Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = sidestreams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2307 KiB  
Article
Albumin Enhances Microvascular Reactivity in Sepsis: Insights from Near-Infrared Spectroscopy and Vascular Occlusion Testing
by Rachael Cusack, Alejandro Rodríguez, Ben Cantan, Orsolya Miskolci, Elizabeth Connolly, Gabor Zilahi, John Davis Coakley and Ignacio Martin-Loeches
J. Clin. Med. 2025, 14(14), 4982; https://doi.org/10.3390/jcm14144982 - 14 Jul 2025
Viewed by 275
Abstract
Background/Objectives: In septic shock, microcirculatory dysfunction contributes to organ failure and mortality. While sidestream dark-field (SDF) imaging is the reference method for assessing microvascular perfusion, its complexity limits routine use. This study evaluates near-infrared spectroscopy (NIRS) with vascular occlusion testing (VOT) as [...] Read more.
Background/Objectives: In septic shock, microcirculatory dysfunction contributes to organ failure and mortality. While sidestream dark-field (SDF) imaging is the reference method for assessing microvascular perfusion, its complexity limits routine use. This study evaluates near-infrared spectroscopy (NIRS) with vascular occlusion testing (VOT) as a potential bedside tool for monitoring microcirculatory changes following fluid resuscitation. Methods: Sixty-three fluid-responsive patients with sepsis were randomized to receive either 20% albumin or crystalloid. NIRS-VOT and sublingual SDF measurements were obtained at baseline and 60 min post-resuscitation. The reoxygenation slope (ReOx) derived from NIRS was calculated and compared with clinical severity scores and SDF-derived microcirculatory parameters. Results: ReOx significantly increased from baseline to 60 min in the albumin group (p = 0.025), but not in the crystalloid group. However, between-group differences at 60 min were not statistically significant. ReOx at 60 min was inversely correlated with APACHE II score (ρ = −0.325) and lactate (ρ = −0.277) and showed a weak inverse trend with norepinephrine dose. AUROC for ICU survival based on ReOx was 0.616. NIRS ReOx showed weak correlations with SDF parameters, including the number of crossings (p = 0.03) and the consensus proportion of perfused vessels (CPPV; p = 0.004). Conclusions: NIRS-VOT detected microcirculatory trends after albumin administration but showed limited agreement with SDF imaging. These findings suggest that NIRS and SDF assess different physiological domains. Further studies are warranted to define the clinical utility of NIRS as a microcirculation monitoring tool (Clinicaltrials.gov: NCT05357339). Full article
(This article belongs to the Special Issue Current Trends and Prospects of Critical Emergency Medicine)
Show Figures

Figure 1

28 pages, 12490 KiB  
Article
Selective Antiproliferative Effects of Marine Oils on Neuroblastoma Cells in 3D Cultures
by Luís Freiría-Martínez, Jose María Oliva-Montero, Ainhoa Rodríguez-Tébar, Ola Hermanson, Santiago P. Aubourg, Carlos Spuch and Isabel Medina
Mar. Drugs 2025, 23(7), 268; https://doi.org/10.3390/md23070268 - 26 Jun 2025
Viewed by 727
Abstract
Dietary marine lipids enriched in ω-3 polyunsaturated fatty acids (PUFAs) are spotlighted for favorable effects in neurodegenerative conditions and tumor cell proliferation. Commercial marine oils, with high EPA and DHA content, consist of non-polar lipids constituted by triacylglycerols or polar oils composed of [...] Read more.
Dietary marine lipids enriched in ω-3 polyunsaturated fatty acids (PUFAs) are spotlighted for favorable effects in neurodegenerative conditions and tumor cell proliferation. Commercial marine oils, with high EPA and DHA content, consist of non-polar lipids constituted by triacylglycerols or polar oils composed of phospholipids. Both classes have shown different activities to significantly inhibit proliferation and migration, and induce apoptosis in cancer cells. This work was aimed at testing marine oils’ associated effects on neuroblastoma (NB) and glioblastoma (GB). Commercial non-polar and polar marine oils were studied in 3D spheroid models developed with human neuroblastoma, GB, and non-nervous embryonic kidney cell lines. This study also included results provided by a new sustainable polar marine oils source: fishery side-streams. Cell viability and mitochondrial activity assessments demonstrated that both marine oils dramatically reduced NB cells’ metabolism, proliferation, and viability. Effects on GB and epithelial cells were different, including a metabolic increase. Marine oils also induce cell differentiation and selectively modulate the activity of neurons and glia, depending on the oils’ chemical form. Sustainable polar oil showed bioactive characteristics similar to commercial krill oil. We propose that marine oils rich in triacylglycerols and phospholipids with high EPA and DHA levels may be a useful tool in NB antiproliferative therapies. Full article
Show Figures

