Lanthanides-Based Nanoparticles Conjugated with Rose Bengal for FRET-Mediated X-Ray-Induced PDT
Abstract
:1. Introduction
2. Results and Discussion
2.1. Energy Transfer Between Tb, Gd and RB
2.1.1. Photophysical Properties of Tb (TbCl3)
2.1.2. Photophysical Properties of Gd (GdCl3)
2.1.3. Energy Transfer Between Terbium (TbCl3), Gadolinium (GdCl3) and RB in Water
2.1.4. Energy Transfer Between AGuIX Tb, AGuIX Gd and RB in Water
2.2. Passive Targeting
2.2.1. Covalent Binding Between Ln-Based AGuIX NPs and RB
2.2.2. Cell Clonogenic Assays
2.3. Active Targeting
3. Materials and Methods
3.1. Chemicals and Materials
3.1.1. Chemicals
3.1.2. Materials
3.2. FRET Experiments
3.3. Photophysical Experiments
3.4. Singlet Oxygen Generation
3.5. TDA Experiments
3.6. In Vitro Experiments
3.7. Anchorage-Dependant Clonogenic Assay
3.8. Affinity to NRP-1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ahx | AminoHeXanoic acid |
Boc | tert-ButylOxyCarbonyl |
DLS | Dynamic Light Scattering |
DMSO | DiMethylSulfoxide |
DOTA | 1,4,7,10-tetraazacycloDOdecane-N,N’,N″,N‴-Tetraacetic Acid |
EDC.HCl | N,N′-DicyclohexylCarbodiimide |
EPR | enhanced permeability retention |
FRET | Förster Resonance Energy Transfer |
HA | hexanoic acid |
HPC | HydroxyPropylCellulose |
HPLC | High-Performance Liquid Chromatography |
IC50 | half maximal inhibitory concentration |
Ln | lanthanide |
MOF | Metal–Organic Framework |
MRI | Magnetic Resonance Imaging |
NHS | N-HydroxySuccinimide |
NMR | Nuclear Magnetic Resonance |
NPs | nanoparticles |
OD | Optical Density |
Pbf | 2,2,4,6,7-PentamethyldihydroBenzoFuran-5-sulfonyl |
PDT | photodynamic therapy |
PS | photosensitizer |
RB | Rose Bengale |
ROS | reactive oxygen species |
TDA-ICP-MS | Taylor Dispersion Analysis coupled to Inductively Coupled Plasma Mass Spectrometry |
TPP | TetraPhenylPorphyrin |
UV | Ultra-Violet |
Φf | fluorescence quantum yield |
ΦΔ | singlet oxygen production quantum yield |
References
- Zhang, T.; Zheng, H.; Zhang, F.; Chu, C.; Liao, T.; Xie, L.; Liu, G.; Cai, W. Rare-Earth Scintillating Nanoparticles for X-ray Induced Photodynamic Therapy. J. Lumin. 2023, 261, 119862. [Google Scholar] [CrossRef]
- Yao, B.; Liu, X.; Zhang, W.; Lu, H. X-ray Excited Luminescent Nanoparticles for Deep Photodynamic Therapy. RSC Adv. 2023, 13, 30133–30150. [Google Scholar] [CrossRef]
- Dhaini, B.; Arnoux, P.; Daouk, J.; Lux, F.; Tillement, O.; Hagège, A.; Hamieh, T.; Shafirstein, G.; Frochot, C. Energy Transfer between AGuIX Nanoparticles and Photofrin under Light or X-ray Excitation for PDT Applications. Pharmaceuticals 2024, 17, 1033. [Google Scholar] [CrossRef]
- Dhaini, B.; Wagner, L.; Moinard, M.; Daouk, J.; Arnoux, P.; Schohn, H.; Schneller, P.; Acherar, S.; Hamieh, T.; Frochot, C. Importance of Rose Bengal Loaded with Nanoparticles for Anti-Cancer Photodynamic Therapy. Pharmaceuticals 2022, 15, 1093. [Google Scholar] [CrossRef] [PubMed]
