Sustainable Treatment of Amoxicillin-Contaminated Wastewater Using Fe2+/H2O2/AC: Performance, Stability, and Environmental Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Amoxicillin Concentration
2.2. Materials
2.3. Preparation of Adsorbent
2.4. Characterization
2.5. Catalytic Activity of Fe@AC
2.6. Radical Quenching and Free Radical Capture
3. Results
3.1. Characterization of Fe@AC
3.2. Morphological and Crystallographic Analyses
3.3. Brunauer–Emmett–Teller
4. Discussion
4.1. Parameters
4.1.1. Effect of H2O2
4.1.2. Effect of pH
4.1.3. Effect of Antibiotic Dosage
4.1.4. Effect of Catalyst Dosage
4.1.5. Effect of Humic Acid and TOC
4.1.6. Iron Content in Fe@AC
4.1.7. Adsorption Isotherms
4.1.8. Adsorption Kinetics
4.2. Mechanism of AM Degradations
4.2.1. Confirmation of Radical Formation and Their Involvement in the Removal of AM
4.2.2. Identification of Reactive Radicals and Free Radicals in AM Degradation Systems
4.2.3. Degradation Pathway of AM by Fe2+/H2O2/AC
4.3. Ecotoxicity Analysis
4.4. Stability and Reusability of Catalyst
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maged, A.; Kharbish, S.; Ismael, I.S.; Bhatnagar, A. Characterization of Activated Bentonite Clay Mineral and the Mechanisms Underlying Its Sorption for Ciprofloxacin from Aqueous Solution. Environ. Sci. Pollut. Res. 2020, 27, 32980–32997. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Mukherjee, D.; Dey, S.; Ghosh, S.; Banerjee, S. Development and Performance Evaluation of a Novel CuO/TiO2 Ceramic Ultrafiltration Membrane for Ciprofloxacin Removal. Mater. Chem. Phys. 2019, 229, 106–116. [Google Scholar] [CrossRef]
- Yu, J.; Kang, Y.; Yin, W.; Fan, J.; Guo, Z. Removal of Antibiotics from Aqueous Solutions by a Carbon Adsorbent Derived from Protein-Waste-Doped Biomass. ACS Omega 2020, 5, 19187–19193. [Google Scholar] [CrossRef]
- Githinji, L.J.M.; Musey, M.K.; Ankumah, R.O. Evaluation of the Fate of Ciprofloxacin and Amoxicillin in Domestic Wastewater. Water. Air. Soil Pollut. 2011, 219, 191–201. [Google Scholar] [CrossRef]
- Zha, S.X.; Zhou, Y.; Jin, X.; Chen, Z. The Removal of Amoxicillin from Wastewater Using Organobentonite. J. Environ. Manag. 2013, 129, 569–576. [Google Scholar] [CrossRef]
- Ghauch, A.; Baydoun, H.; Dermesropian, P. Degradation of Aqueous Carbamazepine in Ultrasonic/Fe0/H2O2 Systems. Chem. Eng. J. 2011, 172, 18–27. [Google Scholar] [CrossRef]
- Yin, F.; Lin, S.; Zhou, X.; Dong, H.; Zhan, Y. Fate of Antibiotics during Membrane Separation Followed by Physical-Chemical Treatment Processes. Sci. Total Environ. 2021, 759, 143520. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Patra, C.; Narayanasamy, S.; Subbiah, S. Adsorptive Removal of Ciprofloxacin and Amoxicillin from Single and Binary Aqueous Systems Using Acid-Activated Carbon from Prosopis Juliflora. Environ. Res. 2020, 188, 109825. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.Z.; Xu, Y.; Lu, Z.; Peng, L. Review of Antibiotics Treatment by Advance Oxidation Processes. Environ. Adv. 2021, 5, 100111. [Google Scholar] [CrossRef]
- Khellaf, N.; Djelal, H.; Amrane, A.; Cabrol, A. Biostimulation to Improve the Dye Biodegradation of Organic Dyes by Activated Sludge. J. Chem. Health Risks 2018, 7, 247–258. [Google Scholar]
