Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (180)

Search Parameters:
Keywords = single tree completion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7685 KB  
Article
Complete Chloroplast Genome of Hygrophila polysperma (Acanthaceae): Insights into Its Genetic Features and Phylogenetic Relationships
by Li-Xuan Chin, Qiurui Huang, Qinglang Fan, Haibo Tan, Yuping Li, Caixia Peng, Yunfei Deng and Yongqing Li
Horticulturae 2025, 11(10), 1240; https://doi.org/10.3390/horticulturae11101240 - 14 Oct 2025
Viewed by 410
Abstract
Hygrophila polysperma is a type of amphibious plant that originates from Acanthaceae. Here, we report its first complete chloroplast (cp) genome. The complete cp genome is 146,675 bp in length with 38.3% of GC content. There are 130 genes including 86 protein coding [...] Read more.
Hygrophila polysperma is a type of amphibious plant that originates from Acanthaceae. Here, we report its first complete chloroplast (cp) genome. The complete cp genome is 146,675 bp in length with 38.3% of GC content. There are 130 genes including 86 protein coding genes, 36 tRNA genes, and 8 rRNA genes in this genome. Simple short sequence (SSR) analysis found 30 SSRs, 24 of which are located in a large single-copy region. Nucleotide diversity identified six most divergent sequences (trns-GCU, psaA-pafI, psaI-pafII, ycf2, rpl32, and ycf1) among 3 close-related species, H. polysperma, H. ringens, and Asteracantha longifolia. A phylogenetic tree among H. polysperma and another 30 related species was constructed based on the common coding sequence of the cp genome and showed that H. polysperma is most closely related to H. ringens (both belong to subtribe Hygrophilinae) and, together, they form a clade that is sister to A. longifolia. This study provides a basis for systemic and evolution studies as well as the development of molecular markers for species identification and genetic breeding. Full article
(This article belongs to the Special Issue Horticultural Plant Genomics and Quantitative Genetics)
Show Figures

Figure 1

20 pages, 20380 KB  
Article
Connectivity-Oriented Optimization of Scalable Wireless Sensor Topologies for Urban Smart Water Metering
by Esteban Inga, Yanpeng Dai, Juan Inga and Kesheng Zhang
Smart Cities 2025, 8(5), 167; https://doi.org/10.3390/smartcities8050167 - 9 Oct 2025
Viewed by 343
Abstract
The growing need for efficient and sustainable urban water management has accelerated the adoption of smart monitoring infrastructures based on wireless sensor networks (WSNs). This study proposes a connectivity-aware methodology for the optimal deployment of wireless sensor networks (WSNs) in smart water metering [...] Read more.
The growing need for efficient and sustainable urban water management has accelerated the adoption of smart monitoring infrastructures based on wireless sensor networks (WSNs). This study proposes a connectivity-aware methodology for the optimal deployment of wireless sensor networks (WSNs) in smart water metering systems. The approach models the wireless sensors as nodes embedded in household water meters and determines the minimal yet sufficient set of Data Aggregation Points required to ensure complete network coverage and transmission reliability. A scalable and hierarchical topology is generated by integrating an enhanced minimum spanning tree algorithm with set covering techniques and geographic constraints, leading to a robust intermediate layer of aggregation nodes. These nodes are wirelessly linked to a single cellular base station, minimizing infrastructure costs while preserving communication quality. Simulation results on realistic urban layouts demonstrate that the proposed strategy reduces network fragmentation, improves energy efficiency, and simplifies routing paths compared to traditional ad hoc designs. The results offer a practical framework for deploying resilient and cost-effective smart water metering solutions in densely populated urban environments. Full article
Show Figures

