A Novel Clonorchis sinensis Mitogenome: Elucidating Multiregional Strain Phylogeny and Revising the Digenean Mitochondrial Genome Tree
Abstract
1. Introduction
2. Materials and Methods
2.1. Parasite Collection and Identification
2.1.1. Collection of Parasitic Materials
2.1.2. Animals and Experimental Design
2.2. DNA Extraction, Long-Range Mt Genome Amplification, and Sequencing
2.3. Mt Genome Sequence Assembly, Annotation, and Analysis
2.4. Sliding Window Analysis and Synonymous/Nonsynonymous Substitutions
2.5. Phylogenetic Resolution and Concatenated Phylogenetic Analysis
3. Results and Discussion
3.1. Basic Characteristics of the Mt Genome of C. sinensis from Changchun Area
3.2. Sequencing of the C. sinensis Mt Genome and Comparison of Phylogenetic Relationships
3.3. Nucleotide Diversity and Nonsynonymous/Synonymous Ratios
3.4. Phylogeny of C. sinensis and Other Digenean Trematodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PCGs: | Protein-coding genes |
Mt: | Mitochondrial |
R2DT: | RNA 2D Structure |
Ka/Ks: | Non-synonymous/synonymous mutation ratio |
RSCU: | Relative synonymous codon usage |
tRNA: | Transfer RNA |
rRNA: | Ribosomal RNA |
Pi (π): | Nucleotide diversity |
ML: | Maximum likelihood |
References
- Mullard, A. Neglected Tropical Diseases Go Global. Nat. Rev. Drug Discov. 2023, 22, 865–866. [Google Scholar] [CrossRef]
- Blair, D. Paragonimiasis. Adv. Exp. Med. Biol. 2024, 1454, 203–238. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.-B.; Utzinger, J.; Keiser, J.; Zhou, X.-N. Clonorchiasis. Lancet 2016, 387, 800–810. [Google Scholar] [CrossRef]
- Huang, X.; Kou, J.; Deng, X.; Li, D.; Zhang, B.; Cheng, P.; Gong, M. Review of the Control of Clonorchiasis in Shandong Province, China from 1962 to 2015. Int. J. Infect. Dis. 2020, 96, 199–204. [Google Scholar] [CrossRef]
- Lun, Z.-R.; Gasser, R.B.; Lai, D.-H.; Li, A.-X.; Zhu, X.-Q.; Yu, X.-B.; Fang, Y.-Y. Clonorchiasis: A Key Foodborne Zoonosis in China. Lancet Infect. Dis. 2005, 5, 31–41. [Google Scholar] [CrossRef]
- Choi, B.I.; Han, J.K.; Hong, S.T.; Lee, K.H. Clonorchiasis and Cholangiocarcinoma: Etiologic Relationship and Imaging Diagnosis. Clin. Microbiol. Rev. 2004, 17, 540–552. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, N.; Shen, G.; Liang, F.; Zhao, Y.; He, X.; Wang, Y.; He, R.; Chen, W.; Xue, H.; et al. Spatiotemporal and Seasonal Trends of Class A and B Notifiable Infectious Diseases in China: Retrospective Analysis. JMIR Public Health Surveill. 2023, 9, e42820. [Google Scholar] [CrossRef]
- García-Sánchez, A.M.; Rivero, J.; Callejón, R.; Zurita, A.; Reguera-Gomez, M.; Valero, M.A.; Cutillas, C. Differentiation of Trichuris Species Using a Morphometric Approach. Int. J. Parasitol. Parasites Wildl. 2019, 9, 218–223. [Google Scholar] [CrossRef]
- Pitaksakulrat, O.; Sithithaworn, P.; Kopolrat, K.Y.; Kiatsopit, N.; Saijuntha, W.; Andrews, R.H.; Petney, T.N.; Blair, D. Molecular Identification of Trematode Parasites Infecting the Freshwater Snail Bithynia siamensis goniomphalos in Thailand. J. Helminthol. 2022, 96, e49. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.E.; Lareau, C.A.; Verga, J.A.; DePasquale, E.A.K.; Liu, V.; Ssozi, D.; Sandor, K.; Yin, Y.; Ludwig, L.S.; El Farran, C.A.; et al. Mitochondrial Variant Enrichment from High-Throughput Single-Cell RNA Sequencing Resolves Clonal Populations. Nat. Biotechnol. 2022, 40, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Kinkar, L.; Young, N.D.; Sohn, W.M.; Stroehlein, A.J.; Korhonen, P.K.; Gasser, R.B. First Record of a Tandem-Repeat Region within the Mitochondrial Genome of Clonorchis sinensis Using a Long-Read Sequencing Approach. PLoS Negl. Trop. Dis. 2020, 14, e0008552. [Google Scholar] [CrossRef]