Figure 1

13 pages, 427 KiB  
Article
Glycocalyx Disintegration Is Associated with Mortality in Chronic Heart Failure
by Patricia P. Wadowski, Martin Hülsmann, Irene M. Lang, Christian Schörgenhofer, Joseph Pultar, Constantin Weikert, Thomas Gremmel, Sabine Steiner, Renate Koppensteiner, Christoph W. Kopp and Bernd Jilma
J. Clin. Med. 2025, 14(10), 3571; https://doi.org/10.3390/jcm14103571 - 20 May 2025
Viewed by 438
Abstract
Background: Glycocalyx disintegration is associated with adverse outcomes in patients with trauma or sepsis. As microvascular dysfunction has an impact on disease progression in chronic heart failure (CHF) patients, we hypothesized that changes in microcirculation might be associated with mortality. Methods: Fifty patients [...] Read more.
Background: Glycocalyx disintegration is associated with adverse outcomes in patients with trauma or sepsis. As microvascular dysfunction has an impact on disease progression in chronic heart failure (CHF) patients, we hypothesized that changes in microcirculation might be associated with mortality. Methods: Fifty patients with ischemic and non-ischemic cardiomyopathy and conservative treatment with baseline measurements of the sublingual microcirculation (via Sidestream Darkfield videomicroscopy) were followed up for two years. Glycocalyx thickness was assessed indirectly by calculation of the perfused boundary region (PBR). Results: Loss of glycocalyx was pronounced in non-survivors after one, n = 10, and two years, n = 16; PBR: 2.05 μm (1.88–2.15 μm) vs. 1.87 μm (1.66–2.03 μm) and 2.04 (1.93–2.11) vs. 1.84 (1.62–1.97); p = 0.042 and p = 0.003, respectively. Area under the ROC curve for the analysis of the predictive value of PBR on two-year mortality was 0.77 (p = 0.003; SE: 0.07, CI (95%): 0.63–0.91). ROC curve analysis determined a PBR of 1.9 μm as the best predictor for two-year mortality (sensitivity: 0.81; specificity: 0.59). Moreover, multivariate regression analysis revealed PBR and functional capillary density as significant predictors of two-year mortality, p = 0.036 and p = 0.048, respectively. Conclusions: Glycocalyx disintegration is related to poor overall survival in CHF patients. Full article
Show Figures