Figure 1

27 pages, 15345 KB  
Article
Advanced Drone Routing and Scheduling for Emergency Medical Supply Chains in Essex
by Shabnam Sadeghi Esfahlani, Sarinova Simanjuntak, Alireza Sanaei and Alex Fraess-Ehrfeld
Drones 2025, 9(9), 664; https://doi.org/10.3390/drones9090664 - 22 Sep 2025
Viewed by 526
Abstract
Rapid access to defibrillators, blood products, and time-critical medicines can improve survival, yet urban congestion and fragmented infrastructure delay deliveries. We present and evaluate an end-to-end framework for beyond-visual-line-of-sight (BVLOS) UAV logistics in Essex (UK), integrating (I) strategic depot placement, (II) a hybrid [...] Read more.
Rapid access to defibrillators, blood products, and time-critical medicines can improve survival, yet urban congestion and fragmented infrastructure delay deliveries. We present and evaluate an end-to-end framework for beyond-visual-line-of-sight (BVLOS) UAV logistics in Essex (UK), integrating (I) strategic depot placement, (II) a hybrid obstacle-aware route planner, and (III) a time-window-aware (TWA) Mixed-Integer Linear Programming (MILP) scheduler coupled to a battery/temperature feasibility model. Four global planners—Ant Colony Optimisation (ACO), Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), and Rapidly Exploring Random Tree* (RRT*)—are paired with lightweight local refiners, Simulated Annealing (SA) and Adaptive Large-Neighbourhood Search (ALNS). Benchmarks over 12 destinations used real Civil Aviation Authority no-fly zones and energy constraints. RRT*-based hybrids delivered the shortest mean paths: RRT* + SA and RRT* + ALNS tied for the best average length, while RRT* + SA also achieved the co-lowest runtime at v=60kmh1. The TWA-MILP reached proven optimality in 0.11 s, showing that a minimum of seven UAVs are required to satisfy all 20–30 min delivery windows in a single wave; a rolling demand of one request every 15 min can be sustained with three UAVs if each sortie (including service/recharge) completes within 45 min. To validate against a state-of-the-art operations-research baseline, we also implemented a Vehicle Routing Problem with Time Windows (VRPTW) in Google OR-Tools, confirming that our hybrid planners generate competitive or shorter NFZ-aware routes in complex corridors. Digital-twin validation in AirborneSIM confirmed CAP 722-compliant, flyable trajectories under wind and sensor noise. By hybridising a fast, probabilistically complete sampler (RRT*) with a sub-second refiner (SA/ALNS) and embedding energy-aware scheduling, the framework offers an actionable blueprint for emergency medical UAV networks. Full article
Show Figures

Figure 1

23 pages, 4336 KB  
Article
Characterization of the Complete Mitogenome of Polypedates braueri (Anura, Rhacophoridae, Polypedates) and Insights into the Phylogenetic Relationships of Rhacophoridae
by Simin Chen, Huiling Huang, Siqi Shan, Chengmin Li, Kaiyuan Huang, Xinyi Xu and Lichun Jiang
Biology 2025, 14(9), 1299; https://doi.org/10.3390/biology14091299 - 20 Sep 2025
Viewed by 418
Abstract
White-lipped tree frogs, Polypedates braueri, are currently included in the list of terrestrial wildlife with important ecological, scientific, and social value in China. Understanding the structure and characteristics of the mitochondrial genome provides essential information for resource conservation and phylogenetic analyses of [...] Read more.
White-lipped tree frogs, Polypedates braueri, are currently included in the list of terrestrial wildlife with important ecological, scientific, and social value in China. Understanding the structure and characteristics of the mitochondrial genome provides essential information for resource conservation and phylogenetic analyses of P. braueri. While the complete mitochondrial genomes serve as important molecular markers for phylogenetic and genetic studies, the mitochondrial genome of P. braueri has received little attention. In this paper, we analyzed the characterization of the mitochondrial genome of P. braueri and investigated the phylogenetic relationships of Rhacophoridae. The complete mitochondrial genome of P. braueri was 20,254 bp in length, containing thirty-six genes (twelve protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), twenty-two transfer RNA genes (tRNAs)), three non-coding regions for the origin of light strand (OL), and two control regions (CR). There were six overlapping regions and seventeen intergenic spacer regions in the mitogenome. The mitogenome also showed a bias towards A + T content (61.87%) and had negative AT-skew (−0.039) and GC-skew (−0.209). All the PCGs employed the ATG, ATA, or ATT as the start codon and TAA, TAG, AGG, or single T as the stop codon. Additionally, all of the tRNAs displayed a typical cloverleaf secondary structure, except trnS1, which lacked the D arm. The phylogenetic analysis, based on the maximum likelihood (ML) and Bayesian inference (BI) methods, revealed that Rhacophoridae could be classified into four monophyletic genera. The phylogenetic status of P. braueri was closely related to that of Polypedates megacephalus and Polypedates leucomystax. Additionally, selective pressure analysis suggested that COX1 and ND1 were highly efficient for discriminating closely related species in the genus Polypedates, while ND4L was the most appropriate marker for population-level genetic analyses. The diversification of the Polypedates commenced during the Late Oligocene and extended into the Miocene. The present study provides valuable genomic information on P. braueri and new insights into the phylogenetic relationships of Rhacophoridae. Full article
(This article belongs to the Special Issue Progress in Wildlife Conservation, Management and Biological Research)
Show Figures