- Miyazawa, H.; Osigus, H.-J.; Rolfes, S.; Kamm, K.; Schierwater, B.; Nakano, H. Mitochondrial Genome Evolution of Placozoans: Gene Rearrangements and Repeat Expansions. Genome Biol. Evol. 2021, 13, evaa213. [Google Scholar] [CrossRef]
- Locke, S.A.; Van Dam, A.; Caffara, M.; Pinto, H.A.; López-Hernández, D.; Blanar, C.A. Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) Upheld in Phylogenomic Analysis. Int. J. Parasitol. 2018, 48, 1043–1059. [Google Scholar] [CrossRef] [PubMed]
- Zarowiecki, M.Z.; Huyse, T.; Littlewood, D.T.J. Making the Most of Mitochondrial Genomes—Markers for Phylogeny, Molecular Ecology and Barcodes in Schistosoma (Platyhelminthes: Digenea). Int. J. Parasitol. 2007, 37, 1401–1418. [Google Scholar] [CrossRef]
- Yang, X.; Gasser, R.B.; Koehler, A.V.; Wang, L.; Zhu, K.; Chen, L.; Feng, H.; Hu, M.; Fang, R. Mitochondrial Genome of Hypoderaeum conoideum—Comparison with Selected Trematodes. Parasites Vectors 2015, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Pham, L.D.; Giang, T.T.N.; Nguyen, V.B.; Pham, T.P.M.; Tran, T.T.T.; Nguyen, T.Q.C.; Van Nguyen, K.; Do, D.N. The Complete Mitochondrial Genome and Phylogenetic Analyses of To Chicken in Vietnam. Genes 2023, 14, 1088. [Google Scholar] [CrossRef]
- Suleman; Khan, M.S.; Tkach, V.V.; Muhammad, N.; Zhang, D.; Zhu, X.-Q.; Ma, J. Molecular Phylogenetics and Mitogenomics of Three Avian Dicrocoeliids (Digenea: Dicrocoeliidae) and Comparison with Mammalian Dicrocoeliids. Parasites Vectors 2020, 13, 74. [Google Scholar] [CrossRef]
- Hu, G.-L.; Yan, G.; Xu, H.; Hua, B.-Z. Molecular Phylogeny of Panorpidae (Insecta: Mecoptera) Based on Mitochondrial and Nuclear Genes. Mol. Phylogenet. Evol. 2015, 85, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, Z.; Huang, L.; Chen, T.; Yu, X.; Huang, Y. Current Status and Progress in the Omics of Clonorchis sinensis. Mol. Biochem. Parasitol. 2023, 255, 111573. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Huang, Y.; Sun, J.; Men, J.; Liu, H.; Luo, F.; Guo, L.; Lv, X.; Deng, C.; et al. The Draft Genome of the Carcinogenic Human Liver Fluke Clonorchis sinensis. Genome Biol. 2011, 12, R107. [Google Scholar] [CrossRef]
- Wang, D.; Young, N.D.; Koehler, A.V.; Tan, P.; Sohn, W.-M.; Korhonen, P.K.; Gasser, R.B. Mitochondrial Genomic Comparison of Clonorchis sinensis from South Korea with Other Isolates of This Species. Infect. Genet. Evol. 2017, 51, 160–166. [Google Scholar] [CrossRef]
- Tsai, I.J.; Hunt, M.; Holroyd, N.; Huckvale, T.; Berriman, M.; Kikuchi, T. Summarizing Specific Profiles in Illumina Sequencing from Whole-Genome Amplified DNA. DNA Res. 2014, 21, 243–254. [Google Scholar] [CrossRef]
- Ahrens, C.W.; James, E.A. Regional Genetic Structure and Environmental Variables Influence Our Conservation Approach for Feather Heads (Ptilotus macrocephalus). J. Hered. 2016, 107, 238–247. [Google Scholar] [CrossRef][Green Version]
- Kostadinova, A.; Pérez-Del-Olmo, A. The Systematics of the Trematoda. Adv. Exp. Med. Biol. 2024, 1454, 47–72. [Google Scholar] [CrossRef]