- Algar, W.R.; Hildebrandt, N.; Vogel, S.S.; Medintz, I.L. FRET as a Biomolecular Research Tool—Understanding Its Potential While Avoiding Pitfalls. Nat. Methods 2019, 16, 815–829. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, T.; Wang, G.; Gu, T.; Xie, C.; Huang, J.; Li, X.; Best, S.; Han, G. Production of a Fluorescence Resonance Energy Transfer (FRET) Biosensor Membrane for microRNA Detection. J. Mater. Chem. B 2017, 5, 7133–7139. [Google Scholar] [CrossRef]
- Carmona, A.K.; Juliano, M.A.; Juliano, L. The Use of Fluorescence Resonance Energy Transfer (FRET) Peptidesfor Measurement of Clinically Important Proteolytic Enzymes. An. Acad. Bras. Ciênc. 2009, 81, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Xu, S.; Zhu, Y.; Xu, W.; Zhou, P.; Zhou, C.; Dong, B.; Song, H. A Novel Upconversion, Fluorescence Resonance Energy Transfer Biosensor (FRET) for Sensitive Detection of Lead Ions in Human Serum. Nanoscale 2014, 6, 12573–12579. [Google Scholar] [CrossRef]
- Dinakaran, D.; Wilson, B.C. The Use of Nanomaterials in Advancing Photodynamic Therapy (PDT) for Deep-Seated Tumors and Synergy with Radiotherapy. Front. Bioeng. Biotechnol. 2023, 11, 1250804. [Google Scholar] [CrossRef]
- Souris, J.S.; Leoni, L.; Zhang, H.J.; Pan, A.; Tanios, E.; Tsai, H.-M.; Balyasnikova, I.V.; Bissonnette, M.; Chen, C.-T. X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. Nanomaterials 2023, 13, 673. [Google Scholar] [CrossRef]
- Narmani, A.; Farhood, B.; Haghi-Aminjan, H.; Mortezazadeh, T.; Aliasgharzadeh, A.; Mohseni, M.; Najafi, M.; Abbasi, H. Gadolinium Nanoparticles as Diagnostic and Therapeutic Agents: Their Delivery Systems in Magnetic Resonance Imaging and Neutron Capture Therapy. J. Drug Deliv. Sci. Technol. 2018, 44, 457–466. [Google Scholar] [CrossRef]
- Tiwari, A.; Dhoble, S.J. Tunable Lanthanide/Transition Metal Ion-doped Novel Phosphors for Possible Application in w-LEDs: A Review. Luminescence 2020, 35, 4–33. [Google Scholar] [CrossRef]
- Dobrescu, E. General Characterization of Rare Earth Elements. Anu. Institutului Cercet. Econ. Gheorghe Zane-Iasi 2012, 21, 25. [Google Scholar]
- Carsky, M.; Gruber, V. New Technology for Lanthanide Recovery from Spent Nd-Fe-B Magnets. S. Afr. J. Chem. Eng. 2020, 33, 35–38. [Google Scholar]
- Yan, J.; Zhang, J.; Zhang, M.; Shi, G. Lanthanide Metal-Organic Framework as a Paper Strip Sensor for Visual Detection of Sulfonamide with Smartphone-Based Point-of-Care Platform. Talanta 2022, 237, 122920. [Google Scholar] [CrossRef] [PubMed]
- Getsis, A.; Mudring, A. Lanthanide Containing Ionic Liquid Crystals: EuBr2, SmBr3, TbBr3 and DyBr3 in C12mimBr. Z. Anorg. Allg. Chem. 2010, 636, 1726–1734. [Google Scholar] [CrossRef]
- Van Der Ende, B.M.; Aarts, L.; Meijerink, A. Lanthanide Ions as Spectral Converters for Solar Cells. Phys. Chem. Chem. Phys. 2009, 11, 11081–11095. [Google Scholar] [CrossRef]
- Banerjee, T.; Abhilash, S.; Kabiraj, D.; Ojha, S.; Umapathy, G.; Shareef, M.; Laveen, P.; Duggal, H.; Amarnadh, R.; Gehlot, J. Fabrication of Thin Targets for Nuclear Reaction Studies at IUAC. Vacuum 2017, 144, 190–198. [Google Scholar] [CrossRef]
- Martins, J.; Diaz, C.A.; Domingues, M.F.; Ferreira, R.A.; Antunes, P.; André, P.S. Low-Cost and High-Performance Optical Fiber-Based Sensor for Liquid Level Monitoring. IEEE Sens. J. 2019, 19, 4882–4888. [Google Scholar] [CrossRef]