- Petit, A.S.; Pennifold, R.C.R.; Harvey, J.N. Electronic Structure and Formation of Simple Ferryloxo Complexes: Mechanism of the Fenton Reaction. Inorg. Chem. 2014, 53, 6473–6481. [Google Scholar] [CrossRef] [PubMed]
- Freire, D.M.; Beeri, D.; Pota, K.; Johnston, H.M.; Palacios, P.; Pierce, B.S.; Sherman, B.D.; Green, K.N. Hydrogen Peroxide Disproportionation with Manganese Macrocyclic Complexes of Cyclen and Pyclen. Inorg. Chem. Front. 2020, 7, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, H.; Chen, F.; Mao, R.; Liu, H.; Qu, J. Efficient Treatment of an Electroplating Wastewater Containing Heavy Metal Ions, Cyanide, and Organics by H2O2 Oxidation Followed by the Anodic Fenton Process. Water Sci. Technol. 2013, 68, 1329–1335. [Google Scholar] [CrossRef]
- Brillas, E.; Garcia-Segura, S. Benchmarking Recent Advances and Innovative Technology Approaches of Fenton, Photo-Fenton, Electro-Fenton, and Related Processes: A Review on the Relevance of Phenol as Model Molecule. Sep. Purif. Technol. 2020, 237, 116337. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Gandhimathi, R.; Ramesh, S.T. Degradation of Dyes from Aqueous Solution by Fenton Processes: A Review. Environ. Sci. Pollut. Res. 2013, 20, 2099–2132. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Review. Appl. Catal. B Environ. 2019, 255, 117739. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Trimethoprim Degradation by Fenton and Fe(II)-Activated Persulfate Processes. Chemosphere 2018, 191, 97–105. [Google Scholar] [CrossRef]
- Singh, P.; Mohan, B.; Madaan, V.; Ranga, R.; Kumari, P.; Kumar, S.; Bhankar, V.; Kumar, P.; Kumar, K. Nanomaterials Photocatalytic Activities for Waste Water Treatment: A Review; Springer: Berlin/Heidelberg, Germany, 2022; Volume 29, ISBN 5362481064137. [Google Scholar]
- Porcu, S.; Secci, F.; Ricci, P.C. Advances in Hybrid Composites for Photocatalytic Applications: A Review. Molecules 2022, 27, 6828. [Google Scholar] [CrossRef]
- Santos, V.P.; Pereira, M.F.R.; Faria, P.C.C.; Órfão, J.J.M. Decolourisation of Dye Solutions by Oxidation with H2O2 in the Presence of Modified Activated Carbons. J. Hazard. Mater. 2009, 162, 736–742. [Google Scholar] [CrossRef]
- Georgi, A.; Kopinke, F.D. Interaction of Adsorption and Catalytic Reactions in Water Decontamination Processes: Part I. Oxidation of Organic Contaminants with Hydrogen Peroxide Catalyzed by Activated Carbon. Appl. Catal. B Environ. 2005, 58, 9–18. [Google Scholar] [CrossRef]
- Kan, E.; Huling, S.G. Effects of Temperature and Acidic Pre-Treatment on Fenton-Driven Oxidation of MTBE-Spent Granular Activated Carbon. Environ. Sci. Technol. 2009, 43, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Mirizadeh, S.; Solisio, C.; Converti, A.; Casazza, A.A. Efficient Removal of Tetracycline, Ciprofloxacin, and Amoxicillin by Novel Magnetic Chitosan/Microalgae Biocomposites. Sep. Purif. Technol. 2024, 329, 125115. [Google Scholar] [CrossRef]
- Gurav, R.; Bhatia, S.K.; Choi, T.R.; Park, Y.L.; Park, J.Y.; Han, Y.H.; Vyavahare, G.; Jadhav, J.; Song, H.S.; Yang, P.; et al. Treatment of Furazolidone Contaminated Water Using Banana Pseudostem Biochar Engineered with Facile Synthesized Magnetic Nanocomposites. Bioresour. Technol. 2020, 297, 122472. [Google Scholar] [CrossRef] [PubMed]
