Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities
Abstract
1. Introduction
2. Results
2.1. Analysis of Plant Growth Conditions
2.2. Dendrological Research
2.3. Biomechanical Research
3. Materials and Methods
3.1. Study Subject
3.2. Study Area
- Fallen Communards Avenue: section A (No. 1–10) and section B (No. 11–21);
- Ilyicha Avenue: section C (No. 22–24) and section D (No. 25–27).
3.3. Analysis of Anthropogenic Load on the Study Area
- GOST (Russian State Standard) 23337-2014: Noise. Methods for Measuring Noise in Residential Areas and in Premises of Residential/Public Buildings;
- SanPiN (Sanitary Regulations and Standards) 1.2.3685-21: Hygienic Standards and Requirements for Ensuring Human Safety Against Environmental Factors;
- SP 51.13330.2011: Noise Protection (Updated SNiP 23-03-2003), according to which the equivalent sound level during the daytime should not exceed 55 dBA and the maximum sound level should not exceed 70 dBA in areas directly adjacent to residential buildings. For the equivalent value when measuring noise 2 m from the highway, it is permissible to accept 10 dBA higher (correction = +10 dBA).
3.4. Dendrological Research Methods
3.5. Biomechanical Research Methods
- Relative resistance to bending (RRB) [54]:RRB = r2 × E/4 × ρ,
- Critical mass (mcr) and ultimate permissible load (Pcr)—parameters that reflect specific values of mass (kg or N), under the action of which the trunk of a tree plant or its skeletal branches begin to deform or break off under the action of wind or gravitational loads [54]:Pcr = π2 EI/(2l2),mcr = Pcr/g.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EI | Flexural stiffness. |
Pcr | Ultimate permissible load. |
mcr | Critical mass. |
RRB | Relative resistance to bending. |
References
- Zinicovscaia, I.I.; Safonov, A.I.; Yushin, N.S.; Nespirnyi, V.N.; Germonova, E.A. Phytomonitoring in Donbass for identifying new geochemical anomalies. Russ. J. Gen. Chem. 2024, 94, 3472–3482. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Safonov, A.; Kravtsova, A.; Chaligava, O.; Germonova, E. Neutron activation analysis of rare earth elements (Sc, La, Ce, Nd, Sm, Eu, Tb, Dy, Yb) in the diagnosis of ecosystems of Donbass. Phys. Part. Nucl. Lett. 2024, 21, 186–200. [Google Scholar] [CrossRef]
- Safonov, A.I.; Alemasova, A.S.; Zinicovscaia, I.I.; Vergel, K.N.; Yushin, N.S.; Kravtsova, A.V.; Chaligava, O. Morphogenetic abnormalities of bryobionts in geochemically contrasting conditions of Donbass. Geochem. Int. 2023, 61, 1036–1047. [Google Scholar] [CrossRef]
- Bespalova, S.V.; Romanchuk, S.M.; Chufitskiy, S.V.; Perebeinos, V.V.; Gotin, B.A. Fluorimetric analysis of the impact of coal sludge pollution on phytoplankton. Biophysics 2020, 65, 850–857. [Google Scholar] [CrossRef]
- Korniyenko, V.O.; Kalaev, V.N. Impact of natural climate factors on mechanical stability and failure rate in silver birch trees in the city of Donetsk. Contemp. Probl. Ecol. 2022, 15, 806–816. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Xu, Z.; Wei, H. Urbanization induced changes in the accumulation mode of organic carbon in the surface soil of subtropical forests. Catena 2022, 214, 106264. [Google Scholar] [CrossRef]
- Myachina, K.V.; Shchavelev, A.N.; Ryakhov, R.V.; Dubrovskaya, S.A.; Chibilev, A.A. Changes in the parameters of the environment-forming function of steppe ecosystems under the conditions of oil and gas production. Dokl. Earth Sci. 2025, 521, 18. [Google Scholar] [CrossRef]