Figure 1

15 pages, 25472 KB  
Article
Mitogenome Diversity and Phylogeny of Felidae Species
by Jiaojiao Yu, Xiang Yu, Wenlei Bi, Zusheng Li, Yanshan Zhou, Rui Ma, Feifei Feng, Chong Huang, Jiang Gu, Wei Wu, Guanwei Lan, Long Zhang, Chao Chen, Fei Xue and Jiabin Liu
Diversity 2025, 17(9), 634; https://doi.org/10.3390/d17090634 - 8 Sep 2025
Viewed by 556
Abstract
As apex predators, felids (Felidae) face unresolved phylogenetic controversies due to their recent rapid speciation and remarkable morphological conservatism. Previous studies, often relying on a limited number of genetic markers, were constrained by insufficient data and conflicting phylogenetic signals, leaving these disputes unresolved. [...] Read more.
As apex predators, felids (Felidae) face unresolved phylogenetic controversies due to their recent rapid speciation and remarkable morphological conservatism. Previous studies, often relying on a limited number of genetic markers, were constrained by insufficient data and conflicting phylogenetic signals, leaving these disputes unresolved. Therefore, establishing a robust phylogenetic framework based on larger-scale genomic data is crucial. This study integrated complete mitogenomes from 37 species representing all major felid genera to characterize genomic diversity, selection pressures, and phylogenetic relationships. Results revealed conserved gene content and arrangement patterns but significant intergenic variation in nucleotide composition, with the light-strand encoded ND6 exhibiting pronounced strand-specific bias. Nucleotide diversity was highest in ND4L (Pi = 0.132) and ATP6 (Pi = 0.131), suggesting their utility as novel markers for species delimitation and population studies. Selection pressure analysis indicated strong purifying selection on cytochrome oxidase subunits (e.g., COX1 Ka/Ks = 0.00327) but relaxed constraints on ATP8 (Ka/Ks = 0.12304). Phylogenies reconstructed from the complete 13PCGs + 2rRNAs dataset (showing high congruence between maximum likelihood and Bayesian methods) clearly delineated Felidae into two primary clades (Pantherinae and Felinae), confirming monophyly of all genera and positioning Neofelis nebulosa as the basal lineage within Pantherinae. Crucially, exclusion of ND6 (12PCGs + 2rRNAs) yielded topologies congruent with the complete 13PCGs + 2rRNAs dataset, whereas single-gene or limited multi-gene datasets produced inconsistent trees (particularly at genus-level nodes). This demonstrates that near-complete mitogenomic data (≥12PCGs + 2rRNAs) are essential for reconstructing robust felid phylogenetic frameworks. Our study provides insights into carnivoran mitogenome evolution. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