- Thi Mong Thy, L.; Tan Tai, L.; Duy Hai, N.; Quang Cong, C.; Minh Dat, N.; Ngoc Trinh, D.; Truong Son, N.; Thi Yen Oanh, D.; Thanh Phong, M.; Huu Hieu, N. Comparison of In-Situ and Ex-Situ Methods for Synthesis of Iron Magnetic Nanoparticles-Doped Graphene Oxide: Characterization, Adsorption Capacity, and Fenton Catalytic Efficiency. FlatChem 2022, 33, 100365. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, S.; Xi, C.; Li, X.; Zhang, L.; Wang, G.; Chen, Z. A Novel Fe3O4/Graphene Oxide/Citrus Peel-Derived Bio-Char Based Nanocomposite with Enhanced Adsorption Affinity and Sensitivity of Ciprofloxacin and Sparfloxacin. Bioresour. Technol. 2019, 292, 121951. [Google Scholar] [CrossRef]
- Xiunan, C.; Ling, T.; Meifei, C.; Yijun, L.; Wei, W.; Junhao, L.; Yanjuan, Z.; Gan, T.; Huayu, H.; Zuqiang, H. Construction of a C-Decorated and Cu-Doped (Fe,Cu)S/CuFe2O4 Solid Solution for Photo-Fenton Degradation of Hydrophobic Organic Contaminant: Enhanced Electron Transfer and Adsorption Capacity. Chemosphere 2022, 296, 134005. [Google Scholar] [CrossRef]
- Shaofeng, Z.; Wei, W.; Xiangheng, X.; Juan, Z.; Feng, R. Jiang Changzhong Preparation and Characterization of Spindle-like Fe3O4 Mesoporous Nanoparticles. Nanoscale Res. Lett. 2011, 6, 89–97. [Google Scholar]
- Chenakin, S.; Kruse, N. XPS Characterization of Transition Metal Oxalates. Appl. Surf. Sci. 2020, 515, 146041. [Google Scholar] [CrossRef]
- Peng, W.; Li, H.; Liu, Y.; Song, S. A Review on Heavy Metal Ions Adsorption from Water by Graphene Oxide and Its Composites. J. Mol. Liq. 2017, 230, 496–504. [Google Scholar] [CrossRef]
- Gopinath, A.; Pisharody, L.; Popat, A.; Nidheesh, P.V. Supported Catalysts for Heterogeneous Electro-Fenton Processes: Recent Trends and Future Directions. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100981. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- García-Galán, M.J.; Díaz-Cruz, S.; Barceló, D. Multiresidue Trace Analysis of Sulfonamide Antibiotics and Their Metabolites in Soils and Sewage Sludge by Pressurized Liquid Extraction Followed by Liquid Chromatography–Electrospray-Quadrupole Linear Ion Trap Mass Spectrometry. J. Chromatogr. A 2013, 1275, 32–40. [Google Scholar] [CrossRef]
- Herney-Ramirez, J.; Vicente, M.A.; Madeira, L.M. Heterogeneous Photo-Fenton Oxidation with Pillared Clay-Based Catalysts for Wastewater Treatment: A Review. Appl. Catal. B Environ. 2010, 98, 10–26. [Google Scholar] [CrossRef]
- Liang, H.; Liu, R.; An, X.; Hu, C.; Zhang, X.; Liu, H. Bimetal-Organic Frameworks with Coordinatively Unsaturated Metal Sites for Highly Efficient Fenton-like Catalysis. Chem. Eng. J. 2021, 414, 128669. [Google Scholar] [CrossRef]
- Ricky, R.; Chiampo, F.; Shanthakumar, S. Efficacy of Ciprofloxacin and Amoxicillin Removal and the Effect on the Biochemical Composition of Chlorella Vulgaris. Bioengineering 2022, 9, 134. [Google Scholar] [CrossRef]
- Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Souza, L.S.; Martins, A.C.; Silva, T.L.; Santos Júnior, O.O.; Visentainer, J.V.; Almeida, V.C. NaOH-Activated Carbon of High Surface Area Produced from Guava Seeds as a High-Efficiency Adsorbent for Amoxicillin Removal: Kinetic, Isotherm and Thermodynamic Studies. Chem. Eng. J. 2016, 288, 778–788. [Google Scholar] [CrossRef]