- Kornienko, V.O. Retrospective analysis of anthropogenic pollution of the city of Donetsk. Vibration and acoustic noise. Bull. Donetsk Nat. Univ. Ser. A. Nat. Sci. 2024, 1, 93–100. [Google Scholar] [CrossRef]
- Nespirnyi, V.; Safonov, A. The importance of principal component analysis for environmental biodiagnostics of Donbass. E3S Web Conf. 2024, 555, 01007. [Google Scholar] [CrossRef]
- Safonov, A. Assessing landscape disturbance in Donbass using phytomonitoring data. BIO Web Conf. 2024, 126, 01031. [Google Scholar] [CrossRef]
- Safonov, A. Changes in plant CSR strategies under new anthropogenic transformations. E3S Web Conf. 2025, 614, 04022. [Google Scholar] [CrossRef]
- Chibilev, A.A.; Tishkov, A.A. Preservation of ecosystems of the steppe and forest-steppe interflives of the Dnepr and Don. Vestn. Ross. Akad. Nauk. 2024, 94, 149–157. [Google Scholar] [CrossRef]
- Kurdyukova, O.N.; Zarutskaya, Y.G. Species of the genus Populus L. in green spaces in Lugansk/University proceedings. Volga region. Nat. Sci. 2024, 3, 3–11. [Google Scholar] [CrossRef]
- Madejón, P.; Marañón, T.; Murillo, J.M.; Robinson, B. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ. Pollut. 2004, 132, 145–155. [Google Scholar] [CrossRef]
- Borghi, M.; Tognetti, R.; Monteforti, G.; Sebastiani, L. Responses of two poplar species (Populus alba and Populus × canadensis) to high copper concentrations. Environ. Exp Bot. 2008, 62, 290–299. [Google Scholar] [CrossRef]
- Rafati, M.; Khorasani, N.; Moattar, F.; Shirvany, A.; Moraghebi, F.; Hos-seinzadeh, S. Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int. J. Environ. Res. 2011, 5, 961–970. [Google Scholar] [CrossRef]
- Durand, T.C.; Baillif, P.; Albéric, P.; Carpin, S.; Label, P.; Hausman, J.F.; Mora-bito, D. Cadmium and zinc are differentially distributed in Populus tremula x P. alba exposed to metal excess. Plant Biosyst. 2011, 145, 397–405. [Google Scholar] [CrossRef]
- Hu, Y.; Nan, Z.; Jin, C.; Wang, N.; Luo, H. Phytoextraction poten-tial of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium. Int. J. Phytoremediat. 2013, 16, 482–495. [Google Scholar] [CrossRef]
- Ciadamidaro, L.; Madejón, E.; Puschenreiter, M.; Madejón, P. Growth of Populus alba and its influence on soil trace element availability. Sci. Total Environ. 2013, 454–455, 337–347. [Google Scholar] [CrossRef]
- Hu, Y.; Nan, Z.; Su, J.; Wang, N. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: Implications for phytoextraction and phytostabi-lization. Environ. Sci. Pollut. R. 2013, 20, 7194–7203. [Google Scholar] [CrossRef]
- Ciadamidaro, L.; Madejón, E.; Robinson, B.; Madejón, P. Soil plant interactions of Populus alba in contrasting environments. J Environ. Manag. 2014, 132, 329–337. [Google Scholar] [CrossRef]
- Tőzsér, D.; Horváth, R.; Simon, E.; Magura, T. Heavy metal uptake by plant parts of Populus species: A meta-analysis. Environ. Sci. Pollut. Res. 2023, 30, 69416–69430. [Google Scholar] [CrossRef]
- Yu, L.; Tang, S.; Kang, J.; Korpelainen, H.; Li, C. Responses of dioecious Populus to heavy metals: A meta-analysis. For. Res. 2023, 3, 8. [Google Scholar] [CrossRef]