16 pages, 1675 KB  
Article
A Novel Clonorchis sinensis Mitogenome: Elucidating Multiregional Strain Phylogeny and Revising the Digenean Mitochondrial Genome Tree
by Yuxuan Liu, Kaisong Hu, Yanan Zhang, Zhili Chen, Haoyu Zheng, Yuexi Teng, Fang Wang and Jingtong Zheng
Biomolecules 2025, 15(9), 1246; https://doi.org/10.3390/biom15091246 - 28 Aug 2025
Viewed by 635
Abstract
Clonorchis sinensis, a parasitic liver fluke, is the primary aetiological agent of clonorchiasis, a disease predominantly characterized by liver-related clinical manifestations. Currently, research on the complete mitochondrial (mt) genome of local C. sinensis populations remains inadequate. Thus, in this study, we sequenced [...] Read more.
Clonorchis sinensis, a parasitic liver fluke, is the primary aetiological agent of clonorchiasis, a disease predominantly characterized by liver-related clinical manifestations. Currently, research on the complete mitochondrial (mt) genome of local C. sinensis populations remains inadequate. Thus, in this study, we sequenced and annotated the mt genome of fish-borne C. sinensis (Cs-c2) from Changchun, Jilin Province, China, a strain not previously described. This mt genome is 14,136 bp in length and harbours 12 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a single control region (CR). We constructed a maximum likelihood (ML) phylogenetic tree using concatenated ND5, ND6, and ND1 from protein-coding genes (PCGs) of the C. sinensis mitochondrial genome (mt genome). This tree more clearly differentiated C. sinensis strains from three geographical regions (China, Russia, and South Korea) and distinguished Opisthorchiidae from two closely related families (Fasciolidae and Dicrocoeliidae). Additionally, we constructed an ML phylogenetic tree using concatenated ND4, ND5, ND1, ND2, and COX1 from the PCGs of digenean (Digenea) mt genomes. This approach—utilizing multiple high-resolution PCGs with evolutionary rates distinct from those of the mt genome—yielded robust clustering for multiple suborders and 13 families within Digenea and provided new molecular evidence for intergeneric relationships within the suborder Plagiorchiata of Digenea. These findings serve as important references for future research on the differentiation of closely related geographical strains of digeneans, as well as for studies on molecular taxonomy and population genetics. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

21 pages, 2424 KB  
Article
Soft Computing Approaches for Predicting Shade-Seeking Behavior in Dairy Cattle Under Heat Stress: A Comparative Study of Random Forests and Neural Networks
by Sergi Sanjuan, Daniel Alexander Méndez, Roger Arnau, J. M. Calabuig, Xabier Díaz de Otálora Aguirre and Fernando Estellés
Mathematics 2025, 13(16), 2662; https://doi.org/10.3390/math13162662 - 19 Aug 2025
Viewed by 485
Abstract
Heat stress is one of the main welfare and productivity problems faced by dairy cattle in Mediterranean climates. The main objective of this work is to predict heat stress in livestock from shade-seeking behavior captured by computer vision, combined with some climatic features, [...] Read more.
Heat stress is one of the main welfare and productivity problems faced by dairy cattle in Mediterranean climates. The main objective of this work is to predict heat stress in livestock from shade-seeking behavior captured by computer vision, combined with some climatic features, in a completely non-invasive way. To this end, we evaluate two soft computing algorithms—Random Forests and Neural Networks—clarifying the trade-off between accuracy and interpretability for real-world farm deployment. Data were gathered at a commercial dairy farm in Titaguas (Valencia, Spain) using overhead cameras that counted cows in the shade every 5–10 min during summer 2023. Each record contains the shaded-cow count, ambient temperature, relative humidity, and an exact timestamp. From here, three thermal indices were derived: the current THI, the previous-night mean THI, and the day-time accumulated THI. The resulting dataset covers 75 days and 6907 day-time observations. To evaluate the models’ performance a 5-fold cross-validation is also used. The results show that both soft computing models outperform a single Decision Tree baseline. The best Neural Network (3 hidden layers, 16 neurons each, learning rate =103) reaches an average RMSE of 14.78, while a Random Forest (10 trees, depth =5) achieves 14.97 and offers the best interpretability. Daily error distributions reveal a median RMSE of 13.84 and confirm that predictions deviate less than one hour from observed shade-seeking peaks. Although the dataset came from a single farm, the results generalized well within the observed range. However, the models could not accurately predict the exact number of cows in the shade. This suggests the influence of other variables not included in the analysis (such as solar radiation or wind data), which opens the door for future research. Full article
(This article belongs to the Topic Soft Computing and Machine Learning)
Show Figures