Figure 1

15 pages, 1683 KiB  
Article
On the Intensity of the Microvascular Magnetic Field in Normal State and Septic Shock
by Athanasios Chalkias
J. Clin. Med. 2025, 14(7), 2496; https://doi.org/10.3390/jcm14072496 - 6 Apr 2025
Viewed by 2320
Abstract
Background: Capillary tortuosity is a morphological variant of microcirculation. However, the mechanisms by which tortuous vessels meet metabolic requirements in health and disease remain unknown. We recently reported that capillary tortuosity score (CTS) is significantly higher in patients with septic shock than [...] Read more.
Background: Capillary tortuosity is a morphological variant of microcirculation. However, the mechanisms by which tortuous vessels meet metabolic requirements in health and disease remain unknown. We recently reported that capillary tortuosity score (CTS) is significantly higher in patients with septic shock than in steady-state individuals, and that CTS is significantly associated with alveolar-to-arterial oxygen (A-a O2) gradient and oxygen debt in septic shock patients. Objective: We aimed to investigate the characteristics of the magnetic fields in the sublingual microcirculation of individuals with normal physiology and patients with septic shock. Methods: Systemic hemodynamics were recorded, and sublingual microcirculation was monitored using sidestream dark field (SDF+) imaging. The number of capillary red blood cells (NRBC), the intensity of the magnetic field of a red blood cell (HRBC), the intensity of the magnetic field of each capillary (HCAP), and the intensity with which the magnetic field of a capillary acts on an RBC (FCAP) were calculated. Results: Significant differences in macro- and microhemodynamic variables were observed between the two groups. Although NRBC was significantly higher in individuals with steady-state physiology [87.4 (87.12) vs. 12.23 (6.9)], HRBC was significantly stronger in patients with septic shock [5.9 × 10−16 (6.9 × 10−16) A m−1 vs. 1.6 × 10−15 (1.4 × 10−15) A m−1]. No significant difference was observed in HCAP [2.16 × 10−14 (2.17 × 10−14) A m−1 vs. 1.34 × 10−14 (1.23 × 10−14) A m−1] and FCAP [1.66 × 10−24 (3.36 × 10−24) A m−1 vs. 6.44 × 10−25 (1.1 × 10−24) A m−1] between the two groups. In patients with septic shock, HRBC was associated with De Backer score (rho = −0.608) and venous–arterial carbon dioxide difference (rho = 0.569). In the same group, HCAP was associated with convective oxygen flow (rho = 0.790) and oxygen extraction ratio (rho = −0.596). Also, FCAP was significantly associated with base deficit (rho = 0.701), A-a O2 gradient (rho = 0.658), and oxygen debt (rho = −0.769). Conclusions: Despite the microcirculatory impairment in patients with septic shock, HRBC was significantly stronger in that group than in steady-state individuals. Also, HCAP and FCAP were comparable between the two groups. Tortuous vessels may function as biomagnetic coils that amplify RBC-induced magnetic fields, enhancing perfusion and oxygenation of adjacent tissues. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

19 pages, 941 KiB  
Article
Fungal Protein from Non-Food Bioresources in Diets for Rainbow Trout (Oncorhynchus mykiss)
by Ashwath Gaudhaman, Sajjad Karimi, Torbjörn Lundh, Margareth Øverland, Mohammad J. Taherzadeh, Markus Langeland, Kartik Baruah and Aleksandar Vidakovic
Fishes 2025, 10(4), 149; https://doi.org/10.3390/fishes10040149 - 27 Mar 2025
Viewed by 1179
Abstract
The growing aquaculture industry has an increasing demand for novel, sustainably produced protein sources for aquafeed. This study aimed to determine the apparent digestibility (AD%), pellet quality, and protein score of four novel fungal proteins in rainbow trout (Oncorhynchus mykiss), namely, [...] Read more.
The growing aquaculture industry has an increasing demand for novel, sustainably produced protein sources for aquafeed. This study aimed to determine the apparent digestibility (AD%), pellet quality, and protein score of four novel fungal proteins in rainbow trout (Oncorhynchus mykiss), namely, PEKILO® (PEK) derived from Paecilomyces variotii, Aspergillus oryzae (AO), Rhizopus oligosporus (RO), and Rhizopus delemar (RD). All fungi were grown on various side-streams, such as beet vinasse, thin stillage, and whole stillage. The diets were produced by extrusion technology and consisted of control and test diets with a 30:70 test ingredient/control ratio. Feeding lasted for 39 days. Each tank had 20 fish, with three replicates per dietary treatment. One-way ANOVA was performed to compare the means of the groups with each other. The dry matter (DM) digestibility of PEK was significantly higher than that of AO, RD, and RO, all with similar digestibility. The crude protein AD% for PEK was 86.5%, which is significantly higher than that of the other fungal sources. AO, PEK, RD, and RO had similar crude fat AD% compared to each other, at 83.8%, 87.4%, 90.5%, and 88.5%, respectively. The pellet quality was found to deteriorate with addition of fungal proteins. PEK had high AD% for most of the macronutrients tested and better pellet quality. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