- Shokri, A.; Fard, M.S. A Critical Review in Fenton-like Approach for the Removal of Pollutants in the Aqueous Environment. Environ. Chall. 2022, 7, 100534. [Google Scholar] [CrossRef]
- Yahia, B.; Faouzi, S.; Ahmed, C.; Lounis, S.; Mohamed, T. A New Hybrid Process for Amoxicillin Elimination by Combination of Adsorption and Photocatalysis on (CuO/AC) under Solar Irradiation. J. Mol. Struct. 2022, 1261, 132769. [Google Scholar] [CrossRef]
- Xie, W.; Huang, Z.; Zhou, F.; Li, Y.; Bi, X.; Bian, Q.; Sun, S. Heterogeneous Fenton-like Degradation of Amoxicillin Using MOF-Derived Fe0 Embedded in Mesoporous Carbon as an Effective Catalyst. J. Clean. Prod. 2021, 313, 127754. [Google Scholar] [CrossRef]
- Xiang, Y.; Xu, Z.; Wei, Y.; Zhou, Y.; Yang, X.; Yang, Y.; Yang, J.; Zhang, J.; Luo, L.; Zhou, Z. Carbon-Based Materials as Adsorbent for Antibiotics Removal: Mechanisms and Influencing Factors. J. Environ. Manag. 2019, 237, 128–138. [Google Scholar] [CrossRef]
- Jorfi, S.; Pourfadakari, S.; Kakavandi, B. A New Approach in Sono-Photocatalytic Degradation of Recalcitrant Textile Wastewater Using MgO@Zeolite Nanostructure under UVA Irradiation. Chem. Eng. J. 2018, 343, 95–107. [Google Scholar] [CrossRef]
- Tufail, A.; Price, W.E.; Hai, F.I. A Critical Review on Advanced Oxidation Processes for the Removal of Trace Organic Contaminants: A Voyage from Individual to Integrated Processes. Chemosphere 2020, 260, 127460. [Google Scholar] [CrossRef] [PubMed]
- Elmolla, E.S.; Chaudhuri, M. Photocatalytic Degradation of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution Using UV/TiO2 and UV/H2O2/TiO2 Photocatalysis. Desalination 2010, 252, 46–52. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, B.; Gao, B.; Cheng, N.; Feng, Q.; Chen, M.; Wang, S. Degradation of Organic Pollutants from Water by Biochar-Assisted Advanced Oxidation Processes: Mechanisms and Applications. J. Hazard. Mater. 2023, 442, 130075. [Google Scholar] [CrossRef]
- Song, J.; Zhu, L.; Yu, S.; Li, G.; Wang, D. The Synergistic Effect of Adsorption and Fenton Oxidation for Organic Pollutants in Water Remediation: An Overview. RSC Adv. 2024, 14, 33489–33511. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Wang, J.J.; Seo, D.C. Comparison of Catalytic Activity for Treating Recalcitrant Organic Pollutant in Heterogeneous Fenton Oxidation with Iron-Impregnated Biochar and Activated Carbon. J. Water Process Eng. 2021, 42, 102141. [Google Scholar] [CrossRef]
- Chen, M.; Dai, Y.; Guo, J.; Yang, H.; Liu, D.; Zhai, Y. Solvothermal Synthesis of Biochar@ZnFe2O4/BiOBr Z-Scheme Heterojunction for Efficient Photocatalytic Ciprofloxacin Degradation under Visible Light. Appl. Surf. Sci. 2019, 493, 1361–1367. [Google Scholar] [CrossRef]
- Dou, M.; Wang, J.; Ma, Z.; Gao, B.; Huang, X. Origins of Selective Differential Oxidation of β-Lactam Antibiotics with Different Structure in an Efficient Visible-Light Driving Mesoporous g-C3N4 Activated Persulfate Synergistic Mechanism. J. Hazard. Mater. 2022, 426, 128111. [Google Scholar] [CrossRef]