Figure 1

20 pages, 3588 KB  
Article
Design and Experimental Operation of a Swing-Arm Orchard Sprayer
by Zhongyi Yu, Mingtian Geng, Keyao Zhao, Xiangsen Meng, Hongtu Zhang and Xiongkui He
Agronomy 2025, 15(7), 1706; https://doi.org/10.3390/agronomy15071706 - 15 Jul 2025
Viewed by 723
Abstract
In recent years, the traditional orchard sprayer has had problems, such as waste of liquid agrochemicals, low target coverage, high manual dependence, and environmental pollution. In this study, an automatic swing-arm sprayer for orchards was developed based on the standardized pear orchard in [...] Read more.
In recent years, the traditional orchard sprayer has had problems, such as waste of liquid agrochemicals, low target coverage, high manual dependence, and environmental pollution. In this study, an automatic swing-arm sprayer for orchards was developed based on the standardized pear orchard in Pinggu, Beijing. Firstly, the structural principles of a crawler-type traveling system and swing-arm sprayer were simulated using finite element software design. The combination of a diffuse reflection photoelectric sensor and Arduino single-chip microcomputer was used to realize real-time detection and dynamic spray control in the pear canopy, and the sensor delay compensation algorithm was used to optimize target recognition accuracy and improve the utilization rate of liquid agrochemicals. Through the integration of innovative structural design and intelligent control technology, a vertical droplet distribution test was carried out, and the optimal working distance of the spray was determined to be 1 m; the nozzle angle for the upper layer was 45°, that for the lower layer was 15°, and the optimal speed of the swing-arm motor was 75 r/min. Finally, a particle size test and field test of the orchard sprayer were completed, and it was concluded that the swing-arm mode increased the pear tree canopy droplet coverage by 74%, the overall droplet density by 21.4%, and the deposition amount by 23% compared with the non-swing-arm mode, which verified the practicability and reliability of the swing-arm spray and achieved the goal of on-demand pesticide application in pear orchards. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture—2nd Edition)
Show Figures

Figure 1

15 pages, 8861 KB  
Article
The Complete Chloroplast Genome of Purdom’s Rhododendron (Rhododendron purdomii Rehder & E. H. Wilson): Genome Structure and Phylogenetic Analysis
by Lu Yuan, Ningning Zhang, Shixin Zhu and Yang Lu
Forests 2025, 16(7), 1120; https://doi.org/10.3390/f16071120 - 7 Jul 2025
Viewed by 549
Abstract
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, [...] Read more.
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, assembled, and characterized. The cp genome exhibited a typical quadripartite structure with a total length of 208,062 bp, comprising a large single copy (LSC) region of 110,618 bp, a small single copy (SSC) region of 2606 bp, and two inverted repeat (IR) regions of 47,419 bp each. The overall GC content was 35.81%. The genome contained 146 genes, including 96 protein-coding genes, 42 transfer RNA genes, and 8 ribosomal RNA genes. Structure analysis identified 67,354 codons, 96 long repetitive sequences, and 171 simple sequence repeats. Comparative genomic analysis across Rhododendron species revealed hypervariable coding regions (accD, rps9) and non-coding regions (trnK-UUU-ycf3, trnI-CAU-rpoB, trnT-GGU-accD, rpoA-psbL, rpl20-trnC-GCA, trnI-CAU-rrn16, and trnI-CAU-rps16), which may serve as potential molecular markers for genetic identification. Phylogenetic reconstruction confirmed the monophyly of Rhododendron species and highlighted a close relationship between Rh. purdomii and Rh. henanense subsp. lingbaoense. These results provide essential genomic resources for advancing taxonomic, evolutionary, conservation, and breeding studies of Rh. purdomii and other species within the genus Rhododendron. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