- Benyó, D.; Horváth, E.; Németh, E.; Leviczky, T.; Takács, K.; Lehotai, N.; Feigl, G.; Kolbert, Z.; Ördög, A.; Gallé, R.; et al. Physiological and molecular responses to HM stresses suggest different detoxification mechanism of Populus deltoides and P. x canadensis. J. Plant Physiol. 2016, 201, 62–70. [Google Scholar] [CrossRef]
- Chandra, R.; Kang, H. Mixed HM stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. For. Sci. Technol. 2016, 12, 55–61. [Google Scholar] [CrossRef]
- Gaudet, M.; Pietrini, F.; Beritognolo, I.; Iori, V.; Zacchini, M.; Massacci, A.; Mugnozza, G.S.; Sabatti, M. Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiol. 2011, 31, 1309–1318. [Google Scholar] [CrossRef]
- Beritognolo, I.; Harfouche, A.; Brilli, F.; Prosperini, G.; Gaudet, M.; Brosche, M.; Salani, F.; Kuzminsky, E.; Auvinen, P.; Paulin, L.; et al. Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiol. 2011, 31, 1335–1355. [Google Scholar] [CrossRef]
- Komarkova, M.; Chromy, J.; Pokorna, E.; Soudek, P.; Machova, P. Physiological and transcriptomic response of grey Poplar (Populus× Canescens Aiton Sm.) to cadmium stress. Plants 2020, 9, 1485. [Google Scholar] [CrossRef]
- Sun, Y.; Ou, Y.; Gao, Y.; Zhang, X.; He, Y.; Li, Y.; Yao, Y. Different tolerance mechanism to alkaline stresses between Populus bolleana and its desert relative Populus euphratica. Plant Soil. 2018, 426, 349–363. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, X.; Sun, Y. Different physiological response of different maturity of leaves of Populus bolleana to alkali stress. For. Sci. 2015, 51, 9–16. [Google Scholar]
- Zalesny, R.S., Jr.; Headlee, W.L.; Gopalakrishnan, G.; Bauer, E.O.; Hall, R.B.; Hazel, D.W.; Isebrands, J.G.; Licht, L.A.; Negri, M.C.; Guthrie-Nichols, E.; et al. Ecosystem services of poplar at long-term phytoremediation sites in the Midwest and Southeast, United States. WIREs Energy Environ. 2019, 8, e349. [Google Scholar] [CrossRef]
- Zalesny, R.S.; Zhu, J.Y.; Headlee, W.L.; Gleisner, R.; Pilipović, A.; Van Acker, J.; Bauer, E.O.; Birr, B.A.; Wiese, A.H. Ecosystem services, physiology, and biofuels recalcitrance of poplars grown for landfill phytoremediation. Plants 2020, 9, 1357. [Google Scholar] [CrossRef]
- Kornienko, V.O.; Reutskaya, V.V. Populus L. trees in the urbanized environment of Donetsk. Probl. Ecol. Nat. Prot. Technog. Reg. 2025, 1, 24–34. [Google Scholar] [CrossRef]
- Kornienko, V.O. Ecological and biological features of old-growth trees of Donetsk city. Probl. Ecol. Nat. Prot. Technog. Reg. 2025, 2, 44–54. [Google Scholar] [CrossRef]
- Kucherova, A.V.; Minnikova, T.V.; Kolesnikov, S.I.; Khrapai, E.S.; Nalivaychenko, A.A.; Sherstnev, A.K. Assessment of the health of soils polluted by municipal solid waste landfill. J. Hazard. Mater. Adv. 2025, 18, 100643. [Google Scholar] [CrossRef]
- Tsepina, N.I.; Minnikova, T.V.; Kolesnikov, S.I.; Minkina, T.M. Pollution of silver and silver nanoparticles in the ecosystems and their interactions with plants and soil microbiota. In Emerging Contaminants: Sustainable Agriculture and the Environment; Elsevier: Cambridge, UK, 2024; pp. 267–290. [Google Scholar] [CrossRef]
- Kijowska-Oberc, J.; Staszak, A.M.; Kamiński, J.; Ratajczak, E. Adaptation of Forest Trees to Rapidly Changing Climate. Forests 2020, 11, 123. [Google Scholar] [CrossRef]
- Netsvetov, M.; Sergeyev, M.; Nikulina, V.; Korniyenko, V.; Prokopuk, Y. The climate to growth relationships of pedunculate oak in steppe. Dendrochronologia 2017, 44, 31–38. [Google Scholar] [CrossRef]