27 pages, 3985 KiB  
Review
Advancement in Anaerobic Ammonia Oxidation Technologies for Industrial Wastewater Treatment and Resource Recovery: A Comprehensive Review and Perspectives
by Pradeep Singh, Monish Bisen, Sourabh Kulshreshtha, Lokender Kumar, Shubham R. Choudhury, Mayur J. Nath, Manabendra Mandal, Aman Kumar and Sanjay K. S. Patel
Bioengineering 2025, 12(4), 330; https://doi.org/10.3390/bioengineering12040330 - 22 Mar 2025
Cited by 3 | Viewed by 1414
Abstract
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage [...] Read more.
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage systems such as completely autotrophic nitrogen removal over nitrite, denitrifying ammonium oxidation, simultaneous nitrogen and phosphorus removal, partial denitrification-anammox, and partial nitrification and integrated fermentation denitritation. The one-stage system includes completely autotrophic nitrogen removal over nitrite, oxygen-limited autotrophic nitrification/denitrification, aerobic de-ammonification, single-stage nitrogen removal using anammox, and partial nitritation. Two-stage systems, such as the single reactor system for high-activity ammonium removal over nitrite, integrated fixed-film activated sludge, and simultaneous nitrogen and phosphorus removal, have also been developed. Three-stage systems comprise partial nitrification anammox, partial denitrification anammox, simultaneous ammonium oxidation denitrification, and partial nitrification and integrated fermentation denitritation. The performance of these systems is highly dependent on interactions between functional microbial communities, physiochemical parameters, and environmental factors. Mainstream applications are not well developed and require further research and development. Mainstream applications demand a high carbon/nitrogen ratio to maintain levels of nitrite-oxidizing bacteria, high concentrations of ammonium and nitrite in wastewater, and retention of anammox bacteria biomass. To summarize various aspects of the anammox processes, this review provides information regarding the microbial diversity of different genera of anammox bacteria and the engineering aspects of various side streams and mainstream anammox processes for wastewater treatment. Additionally, this review offers detailed insights into the challenges related to anammox technology and delivers solutions for future sustainable research. Full article
(This article belongs to the Special Issue Biological Wastewater Treatment and Resource Recovery)
Show Figures

Figure 1

19 pages, 1810 KiB  
Article
Production of Protein Hydrolysates from Cod Backbone Using Selected Enzymes: Evaluation of Antioxidative and Antimicrobial Activities of Hydrolysates
by Dimitra Marinou, Charlotte Jacobsen, Davide Odelli, Krystalia Sarigiannidou and Ann-Dorit Moltke Sørensen
Mar. Drugs 2025, 23(3), 125; https://doi.org/10.3390/md23030125 - 13 Mar 2025
Viewed by 939
Abstract
In the fish industry, up to 70% of all fish end up as side-streams such as backbones, heads, and viscera. To reduce the quantities of side-streams, a higher utilization degree of fish is needed. The aim of this study was to use cod [...] Read more.
In the fish industry, up to 70% of all fish end up as side-streams such as backbones, heads, and viscera. To reduce the quantities of side-streams, a higher utilization degree of fish is needed. The aim of this study was to use cod backbone for an enzymatic production of bioactive hydrolysates with antioxidative and/or antimicrobial properties. Three different enzymes were applied (Alcalase, Neutrase, and Protamex), and hydrolyses were carried out within the enzyme’s optima for pH and temperature for 0.5–6 h. The efficiency of the enzyme treatment was evaluated based on the protein extraction yield (PEY), the degree of hydrolysis (DH), and antioxidant activity using two different in vitro assays (1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and iron chelation) and antimicrobial activity determined by minimum inhibitory concentration (MIC) and disk diffusion assays. Selected hydrolysates showing activity were evaluated with respect to amino acid composition and molecular weight. Alcalase-treated samples had the highest PEY (3 h, 63.5 ± 4.5%) followed by Protamex-treated samples (3 and 6 h; 51.9 ± 5.5% and 56.5 ± 4.5%); the lowest PEY was obtained with Neutrase (3 and 6 h; 30.4 ± 1.9% and 34.7 ± 3.4%). No clear relationship was observed between the PEY and DH. All hydrolysates had antioxidant activities. For radical scavenging activity, Protamex-treated hydrolysate showed the lowest IC50 (6 h, 2.1 ± 0.1 mg powder/mL) and had a molecular weight <10 kDa, whereas for iron chelation activity, the control samples (no enzyme added but heat-treated) showed a similar or lower IC50 with molecular weights of 200–10 kDa. Amino acid composition measured on selected hydrolysates suggested that not only the composition of amino acid but also sequence and size influence the properties. None of the hydrolysates showed antimicrobial activity. In summary, the results showed that protein hydrolysates with antioxidant activity can be produced from the cod backbone, which makes it possible to utilize this side-stream generated in the fish industry. Full article
Show Figures