20 pages, 4381 KB  
Article
Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities
by Vladimir Kornienko, Valeriya Reuckaya, Alyona Shkirenko, Besarion Meskhi, Anastasiya Olshevskaya, Mary Odabashyan, Victoria Shevchenko and Svetlana Teplyakova
Plants 2025, 14(13), 2052; https://doi.org/10.3390/plants14132052 - 4 Jul 2025
Cited by 2 | Viewed by 557
Abstract
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study [...] Read more.
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study included determining the level of anthropogenic load of the territory; conducting dendrological studies to assess morphometric and allometric parameters, age structure, and condition of P. bolleana stands under the influence of environmental factors; as well as completing biomechanical studies to assess and predict the mechanical stability of stands. A total of 1109 plants growing in areas with increased anthropogenic load and in the control areas were studied. The model territories of the study were located in the city of Donetsk on Fallen Communards Avenue (length of field routes: 2.6 km) and Ilyicha Avenue (length of field routes: 9.7 km). Control plantings grew on the territory of the Donetsk botanical garden and residential (dormitory) districts of the city. The age structure of P. bolleana plantations remained uniform throughout the city for 50–55 years due to the fact that the landscaping was under a single state program. In the steppe zone in the south of the East European Plain, with a high level of anthropogenic load and severe natural climatic factors, the critical age of P. bolleana (55 years) was determined. The condition of plantations and their morphometric indices correlate with the level of anthropogenic load of the city (H, Dbase, DBH). Under control conditions, the plants are in good condition with signs of weakening (2 points). Under conditions of increased anthropogenic load, the plants are in a severely weakened condition (3 points). A total of 25% of the plants in the sample are in critical condition (4–5 points). The main damages to the crowns and trunks of plants include core rot, mechanical damage to bark and tissues, the development of core rot through the affected skeletal branch, crown thinning, and drying. P. bolleana trees are valued for their crown area and ability to retain dust particles from the air. The analysis of experimentally obtained data on the crown area showed that in the initial phases of ontogenesis, the average deviation in the crown area of plants does not depend on the place of growth. Due to artificial narrowing and sanitary pruning of the crown, as well as skeletal branches dying along the busiest highways, the values do not exceed 22–23 m2 on average, with an allometric coefficient of 0.35–0.37. When comparing this coefficient in the control areas, the crown area in areas with a high level of anthropogenic load is 36 ± 11% lower. For trees growing under the conditions of the anthropogenic load of an industrial city and having reached the critical age, mechanical resistance varied depending on the study area and load level. At sites with a high level of pollution of the territory, a significant decrease in indicators was revealed in comparison with the control (mcr—71%, EI—75%, RRB—43%). Having analyzed all the obtained data, we can conclude that, until the age of 50–55 years, P. bolleana retains good viability, mechanical resistance, and general allometric ratios, upon which the stability of the whole plant depends. Even with modern approaches and tendencies toward landscaping with exotic introductions, it is necessary to keep P. bolleana as the main species in dendrobanocenoses. Full article
(This article belongs to the Special Issue Plants for Biodiversity and Sustainable Cities)
Show Figures

Figure 1

15 pages, 8047 KB  
Article
Comparison of Chloroplast Genome Sequences of Saxifraga umbellulata var. pectinata in Qinghai–Xizang Plateau
by Cui Wang, Kaidi Su, Qiwen Li, Rui Sun, Haoyu Liu, Jingxuan Du, Jinping Li and Likuan Liu
Genes 2025, 16(7), 789; https://doi.org/10.3390/genes16070789 - 30 Jun 2025
Viewed by 512
Abstract
Background: Saxifraga umbellulata var. pectinata (Saxifragaceae) is recognized as a genuine medicinal material from the Qinghai–Tibet Plateau in China. This paper presents the chloroplast (cp) genome of S. umbellulata var. pectinata, marking the first report for this genus. The Tibetan medicinal plants [...] Read more.
Background: Saxifraga umbellulata var. pectinata (Saxifragaceae) is recognized as a genuine medicinal material from the Qinghai–Tibet Plateau in China. This paper presents the chloroplast (cp) genome of S. umbellulata var. pectinata, marking the first report for this genus. The Tibetan medicinal plants documented in ‘Chinese Medicinal Plant Resources’ are associated with their chloroplast genomes and medicinal mechanisms. Objective: In order to resolve any potential ambiguity in conventional classifications, this study reconstructs the evolutionary position of S. umbellulata var. pectinata within the genus by comparing its chloroplast genetic information with that of other groupings. Methods: The chloroplast genome of S. umbellulata var. pectinata was sequenced using the Illumina NovaSeq 6000 platform. Subsequent sequence assembly, annotation, and characterization were performed using bioinformatics analysis. The NJ phylogenetic tree was constructed using MEGA 7.0 software. Results: The complete chloroplast genome of S. umbellulata var. pectinata is 146,549 bp in length, comprising four subregions: a large single-copy (LSC) region of 79,318 bp and a small single-copy (SSC) region of 16,390 bp, separated by a pair of inverted repeat (IR) regions each 25,421 bp long. This cp genome contains 131 genes, including 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The overall GC content is 38.1%. Phylogenetic analysis based on 20 cp genomes indicates that S. umbellulata var. pectinata is closely related to Saxifraga sinomontana and Saxifraga stolonifera. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