- Thompson, K.H.; Orvig, C. Lanthanide Compounds for Therapeutic and Diagnostic Applications. Chem. Soc. Rev. 2006, 35, 499. [Google Scholar] [CrossRef]
- Delgado, R.; Costa, J.; Guerra, K.P.; Lima, L.M. Lanthanide Complexes of Macrocyclic Derivatives Useful for Medical Applications. Pure Appl. Chem. 2005, 77, 569–579. [Google Scholar] [CrossRef]
- Alexander, W. American Society of Clinical Oncology, 2010 Annual Meeting and Rose Bengal: From a Wool Dye to a Cancer Therapy. P T Peer-Rev. J. Formul. Manag. 2010, 35, 469–478. [Google Scholar]
- Doughty, M.J. Rose Bengal Staining as an Assessment of Ocular Surface Damage and Recovery in Dry Eye Disease—A Review. Contact Lens Anterior Eye 2013, 36, 272–280. [Google Scholar] [CrossRef]
- Lowenstein, J.M. Radioactive Rose Bengal Test as a Quantitative Measure of Liver Function. Exp. Biol. Med. 1956, 93, 377–378. [Google Scholar] [CrossRef]
- Nonaka, M.; Yamamoto, M.; Yoshino, S.; Umemura, S.-I.; Sasaki, K.; Fukushima, T. Sonodynamic Therapy Consisting of Focused Ultrasound and a Photosensitizer Causes a Selective Antitumor Effect in a Rat Intracranial Glioma Model. Anticancer Res. 2009, 29, 943–950. [Google Scholar] [PubMed]
- Nakonechny, F.; Nisnevitch, M.; Nitzan, Y.; Nisnevitch, M. Sonodynamic Excitation of Rose Bengal for Eradication of Gram-Positive and Gram-Negative Bacteria. BioMed Res. Int. 2013, 2013, 684930. [Google Scholar] [CrossRef] [PubMed]
- DeRosa, M. Photosensitized Singlet Oxygen and Its Applications. Coord. Chem. Rev. 2002, 233–234, 351–371. [Google Scholar] [CrossRef]
- Seybold, P.G.; Gouterman, M.; Callis, J. Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein Dyes*. Photochem. Photobiol. 1969, 9, 229–242. [Google Scholar] [CrossRef]
- Uppal, A.; Jain, B.; Gupta, P.K.; Das, K. Photodynamic Action of Rose Bengal Silica Nanoparticle Complex on Breast and Oral Cancer Cell Lines. Photochem. Photobiol. 2011, 87, 1146–1151. [Google Scholar] [CrossRef]
- Torres-Martínez, A.; Bedrina, B.; Falomir, E.; Marín, M.J.; Angulo-Pachón, C.A.; Galindo, F.; Miravet, J.F. Non-Polymeric Nanogels as Versatile Nanocarriers: Intracellular Transport of the Photosensitizers Rose Bengal and Hypericin for Photodynamic Therapy. ACS Appl. Bio Mater. 2021, 4, 3658–3669. [Google Scholar] [CrossRef]
- Su, P.; Zhu, Z.; Fan, Q.; Cao, J.; Wang, Y.; Yang, X.; Cheng, B.; Liu, W.; Tang, Y. Surface Ligand Coordination Induced Self-Assembly of a Nanohybrid for Efficient Photodynamic Therapy and Imaging. Inorg. Chem. Front. 2018, 5, 2620–2629. [Google Scholar] [CrossRef]
- Cao, H.; Qi, Y.; Yang, Y.; Wang, L.; Sun, J.; Li, Y.; Xia, J.; Wang, H.; Li, J. Assembled Nanocomplex for Improving Photodynamic Therapy through Intraparticle Fluorescence Resonance Energy Transfer. Chem. Asian J. 2018, 13, 3540–3546. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Du, L.; Deng, Z.; Jiang, M.; Zeng, S. Soft X-ray Stimulated Lanthanide@MOF Nanoprobe for Amplifying Deep Tissue Synergistic Photodynamic and Antitumor Immunotherapy. Adv. Healthc. Mater. 2021, 10, 2101174. [Google Scholar] [CrossRef] [PubMed]