- Litovchenko, D.A.; Popova, A.A.; Shestibratov, K.A.; Krutovsky, K.V. Climate Response and Radial Growth Dynamics of Pedunculate Oak (Quercus robur L.) Plus Trees and Their Half-Sib Progeny in Periods of Severe Droughts in the Forest-Steppe Zone of Eastern Europe. Plants 2024, 13, 3213. [Google Scholar] [CrossRef]
- Saxe, H.; Cannell, M.G.R.; Johnsen, Ø.; Ryan, M.G.; Vourlitis, G. Tree and forest functioning in response to global warming. New Phytol. 2001, 149, 369–399. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Khishigjargal, M.; Leuschner, C.; Hauck, M. Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. J. Plant Ecol. 2013, 7, 24–38. [Google Scholar] [CrossRef]
- Gursoy, M.; Balkan, A.; Ulukan, H. Ecophysiological Responses to Stresses in Plants: A General Approach. Pak. J. Biol. Sci. 2012, 15, 506–516. [Google Scholar] [CrossRef]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Bi, J.; Liu, X.; Liu, S.; Wang, Y.; Liu, M. Microstructural and physiological responses to cadmium stress under different nitrogen forms in two contrasting Populus clones. Environ. Exp. Bot. 2020, 169, 103897. [Google Scholar] [CrossRef]
- Celik Sh Yucel, E.; Celik, S.; Gucel, S.; Ozturk, M. Carolina poplar (Populus x canadensis Moench) as a biomonitor of trace elements in the West Black Sea region of Turkey. J. Environ. Biol. 2010, 31, 225–232. [Google Scholar]
- Polle, A.; Klein, T.; Kettner, C. Impact of cadmium on young plants of Populus euphratica and P. × canescens, two poplar species that differ in stress tolerance. New For. 2013, 44, 13–22. [Google Scholar] [CrossRef]
- Ellis, B.; Jansson, S.; Strauss, S.H.; Tuskan, G.A. Why and how Populus became a “model tree”. In Genetics and Genomics of Populus; Jansson, S., Groover, A., Eds.; Springer: New York, NY, USA, 2010; pp. 3–14. [Google Scholar] [CrossRef]
- Melnikova, N.V.; Borkhert, E.V.; Snezhkina, A.V.; Kudryavtseva, A.V.; Dmitriev, A.A. Sex-specific response to stress in Populus. Front. Plant Sci. 2017, 8, 1827. [Google Scholar] [CrossRef]
- Peng, Y.; Yuan, C.; Heděnec, P.; Yue, K.; Zhu, G.; Jin, X.; Yang, Q.; Wei, S.; Wu, F. Effects of transforming multiple ecosystem types to plantations on soil carbon, nitrogen, and phosphorus concentrations at the global scale. Plant Soil. 2022, 481, 213–227. [Google Scholar] [CrossRef]
- Sellier, D.; Fourcaud, T. Crown structure and wood properties: Influence on tree sway and response to high winds. Am. J. Bot. 2009, 96, 885–896. [Google Scholar] [CrossRef]
- Alekseev, V.A. Diagnostics of the vital state of trees and tree stands. For. Sci. 1989, 4, 51–54. [Google Scholar]
- Demakov, Y.P.; Puryaev, A.S.; Chernykh, V.L.; Chernyh, L.V. Allometric dependances application for evaluating phytomass of various fractions of trees and simulation of their dynamics. Bull. Volga St. Technol. Univ. Ser. For. Ecol. Nat. Mang. 2015, 2, 19–36. [Google Scholar]
- Niklas, K.J. Tree Biomechanics with Special Reference to Tropical Trees in Tropical Tree Physiology; Goldstein, G., Santiago, L.S., Eds.; Springer: Cham, Switzerland, 2016; Volume 6, pp. 413–435. [Google Scholar]
- Niklas, K.J.; Spatz, H.-C. Worldwide correlations of mechanical properties and green wood density. Am. J. Bot. 2010, 97, 1587–1594. [Google Scholar] [CrossRef]
Territory | Mode of Transport, Average Value ± SD unit/hour | Total, unit/hour Average Value ± SD | |||||