- de Carvalho, C.B.; Rosa, I.R.; Del Vecchio, P.; Dávila, I.V.J.; Nunes, K.G.P.; Marcilio, N.R.; Féris, L.A. Degradation of Ampicillin by Combined Process: Adsorption and Fenton Reaction. Environ. Technol. Innov. 2022, 26, 102365. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, G.; Xiao, B.; Geng, J.; Yang, Y.; Wang, D.; Li, J.; Wang, J.; Zhu, Y. Iron-Based Resin Heterogeneous Photo-Self-Fenton System for Efficient Photocatalytic Degradation of Antibiotic Wastewater. Sep. Purif. Technol. 2024, 330, 125338. [Google Scholar] [CrossRef]
- Kgoetlana, C.M.; Malinga, S.P.; Dlamini, L.N. Photocatalytic Degradation of Chlorpyrifos with Mn-Wo3/Sns2 Heterostructure. Catalysts 2020, 10, 699. [Google Scholar] [CrossRef]
- Pratiwi, W.Z.; Hadiyanto, H.; Widayat, W.; Baihaqi, R.A. Response Surface Optimization of Ciprofloxacin Degradation Using UV/O3 Oxidation Process. Results Eng. 2024, 24, 103299. [Google Scholar] [CrossRef]
Sample | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
Iron-modified Carbon | 128.36 | 0.29 | 8.0 |
Unmodified Carbon | 146.15 | 0.02 | 2.5 |
Activation System | Light Source | Degradation Efficiency | Synthesis Method | Radicals | Catalyst Dosage (mg/L) | Hydrogen Peroxide (mg/L) | Stable | Ref. |
---|---|---|---|---|---|---|---|---|
(TiO2/UV/H2O2) | UV lamp (365 nm) | 85% at pH 8 | TiO2 photocatalyst | •OH | 0.2 | 100 | 4 cycles | [44] |
Fe2+/H2O2 (Without AC) | No light | 80% at pH 7 | FeCl3 | •OH | 0.1–0.5 | 50–200 | 2 cycles | [45] |
Fe3+/H2O2 (Without carbon) | No light | 76% at pH 6 | FeSO4 | •OH | 0.05 | 50–100 | 1 cycle | [46] |
Fe-BC/ H2O2 | No light | 99% at pH 5.5 | Pyrolysis 500 °C | •OH | 0.5 | 6-–75 | 5 cycles | [47] |
Fe2+/H2O2/AC | No light | ~90% at pH 9 | Pyrolysis 800 °C | 1O2, •OH | 0.05–1.0 | 25–250 | 3 cycles | This study |
Antibiotic | Pseudo-First-Order Kinetic Model qe (mg/g) | K1 h−1 | R2 | Pseudo-Second-Order Kinetic Model qe (mg/g) | K2 (g·mg−1·h−1) | R2 |
---|---|---|---|---|---|---|
AM | 128.36 | 0.05428 | 0.7806 | 30.5 | 0.0042453 | 0.966 |
Classification | Chronic and Acute Toxicity (mg/L) |
---|---|
Very Toxic | ChV ≤ 1/LC50/EC50 |
Toxic | ChV ≤ 10/1 > LC50/EC50 |
Harmful | ChV ≤ 100/10 > LC50/EC50 |
Harmless | ChV > 100/LC50/EC50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumita; Ghumro, J.A.; Su, J.; Li, C.; He, Z.; Yuan, J. Sustainable Treatment of Amoxicillin-Contaminated Wastewater Using Fe2+/H2O2/AC: Performance, Stability, and Environmental Impact. Processes 2025, 13, 1054. https://doi.org/10.3390/pr13041054
Sumita, Ghumro JA, Su J, Li C, He Z, Yuan J. Sustainable Treatment of Amoxicillin-Contaminated Wastewater Using Fe2+/H2O2/AC: Performance, Stability, and Environmental Impact. Processes. 2025; 13(4):1054. https://doi.org/10.3390/pr13041054
Chicago/Turabian StyleSumita, Jibran Ali Ghumro, Jingzhen Su, Cong Li, Zhengming He, and Jieming Yuan. 2025. "Sustainable Treatment of Amoxicillin-Contaminated Wastewater Using Fe2+/H2O2/AC: Performance, Stability, and Environmental Impact" Processes 13, no. 4: 1054. https://doi.org/10.3390/pr13041054
APA StyleSumita, Ghumro, J. A., Su, J., Li, C., He, Z., & Yuan, J. (2025). Sustainable Treatment of Amoxicillin-Contaminated Wastewater Using Fe2+/H2O2/AC: Performance, Stability, and Environmental Impact. Processes, 13(4), 1054. https://doi.org/10.3390/pr13041054