- Lux, F.; Tran, V.L.; Thomas, E.; Dufort, S.; Rossetti, F.; Martini, M.; Truillet, C.; Doussineau, T.; Bort, G.; Denat, F.; et al. AGuIX® from Bench to Bedside—Transfer of an Ultrasmall Theranostic Gadolinium-Based Nanoparticle to Clinical Medicine. Br. J. Radiol. 2018, 92, 20180365. [Google Scholar] [CrossRef] [PubMed]
- Verry, C.; Dufort, S.; Villa, J.; Gavard, M.; Iriart, C.; Grand, S.; Charles, J.; Chovelon, B.; Cracowski, J.-L.; Quesada, J.-L. Theranostic AGuIX Nanoparticles as Radiosensitizer: A Phase I, Dose-Escalation Study in Patients with Multiple Brain Metastases (NANO-RAD Trial). Radiother. Oncol. 2021, 160, 159–165. [Google Scholar] [CrossRef]
- El Ayachi, Z.; Gabro, A.; Camprodon, G.; Chopra, S.; Maingon, P.; Chargari, C. Transformative Clinical Trials in Gynaecologic Radiation Oncology in 2023–2024: Shaping Modern Treatment Practices. Cancer/Radiothérapie 2024, 28, 719–726. [Google Scholar] [CrossRef]
- Moussaron, A.; Jouan-Hureaux, V.; Collet, C.; Pierson, J.; Thomas, N.; Choulier, L.; Veran, N.; Doyen, M.; Arnoux, P.; Maskali, F.; et al. Preliminary Study of New Gallium-68 Radiolabeled Peptide Targeting NRP-1 to Detect Brain Metastases by Positron Emission Tomography. Molecules 2021, 26, 7273. [Google Scholar] [CrossRef]
- Daouk, J.; Iltis, M.; Dhaini, B.; Béchet, D.; Arnoux, P.; Rocchi, P.; Delconte, A.; Habermeyer, B.; Lux, F.; Frochot, C.; et al. Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy. Pharmaceuticals 2021, 14, 396. [Google Scholar] [CrossRef]
- Wouters, B.G. Cell Death after Irradiation: How, When and Why Cells Die. In Basic Clinical Radiobiology, 5th ed.; Joiner, M.C., Van Der Kogel, A.J., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 21–31. [Google Scholar] [CrossRef]
- Larue, L.; Moussounda Moussounda Koumba, T.; Le Breton, N.; Vileno, B.; Arnoux, P.; Jouan-Hureaux, V.; Boura, C.; Audran, G.; Bikanga, R.; Marque, S.R.A.; et al. Design of a Targeting and Oxygen-Independent Platform to Improve Photodynamic Therapy: A Proof of Concept. ACS Appl. Bio Mater. 2021, 4, 1330–1339. [Google Scholar] [CrossRef]
- Goudiaby, I.; Malliavin, T.E.; Mocchetti, E.; Mathiot, S.; Acherar, S.; Frochot, C.; Barberi-Heyob, M.; Guillot, B.; Favier, F.; Didierjean, C.; et al. New Crystal Form of Human Neuropilin-1 B1 Fragment with Six Electrostatic Mutations Complexed with KDKPPR Peptide Ligand. Molecules 2023, 28, 5603. [Google Scholar] [CrossRef]
- Figueiredo, T.L.C.; Johnstone, R.A.W.; Sørensen, A.M.P.S.; Burget, D.; Jacques, P. Determination of Fluorescence Yields, Singlet Lifetimes and Singlet Oxygen Yields of Water-Insoluble Porphyrins and Metalloporphyrins in Organic Solvents and in Aqueous Media. Photochem. Photobiol. 1999, 69, 517–528. [Google Scholar] [CrossRef]
- Youssef, Z.; Yesmurzayeva, N.; Larue, L.; Jouan-Hureaux, V.; Colombeau, L.; Arnoux, P.; Acherar, S.; Vanderesse, R.; Frochot, C. New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. J. Clin. Med. 2019, 8, 2205. [Google Scholar] [CrossRef] [PubMed]
Couples | J overloop (M−1·nm4·cm−1) | R0 (nm) | Type of Transfer | Energy Transfer Efficacity |