50 pages, 3777 KB  
Article
Intelligent Teaching Recommendation Model for Practical Discussion Course of Higher Education Based on Naive Bayes Machine Learning and Improved k-NN Data Mining Algorithm
by Xiao Zhou, Ling Guo, Rui Li, Ling Liu and Juan Pan
Information 2025, 16(6), 512; https://doi.org/10.3390/info16060512 - 19 Jun 2025
Cited by 1 | Viewed by 541
Abstract
Aiming at the existing problems in practical teaching in higher education, we construct an intelligent teaching recommendation model for a higher education practical discussion course based on naive Bayes machine learning and an improved k-NN data mining algorithm. Firstly, we establish the [...] Read more.
Aiming at the existing problems in practical teaching in higher education, we construct an intelligent teaching recommendation model for a higher education practical discussion course based on naive Bayes machine learning and an improved k-NN data mining algorithm. Firstly, we establish the naive Bayes machine learning algorithm to achieve accurate classification of the students in the class and then implement student grouping based on this accurate classification. Then, relying on the student grouping, we use the matching features between the students’ interest vector and the practical topic vector to construct an intelligent teaching recommendation model based on an improved k-NN data mining algorithm, in which the optimal complete binary encoding tree for the discussion topic is modeled. Based on the encoding tree model, an improved k-NN algorithm recommendation model is established to match the student group interests and recommend discussion topics. The experimental results prove that our proposed recommendation algorithm (PRA) can accurately recommend discussion topics for different student groups, match the interests of each group to the greatest extent, and improve the students’ enthusiasm for participating in practical discussions. As for the control groups of the user-based collaborative filtering recommendation algorithm (UCFA) and the item-based collaborative filtering recommendation algorithm (ICFA), under the experimental conditions of the single dataset and multiple datasets, the PRA has higher accuracy, recall rate, precision, and F1 value than the UCFA and ICFA and has better recommendation performance and robustness. Full article
(This article belongs to the Special Issue AI Technology-Enhanced Learning and Teaching)
Show Figures

Figure 1

26 pages, 2931 KB  
Article
CB-MTE: Social Bot Detection via Multi-Source Heterogeneous Feature Fusion
by Meng Cheng, Yuzhi Xiao, Tao Huang, Chao Lei and Chuang Zhang
Sensors 2025, 25(11), 3549; https://doi.org/10.3390/s25113549 - 4 Jun 2025
Viewed by 964
Abstract
Social bots increasingly mimic real users and collaborate in large-scale influence campaigns, distorting public perception and making their detection both critical and challenging. Traditional bot detection methods, constrained by single-source features, often fail to capture the complete behavioral and contextual characteristics of social [...] Read more.
Social bots increasingly mimic real users and collaborate in large-scale influence campaigns, distorting public perception and making their detection both critical and challenging. Traditional bot detection methods, constrained by single-source features, often fail to capture the complete behavioral and contextual characteristics of social bots, especially their dynamic behavioral evolution and group coordination tactics, resulting in feature incompleteness and reduced detection performance. To address this challenge, we propose CB-MTE, a social bot detection framework based on multi-source heterogeneous feature fusion. CB-MTE adopts a hierarchical architecture: user metadata is used to construct behavioral portraits, deep semantic representations are extracted from textual content via DistilBERT, and community-aware graph embeddings are learned through a combination of random walk and Skip-gram modeling. To mitigate feature redundancy and preserve structural consistency, manifold learning is applied for nonlinear dimensionality reduction, ensuring both local and global topology are maintained. Finally, a CatBoost-based collaborative reasoning mechanism enhances model robustness through ordered target encoding and symmetric tree structures. Experiments on the TwiBot-22 benchmark dataset demonstrate that CB-MTE significantly outperforms mainstream detection models in recognizing dynamic behavioral traits and detecting collaborative bot activities. These results confirm the framework’s capability to capture the complete behavioral and contextual characteristics of social bots through multi-source feature integration. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