- Hernández-Cruz, E.; Hernández-Orts, J.S.; Sereno-Uribe, A.L.; Pérez-Ponce de León, G.; García-Varela, M. Multilocus Phylogenetic Analysis and Morphological Data Reveal a New Species Composition of the Genus Drepanocephalus Dietz, 1909 (Digenea: Echinostomatidae), Parasites of Fish-Eating Birds in the Americas. J. Helminthol. 2018, 92, 572–595. [Google Scholar] [CrossRef] [PubMed]
- Mallatt, J.; Sullivan, J. 28S and 18S rDNA Sequences Support the Monophyly of Lampreys and Hagfishes. Mol. Biol. Evol. 1998, 15, 1706–1718. [Google Scholar] [CrossRef] [PubMed]
- Solórzano-García, B.; Hernández-Mena, D.I.; Choudhury, A.; Pérez-Ponce de León, G. The Complete Mitochondrial Genome of 3 Species of Allocreadiids (Digenea, Allocreadiidae): Characterization and Phylogenetic Position within the Order Plagiorchiida. Parasitology 2024, 151, 309–318. [Google Scholar] [CrossRef]
- Cribb, T.H.; Bray, R.A.; Olson, P.D.; Littlewood, D.T.J. Life Cycle Evolution in the Digenea: A New Perspective from Phylogeny. Adv. Parasitol. 2003, 54, 197–254. [Google Scholar] [CrossRef]
- Lui, C.C.; Kulpa, M.; Verocai, G.G.; Armién, A.G.; Edwards, E.E.; Wiener, D.J.; Rech, R.R. Reassessing Stephanofilaria stilesi Dermatitis in Cattle, with Characterization of Molecular Markers for Confirming Diagnosis. Parasites Vectors 2023, 16, 278. [Google Scholar] [CrossRef]
- Chan, A.H.E.; Saralamba, N.; Saralamba, S.; Ruangsittichai, J.; Thaenkham, U. The Potential Use of Mitochondrial Ribosomal Genes (12S and 16S) in DNA Barcoding and Phylogenetic Analysis of Trematodes. BMC Genom. 2022, 23, 104. [Google Scholar] [CrossRef]
- Nguyen, T.T.B.; Dermauw, V.; Dahma, H.; Bui, D.T.; Le, T.T.H.; Phi, N.T.T.; Lempereur, L.; Losson, B.; Vandenberg, O.; Do, D.T.; et al. Prevalence and Risk Factors Associated with Clonorchis sinensis Infections in Rural Communities in Northern Vietnam. PLoS Negl. Trop. Dis. 2020, 14, e0008483. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yang, D.; Bae, Y.-A. Hypoxic and Nitrosative Stress Conditions Modulate Expression of Myoglobin Genes in a Carcinogenic Hepatobiliary Trematode, Clonorchis sinensis. PLoS Negl. Trop. Dis. 2021, 15, e0009811. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Institute: Cambridge, UK, 2010; pp. 91–96. [Google Scholar]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de Novo Metazoan Mitochondrial Genome Annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Stothard, P.; Wishart, D.S. Circular Genome Visualization and Exploration Using CGView. Bioinformatics 2005, 21, 537–539. [Google Scholar] [CrossRef]
- Garcia-Martin, J.A.; Dotu, I.; Clote, P. RNAiFold 2.0: A Web Server and Software to Design Custom and Rfam-Based RNA Molecules. Nucleic Acids Res. 2015, 43, W513–W521. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An Integrated and Scalable Desktop Platform for Streamlined Molecular Sequence Data Management and Evolutionary Phylogenetics Studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.-F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.Fr: Robust Phylogenetic Analysis for the Non-Specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef]
- Tian, Q.; Guo, Q.; Guo, Y.; Luo, L.; Kristiansen, K.; Han, Z.; Fang, H.; Zhang, S. Whole-Genome Sequence of the Planarian Dugesia japonica Combining Illumina and PacBio Data. Genomics 2022, 114, 110293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, F.; Wang, C.; Wang, S.; Shiao, Y.-H.; Guo, Z. Identification of Sequence Polymorphism in the D-Loop Region of Mitochondrial DNA as a Risk Factor for Hepatocellular Carcinoma with Distinct Etiology. J. Exp. Clin. Cancer Res. 2010, 29, 130. [Google Scholar] [CrossRef]