---|---|---|---|---|
AGuIX Tb/RB | 1.87 × 1015 | 3.76 | FRET | 66% |
AGuIX Gd/RB | 5.60 × 1014 | 3.08 | FRET | 27% |
Samples | ζ (mV) | Size * (nm) | ζ (mV) | Size * (nm) |
---|---|---|---|---|
Ln = Tb | Ln = Gd | |||
AGuIX Ln | +7 | 5.6 ± 0.1 ((95 ± 3)%) | +1 | 1.8 ± 0.1 (100%) |
AGuIX Ln@RB | −16 | 3.3 ± 0.3 ((23 ± 5)%) | −11 | |
7.0 ± 0.2 ((77 ± 5)%) | 2.6 ± 0.1 ((90 ± 7)%) | |||
AGuIX Ln@HA-RB | −27 | 3.8 ± 0.2 ((33 ± 4)%) | −17 | |
7.3 ± 0.2 ((67 ± 4)%) | 2.9 ± 0.1 ((97 ± 2)%) | |||
AGuIX Ln@Ahx-RB | −30 | 3.0 ± 0.2 ((26 ± 4)%) | −25 | |
7.3 ± 0.1 ((74 ± 4)%) | 2.7 ± 0.1 ((95 ± 3)%) |
Samples | (ns) | (µs) | ||||
---|---|---|---|---|---|---|
RB | 0.63 | - | 0.67 | 0.00 | 0.15 | |
AGuIX Ln | Ln = Tb | - | 2000 | 0.00 | 0.00 | 0.00 |
Ln = Gd | - | 2400 | 0.00 | 0.00 | 0.00 | |
AGuIX Ln@RB | Ln = Tb | 6.30 | 650 | 0.68 | 0.35 | 0.13 |
Ln = Gd | 6.30 | 330 | 0.64 | 0.25 | 0.14 | |
AGuIX Ln@HA-RB | Ln = Tb | 7.00 | 280 | 0.64 | 0.37 | 0.12 |
Ln = Gd | 6.60 | 290 | 0.60 | 0.27 | 0.11 | |
AGuIX Ln@Ahx-RB | Ln = Tb | 6.10 | 310 | 0.67 | 0.34 | 0.13 |
Ln = Gd | 6.80 | 330 | 0.61 | 0.31 | 0.10 |
Samples | (ns) | (µs) | ζ (mV) | Size (nm) | ||||
---|---|---|---|---|---|---|---|---|
RB | 0.63 | - | 0.67 | 0.00 | 0.15 | - | - | |
AGuIX Ln | Ln = Tb | - | 2000 | 0.00 | 0.00 | 0.00 | +7 | 5.5 |
Ln = Gd | - | 2400 | 0.00 | 0.00 | 0.00 | +1 | 1.8 | |
AGuIX Ln@Mal-K(RB) | Ln = Tb | 3.1 | 470 | 0.65 | 0.34 | 0.13 | −10 | P1: 4.9 (65%) |
P2: 8.2 (35%) | ||||||||
Ln = Gd | 2.4 | 470 | 0.66 | 0.35 | 0.13 | −4 | P1: 3.2 (97%) | |
P2: 30.0 (3%) | ||||||||
AGuIX Ln@Mal-K(RB)DKPPR | Ln = Tb | 2.8 | 345 | 0.68 | 0.36 | 0.11 | −14 | P1: 5.4 (46%) |
P2: 32.0 (54%) | ||||||||
Ln = Gd | 3.8 | 345 | 0.67 | 0.35 | 0.11 | −10 | P1: 2.9 (95%) | |
P2: 14.0 (5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaini, B.; Daouk, J.; Schohn, H.; Arnoux, P.; Jouan-Hureaux, V.; Moussaron, A.; Hagege, A.; Achard, M.; Acherar, S.; Hamieh, T.; et al. Lanthanides-Based Nanoparticles Conjugated with Rose Bengal for FRET-Mediated X-Ray-Induced PDT. Pharmaceuticals 2025, 18, 672. https://doi.org/10.3390/ph18050672
Dhaini B, Daouk J, Schohn H, Arnoux P, Jouan-Hureaux V, Moussaron A, Hagege A, Achard M, Acherar S, Hamieh T, et al. Lanthanides-Based Nanoparticles Conjugated with Rose Bengal for FRET-Mediated X-Ray-Induced PDT. Pharmaceuticals. 2025; 18(5):672. https://doi.org/10.3390/ph18050672
Chicago/Turabian StyleDhaini, Batoul, Joël Daouk, Hervé Schohn, Philippe Arnoux, Valérie Jouan-Hureaux, Albert Moussaron, Agnès Hagege, Mathilde Achard, Samir Acherar, Tayssir Hamieh, and et al. 2025. "Lanthanides-Based Nanoparticles Conjugated with Rose Bengal for FRET-Mediated X-Ray-Induced PDT" Pharmaceuticals 18, no. 5: 672. https://doi.org/10.3390/ph18050672
APA StyleDhaini, B., Daouk, J., Schohn, H., Arnoux, P., Jouan-Hureaux, V., Moussaron, A., Hagege, A., Achard, M., Acherar, S., Hamieh, T., & Frochot, C. (2025). Lanthanides-Based Nanoparticles Conjugated with Rose Bengal for FRET-Mediated X-Ray-Induced PDT. Pharmaceuticals, 18(5), 672. https://doi.org/10.3390/ph18050672