14 pages, 1967 KB  
Article
Genomic Evolution of White Spot Syndrome Virus in Shrimp: Insights from Transposon Dynamics
by Zhouquan Li, Guanghua Huang, Jingyi Zhang, Mingyou Li, Zhizhi Liu, Sihua Peng, Rui Wang and Dong Liu
Biology 2025, 14(6), 653; https://doi.org/10.3390/biology14060653 - 4 Jun 2025
Viewed by 1078
Abstract
White spot syndrome virus (WSSV) has emerged as a significant threat to global shrimp aquaculture, causing economic losses because of its rapid spread and high mortality rates. This study aims to elucidate the genetic and evolutionary dynamics of WSSV through a comprehensive genome [...] Read more.
White spot syndrome virus (WSSV) has emerged as a significant threat to global shrimp aquaculture, causing economic losses because of its rapid spread and high mortality rates. This study aims to elucidate the genetic and evolutionary dynamics of WSSV through a comprehensive genome analysis. Utilizing 27 complete genome sequences sourced from public databases, this study investigates the genetic variability, potential recombination events, and evolutionary patterns of WSSV. Our results identified multiple genomic deletions, 14 novel single-nucleotide polymorphism sites, and variable number tandem repeats across different strains, underscoring the virus’s genetic diversity. A recombination event between freshwater and marine strains highlights a complex transmission pathway, potentially facilitated by aquaculture practices. A phylogenetic tree constructed using ancestral genes suggests that WSSV originated in Southeast Asia and subsequently globally spread, influenced by both natural and anthropogenic factors. Genomic shrinkage of the virus occurred in time series, while the host’s viral infection induced transposon transposition and insertion into the earlier virus genome to provide a basis for genomic shrinkage. Our research emphasizes the importance of advanced molecular characterization and evolutionary models of the virus in understanding the spread of viral pathogens in aquaculture environments. Full article
(This article belongs to the Special Issue Internal Defense System and Evolution of Aquatic Animals)
Show Figures

Figure 1

9 pages, 563 KB  
Article
A Retrospective Study on Biliary Cooling During Thermal Ablation of Central Liver Tumors in Taiwan
by Yi-Chun Chou, Chih-Wei Tseng, Ping-Hung Ko, Tsung-Hsing Hung, Hsing-Feng Li, Kuo-Chih Tseng, Ching-Sheng Hsu and Chih-Ying Wang
Cancers 2025, 17(11), 1859; https://doi.org/10.3390/cancers17111859 - 31 May 2025
Viewed by 735
Abstract
Background: Thermal ablation of centrally located liver tumors carries an increased risk of bile duct injury due to their proximity to the biliary tree. We aim to evaluate whether biliary cooling using a nasobiliary tube can effectively mitigate bile duct injury during the [...] Read more.
Background: Thermal ablation of centrally located liver tumors carries an increased risk of bile duct injury due to their proximity to the biliary tree. We aim to evaluate whether biliary cooling using a nasobiliary tube can effectively mitigate bile duct injury during the ablation process. Methods: We retrospectively analyzed the data of 322 patients who underwent thermal ablation at Dalin Tzu Chi Hospital from July 2020 to June 2023 and identified those who received prophylactic biliary cooling during thermal ablation for central liver tumors. Data including demographics, tumor characteristics, procedural details, and clinical outcomes were analyzed. Results: Among the 322 patients who underwent thermal ablation, 9 with central liver tumors received prophylactic biliary cooling. The median distance between the tumor and the central bile duct was 1 mm (range: 0–4 mm), the temperature of the cold normal saline was 4 °C, and the mean volume of normal saline infused was 150 mL (range: 100–200 mL). Complete ablation was achieved in all patients in a single session without any biliary injury. One patient developed acute cholangitis after ENBD placement, which resolved with antibiotic therapy. Conclusions: Biliary cooling with 4 °C cold saline through a nasobiliary tube can improve the safety and effectiveness of thermal ablation for central liver tumors. Full article
Show Figures

Figure 1

Back to TopTop