- Cai, X.Q.; Liu, G.H.; Song, H.Q.; Wu, C.Y.; Zou, F.C.; Yan, H.K.; Yuan, Z.G.; Lin, R.Q.; Zhu, X.Q. Sequences and Gene Organization of the Mitochondrial Genomes of the Liver Flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda). Parasitol. Res. 2012, 110, 235–243. [Google Scholar] [CrossRef]
- Shekhovtsov, S.V.; Katokhin, A.V.; Kolchanov, N.A.; Mordvinov, V.A. The Complete Mitochondrial Genomes of the Liver Flukes Opisthorchis felineus and Clonorchis sinensis (Trematoda). Parasitol. Int. 2010, 59, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Kmentová, N.; Cruz-Laufer, A.J.; Pariselle, A.; Smeets, K.; Artois, T.; Vanhove, M.P.M. Dactylogyridae 2022: A Meta-Analysis of Phylogenetic Studies and Generic Diagnoses of Parasitic Flatworms Using Published Genetic and Morphological Data. Int. J. Parasitol. 2022, 52, 427–457. [Google Scholar] [CrossRef] [PubMed]
- Senatore, G.L.; Alexander, E.A.; Adler, P.H.; Moulton, J.K. Molecular Systematics of the Simulium jenningsi Species Group (Diptera: Simuliidae), with Three New Fast-Evolving Nuclear Genes for Phylogenetic Inference. Mol. Phylogenet. Evol. 2014, 75, 138–148. [Google Scholar] [CrossRef]
- Gissi, C.; Iannelli, F.; Pesole, G. Evolution of the Mitochondrial Genome of Metazoa as Exemplified by Comparison of Congeneric Species. Heredity 2008, 101, 301–320. [Google Scholar] [CrossRef]
- Chan, A.H.E.; Chaisiri, K.; Saralamba, S.; Morand, S.; Thaenkham, U. Assessing the Suitability of Mitochondrial and Nuclear DNA Genetic Markers for Molecular Systematics and Species Identification of Helminths. Parasit. Vectors 2021, 14, 233. [Google Scholar] [CrossRef]
- Sieriebriennikov, B.; Sun, S.; Lightfoot, J.W.; Witte, H.; Moreno, E.; Rödelsperger, C.; Sommer, R.J. Conserved Nuclear Hormone Receptors Controlling a Novel Plastic Trait Target Fast-Evolving Genes Expressed in a Single Cell. PLoS Genet. 2020, 16, e1008687. [Google Scholar] [CrossRef]
- Rödelsperger, C.; Ebbing, A.; Sharma, D.R.; Okumura, M.; Sommer, R.J.; Korswagen, H.C. Spatial Transcriptomics of Nematodes Identifies Sperm Cells as a Source of Genomic Novelty and Rapid Evolution. Mol. Biol. Evol. 2021, 38, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Ustianowski, A. Tropical Diseases: Definition, Geographic Distribution, Transmission, and Classification. Infect. Dis. Clin. N. Am. 2012, 26, 195–205. [Google Scholar] [CrossRef]
- Zhang, D.; Zou, H.; Wu, S.G.; Li, M.; Jakovlić, I.; Zhang, J.; Chen, R.; Li, W.X.; Wang, G.T. Three New Diplozoidae Mitogenomes Expose Unusual Compositional Biases within the Monogenea Class: Implications for Phylogenetic Studies. BMC Evol. Biol. 2018, 18, 133. [Google Scholar] [CrossRef] [PubMed]
- Suleman; Muhammad, N.; Khan, M.S.; Tkach, V.V.; Ullah, H.; Ehsan, M.; Ma, J.; Zhu, X.-Q. Mitochondrial Genomes of Two Eucotylids as the First Representatives from the Superfamily Microphalloidea (Trematoda) and Phylogenetic Implications. Parasit. Vectors 2021, 14, 48. [Google Scholar] [CrossRef]
