl. Catal. B Environ. Energy 2025, 371, 125252. [Google Scholar] [CrossRef]
- Gross, T.; Ramm, M.; Sonntag, H.; Unger, W.; Weijers, H.M.; Adem, E.H. An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference. Surf. Interface Anal. 1992, 18, 59–64. [Google Scholar] [CrossRef]
- Alaizeri, Z.M.; Alhadlaq, H.A.; Aldawood, S.; Ahamed, M. Synthesis and Characterization of MgO-Fe2O3/γ-Al2O3 Nanocomposites: Enhanced Photocatalytic Efficiency and Selective Anticancer Properties. Catalysts 2024, 14, 923. [Google Scholar] [CrossRef]
- Shi, Y.; Yin, M.; Liu, D.; Gao, X.; Liu, X.; Yang, T.; Zhao, Z.; Ji, X.; Zhao, C.; Shao, X. Single-step synthesis of nitrogen and phosphorus co-doped biochar and its application in dye removal: Synergistic effects of adsorption and peroxymonosulfate activation. Environ. Res. 2025, 279, 121866. [Google Scholar] [CrossRef]
- Feng, G.; Huang, H.; Chen, Y. Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: A review. J. Hazard. Mater. 2021, 420, 126602. [Google Scholar] [CrossRef]
- Hu, P.; Su, H.; Chen, Z.; Yu, C.; Li, Q.; Zhou, B.; Alvarez, P.J.J.; Long, M. Selective Degradation of Organic Pollutants Using an Efficient Metal-Free Catalyst Derived from Carbonized Polypyrrole via Peroxymonosulfate Activation. Environ. Sci. Technol. 2017, 51, 11288–11296. [Google Scholar] [CrossRef]
- Chen, Z.; Bi, S.; Zhao, G.; Chen, Y.; Hu, Y. Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: Mechanisms and intermediates identification. Sci. Total Environ. 2020, 711, 134715. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Liu, Y.; Cheng, X.; Tang, W.; Zhao, C.; Guo, H. Kinetic performance of peroxymonosulfate activated by Co/Bi25FeO40: Radical and non-radical mechanism. J. Taiwan Inst. Chem. Eng. 2019, 100, 56–64. [Google Scholar] [CrossRef]
- Hassani, A.; Eghbali, P.; Mahdipour, F.; Wacławek, S.; Lin, K.-Y.A.; Ghanbari, F. Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: Performance, mineralization, and activation mechanism. Chem. Eng. J. 2023, 453, 139556. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, E.; Xu, D.; Guo, Q. Activation of peroxymonosulfate by bimetallic CoMn oxides loaded on coal fly ash-derived SBA−15 for efficient degradation of Rhodamine, B. Sep. Purif. Technol. 2021, 274, 119081. [Google Scholar] [CrossRef]
- Pei, J.; Liu, J.; Fu, K.; Fu, Y.; Yin, K.; Luo, S.; Yu, D.; Xing, M.; Luo, J. Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions. Nat. Commun. 2025, 16, 800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, Z.; Wang, X. A review of electrochemical oxidation technology for advanced treatment of medical wastewater. Front Chem 2022, 10, 1002038. [Google Scholar] [CrossRef] [PubMed]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef]
- Choong, Z.-Y.; Lin, K.-Y.A.; Lisak, G.; Lim, T.-T.; Oh, W.-D. Multi-heteroatom-doped carbocatalyst as peroxymonosulfate and peroxydisulfate activator for water purification: A critical review. J. Hazard. Mater. 2022, 426, 128077. [Google Scholar] [CrossRef]
- Dou, J.; Cheng, J.; Lu, Z.; Tian, Z.; Xu, J.; He, Y. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process. Appl. Catal. B Environ. 2022, 301, 120832. [Google Scholar] [CrossRef]
- Shi, X.; Hong, P.; Huang, H.; Yang, D.; Zhang, K.; He, J.; Li, Y.; Wu, Z.; Xie, C.; Liu, J.; et al. Enhanced peroxymonosulfate activation by hierarchical porous Fe3O4/Co3S4 nanosheets for efficient elimination of rhodamine B: Mechanisms, degradation pathways and toxicological analysis. J. Colloid Interface Sci. 2022, 610, 751–765. [Google Scholar] [CrossRef]
- Song, T.; Li, G.; Yu, X.; Xia, J.; Deng, Q.; Liu, X.; Gao, Y. Bi-piezoelectric and plasmonic enhanced photocatalysis using Au/Bi2WO6/PVDF flexible films for efficient dye wastewater treatment: Heterogeneous interfacial engineering, degradation pathways and mechanism insight. Appl. Surf. Sci. 2025, 679, 161163. [Google Scholar] [CrossRef]
- Xiao, G.; Xu, T.; Faheem, M.; Xi, Y.; Zhou, T.; Moryani, H.T.; Bao, J.; Du, J. Evolution of Singlet Oxygen by Activating Peroxydisulfate and Peroxymonosulfate: A Review. Int. J. Environ. Res. Public Health 2021, 18, 3344. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, E.; Treccani, S.; Ferruti, P.; Alongi, J. The Seed Germination Test as a Valuable Tool for the Short-Term Phytotoxicity Screening of Water-Soluble Polyamidoamines. Polymers 2024, 16, 1744. [Google Scholar] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.; Liu, D.; Zhou, W.; Liu, X.; Gao, X.; Wang, T.; Shao, X. Nitrogen-Enriched Porous Carbon from Chinese Medicine Residue for the Effective Activation of Peroxymonosulfate for Degradation of Organic Pollutants: Mechanisms and Applications. Catalysts 2025, 15, 926. https://doi.org/10.3390/catal15100926
Lei X, Liu D, Zhou W, Liu X, Gao X, Wang T, Shao X. Nitrogen-Enriched Porous Carbon from Chinese Medicine Residue for the Effective Activation of Peroxymonosulfate for Degradation of Organic Pollutants: Mechanisms and Applications. Catalysts. 2025; 15(10):926. https://doi.org/10.3390/catal15100926
Chicago/Turabian StyleLei, Xiaoyun, Dong Liu, Weixin Zhou, Xiao Liu, Xingrui Gao, Tongtong Wang, and Xianzhao Shao. 2025. "Nitrogen-Enriched Porous Carbon from Chinese Medicine Residue for the Effective Activation of Peroxymonosulfate for Degradation of Organic Pollutants: Mechanisms and Applications" Catalysts 15, no. 10: 926. https://doi.org/10.3390/catal15100926
APA StyleLei, X., Liu, D., Zhou, W., Liu, X., Gao, X., Wang, T., & Shao, X. (2025). Nitrogen-Enriched Porous Carbon from Chinese Medicine Residue for the Effective Activation of Peroxymonosulfate for Degradation of Organic Pollutants: Mechanisms and Applications. Catalysts, 15(10), 926. https://doi.org/10.3390/catal15100926