---|---|---|---|---|---|---|---|
Cargo Truck | Passenger | ||||||
Light | Heavy | Passenger vehicles | Buses | ||||
Foreign-Manufactured Passenger Vehicles | Domestically Produced Passenger Vehicles | SUV | |||||
A | 34 ± 3 | 16 ± 2 | 766 ± 62 | 294 ± 29 | 94 ± 13 | 17 ± 3 | 1221 ± 115 |
B | 77 ± 5 | 17 ± 9 | 968 ± 67 | 198 ± 13 | 102 ± 7 | 63 ± 5 | 1424 ± 60 |
Number | Height ± SD, m | Dbase ± SD, m | DBH ± SD, m | Age ± SD, Year |
---|---|---|---|---|
Section A | ||||
1 | 13.6 ± 1.7 * | 0.58 ± 0.15 | 0.50 ± 0.11 | 52.0 ± 3.7 |
2 | 14.0 ± 2.6 * | 0.57 ± 0.13 | 0.52 ± 0.15 | 51.7 ± 4.0 |
3 | 15.5 ± 1.7 | 0.59 ± 0.21 | 0.58 ± 0.20 | 49.3 ± 10.2 |
4 | 13.5 ± 1.3 ** | 0.49 ± 0.11 * | 0.45 ± 0.12 * | 48.7 ± 4.4 * |
5 | 12.6 ± 1.3 ** | 0.47 ± 0.08 * | 0.43 ± 0.06 * | 46.5 ± 4.7 * |
6 | 14.0 ± 1.8 * | 0.61 ± 0.11 | 0.55 ± 0.10 | 51.3 ± 3.5 |
7 | 13.8 ± 0.6 * | 0.59 ± 0.11 | 0.53 ± 0.07 | 52.4 ± 4.3 |
8 | 13.6 ± 1.1 * | 0.59 ± 0.09 | 0.54 ± 0.10 | 49.6 ± 3.3 |
9 | 12.0 ± 0.7 ** | 0.55 ± 0.17 | 0.46 ± 0.09 * | 45.8 ± 4.9 * |
10 | 12.2 ± 2.5 ** | 0.61 ± 0.16 | 0.58 ± 0.12 | 53.4 ± 3.5 |
Section B | ||||
11 | 13.8 ± 2.9 * | 0.60 ± 0.19 | 0.34 ± 0.07 * | 50.0 ± 7.0 |
12 | – | 0.62 ± 0.09 | – | 53.9 ± 2.2 |
13 | 14.7 ± 2.7 * | 0.69 ± 0.27 | 0.63 ± 0.17 | 51.1 ± 5.5 |
14 | 13.8 ± 1.7 * | 0.60 ± 0.09 | 0.55 ± 0.07 | 50.9 ± 3.2 |
15 | 13.0 ± 0.9 * | 0.65 ± 0.25 | 0.57 ± 0.23 | 50.6 ± 4.2 |
16 | 14.3 ± 1.3 * | 0.54 ± 0.13 | 0.51 ± 0.15 | 50.9 ± 3.8 |
17 | 16.9 ± 0.8 | 0.70 ± 0.08 | 0.65 ± 0.09 | 52.5 ± 2.7 |
18 | 15.3 ± 1.5 | 0.75 ± 0.06 | 0.70 ± 0.09 | 55.0 ± 2.9 |
19 | 15.2 ± 1.2 | 0.74 ± 0.14 | 0.69 ± 0.10 | 52.1 ± 3.9 |
20 | 14.2 ± 2.7 | 0.60 ± 0.23 | 0.52 ± 0.19 | 49.3 ± 5.3 |
21 | 12.8 ± 1.9 ** | 0.51 ± 0.12 * | 0.48 ± 0.14 * | 47.9 ± 4.9 * |
Section C | ||||
22 | 15.1 ± 1.6 | 0.43 ± 0.043 ** | 0.38 ± 0.048 ** | 48.7 ± 11.7 |
23 | 16.1 ± 1.3 | 0.53 ± 0.033 * | 0.48 ± 0.032 * | 59.5 ± 3.3 |
24 | 16.5 ± 1.4 | 0.54 ± 0.057 * | 0.48 ± 0.057 * | 56.3 ± 3.2 |
Section D | ||||
25 | 13.2 ± 3.2 ** | 0.45 ± 0.053 ** | 0.40 ± 0.050 ** | 42.1 ± 7.8 ** |
26 | 13.4 ± 3.1 ** | 0.49 ± 0.099 ** | 0.44 ± 0.090 ** | 49.7 ± 10.7 |
27 | 16.3 ± 2.0 | 0.46 ± 0.029 ** | 0.41 ± 0.03 ** | 59.3 ± 4.8 |
Control plantings | ||||
- | 16 ± 0.5 | 0.60 ± 0.09 | 0.52 ± 0.14 | 53 ± 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kornienko, V.; Reuckaya, V.; Shkirenko, A.; Meskhi, B.; Olshevskaya, A.; Odabashyan, M.; Shevchenko, V.; Teplyakova, S. Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities. Plants 2025, 14, 2052. https://doi.org/10.3390/plants14132052
Kornienko V, Reuckaya V, Shkirenko A, Meskhi B, Olshevskaya A, Odabashyan M, Shevchenko V, Teplyakova S. Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities. Plants. 2025; 14(13):2052. https://doi.org/10.3390/plants14132052
Chicago/Turabian StyleKornienko, Vladimir, Valeriya Reuckaya, Alyona Shkirenko, Besarion Meskhi, Anastasiya Olshevskaya, Mary Odabashyan, Victoria Shevchenko, and Svetlana Teplyakova. 2025. "Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities" Plants 14, no. 13: 2052. https://doi.org/10.3390/plants14132052
APA StyleKornienko, V., Reuckaya, V., Shkirenko, A., Meskhi, B., Olshevskaya, A., Odabashyan, M., Shevchenko, V., & Teplyakova, S. (2025). Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities. Plants, 14(13), 2052. https://doi.org/10.3390/plants14132052