- An, Q.; Qiu, Y.-Y.; Lou, Y.; Jiang, Y.; Qiu, H.-Y.; Zhang, Z.-H.; Li, B.; Zhang, A.-H.; Wei, W.; Chen, Y.-Y.; et al. Characterization of the Complete Mitochondrial Genomes of Diplodiscus japonicus and Diplodiscus mehari (Trematoda: Diplodiscidae): Comparison with the Members of the Superfamily Paramphistomoidea and Phylogenetic Implication. Int. J. Parasitol. Parasit. Wildl. 2022, 19, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Tkach, V.; Pawlowski, J.; Mariaux, J. Phylogenetic Analysis of the Suborder Plagiorchiata (Platyhelminthes, Digenea) Based on Partial lsrDNA Sequences. Int. J. Parasitol. 2000, 30, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Le, T.H.; Pham, L.T.K.; Doan, H.T.T.; Le, X.T.K.; Saijuntha, W.; Rajapakse, R.P.V.J.; Lawton, S.P. Comparative Mitogenomics of the Zoonotic Parasite Echinostoma revolutum Resolves Taxonomic Relationships within the ‘E. revolutum’ Species Group and the Echinostomata (Platyhelminthes: Digenea). Parasitology 2020, 147, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.-F.; Zhang, A.-H.; Wei, W.; Jia, B.; Zhang, J.; Li, B.; Chen, Y.-Y.; Sun, Y.-Y.; Hou, M.-R.; Liu, X.-W.; et al. The Complete Mitochondrial Genome of Ogmocotyle ailuri: Gene Content, Composition and Rearrangement and Phylogenetic Implications. Parasitology 2023, 150, 661–671. [Google Scholar] [CrossRef]
- Zajac, N.; Zoller, S.; Seppälä, K.; Moi, D.; Dessimoz, C.; Jokela, J.; Hartikainen, H.; Glover, N. Gene Duplication and Gain in the Trematode Atriophallophorus winterbourni Contributes to Adaptation to Parasitism. Genome Biol. Evol. 2021, 13, evab010. [Google Scholar] [CrossRef]
- Pérez-Ponce de León, G.; Hernández-Mena, D.I. Testing the Higher-Level Phylogenetic Classification of Digenea (Platyhelminthes, Trematoda) Based on Nuclear rDNA Sequences before Entering the Age of the “next-Generation” Tree of Life. J. Helminthol. 2019, 93, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, S.G.; Shchenkov, S.V. Phylogenetic Position of the Family Orientocreadiidae within the Superfamily Plagiorchioidea (Trematoda) Based on Partial 28S rDNA Sequence. Parasitol. Res. 2017, 116, 2831–2844. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tao, Q.; Lamarca, A.P.; Tamura, K. Computational Reproducibility of Molecular Phylogenies. Mol. Biol. Evol. 2023, 40, msad165. [Google Scholar] [CrossRef]
- Steenwyk, J.L.; Li, Y.; Zhou, X.; Shen, X.-X.; Rokas, A. Incongruence in the Phylogenomics Era. Nat. Rev. Genet. 2023, 24, 834–850. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Hu, K.; Zhang, Y.; Chen, Z.; Zheng, H.; Teng, Y.; Wang, F.; Zheng, J. A Novel Clonorchis sinensis Mitogenome: Elucidating Multiregional Strain Phylogeny and Revising the Digenean Mitochondrial Genome Tree. Biomolecules 2025, 15, 1246. https://doi.org/10.3390/biom15091246
Liu Y, Hu K, Zhang Y, Chen Z, Zheng H, Teng Y, Wang F, Zheng J. A Novel Clonorchis sinensis Mitogenome: Elucidating Multiregional Strain Phylogeny and Revising the Digenean Mitochondrial Genome Tree. Biomolecules. 2025; 15(9):1246. https://doi.org/10.3390/biom15091246
Chicago/Turabian StyleLiu, Yuxuan, Kaisong Hu, Yanan Zhang, Zhili Chen, Haoyu Zheng, Yuexi Teng, Fang Wang, and Jingtong Zheng. 2025. "A Novel Clonorchis sinensis Mitogenome: Elucidating Multiregional Strain Phylogeny and Revising the Digenean Mitochondrial Genome Tree" Biomolecules 15, no. 9: 1246. https://doi.org/10.3390/biom15091246
APA StyleLiu, Y., Hu, K., Zhang, Y., Chen, Z., Zheng, H., Teng, Y., Wang, F., & Zheng, J. (2025). A Novel Clonorchis sinensis Mitogenome: Elucidating Multiregional Strain Phylogeny and Revising the Digenean Mitochondrial Genome Tree. Biomolecules, 15(9), 1246. https://doi.org/10.3390/biom15091246