Graphical abstract

20 pages, 1678 KiB  
Article
Assessing Hydrocyclone System’s Efficiency in Water-Borne Microplastics Capture Using Online Microscopy Sensors
by Kacper Pajuro, Zhenyu Yang, Stefan Jespersen and Dennis Severin Hansen
Sensors 2025, 25(3), 879; https://doi.org/10.3390/s25030879 - 31 Jan 2025
Viewed by 875
Abstract
Plastic pollution has been a global concern. Microplastics are often referred to as plastic particulates whose sizes are within the range of 1 μm to 5 mm. To cost-effectively capture these tiny microplastics from open environments, such as from the air or aquatic/marine [...] Read more.
Plastic pollution has been a global concern. Microplastics are often referred to as plastic particulates whose sizes are within the range of 1 μm to 5 mm. To cost-effectively capture these tiny microplastics from open environments, such as from the air or aquatic/marine systems, is far from trivial. Not only is some innovative capturing technology demanded, but some online monitoring solutions are often requested as well to assess the capturing effectiveness and efficiency, as well as provide some feedback information to the control system to adapt to varying operating conditions. Inspired by the de-oiling treatment of the produced water in offshore oil & gas production, this paper explores the potential to apply the hydrocyclone technology to cost-effectively handle the water-borne microplastics, and its effectiveness is demonstrated based on reliably calibrated online microscopy measurements subject to artificial polyethylene particulates added to the water stream. The experimental work is carried out using a commercial de-oiling hydrocyclone system and a set of commercial optical microscopy sensors. A statistic-based calibration method is firstly proposed for the deployed microscopy sensors to select the best calibration parameters. Afterwards these sensors are installed at the inlet and water-outlet of the hydrocyclone system via a side-stream sampling mechanism to assess this system’s (microplastics) separation efficiency subject to dynamical operating conditions, which are mimicked by manipulating its underflow and overflow control valves via PI-controlled loops. The separation efficiencies are calculated based on these volume concentration measurements and compared between the case with (statistically) optimal calibration parameters and the case with a set of non-optimal parameters. The best separation efficiency of 87.76% under the optimal calibration parameters is observed under a specific operating condition. The obtained result shows a promising potential to use these separation and sensing systems to cost-effectively handle aquatic microplastics collection, though it also indicates that a further higher efficiency could be achieved by some (microplastics) dedicated cyclone design combined with a dedicated process control system, and this is one part of our ongoing research work. Full article
(This article belongs to the Special Issue Optic Fiber Sensing Technology for Marine Environment)
Show Figures

Figure 1

19 pages, 1047 KiB  
Article
Effect of Defatting Method on Japanese Quince (Chaenomeles japonica) Fruit Seed Protein Isolate Technological Properties
by Danija Lazdiņa, Dalija Segliņa, Zaiga Anna Zvaigzne, Aldis Butlers and Inga Ciproviča
Foods 2025, 14(2), 234; https://doi.org/10.3390/foods14020234 - 13 Jan 2025
Cited by 3 | Viewed by 1258
Abstract
Fruit seeds are often an underutilized side-stream of fruit processing. The most common approach to seed valorization is oil extraction due to the relative simplicity of the process. The partially or fully defatted seed meal is rarely further processed, even though seeds generally [...] Read more.
Fruit seeds are often an underutilized side-stream of fruit processing. The most common approach to seed valorization is oil extraction due to the relative simplicity of the process. The partially or fully defatted seed meal is rarely further processed, even though seeds generally contain more protein and fiber than oil. The present study used single-screw extrusion (oil press), supercritical CO2 extraction, and a combination of the two, to defat Japanese quince (Chaenomeles japonica) seeds, and evaluated the defatted meals as sources of functional protein. Defatting with oil press and CO2 extraction proved similarly effective (reduced seed flour fat content from 11.75% to 6.40% and 5.32%, respectively); combining the two methods reduced fat content to 0.90%. The yield was minimally affected, but protein extract purity was defined by defatting efficiency (65.05% protein from non-defatted versus 82.29% protein from a combination-defatted meal). Defatting did not significantly affect amino acid composition but had a significant effect on every tested functional property (solubility, water, and oil binding capacity, apparent viscosity, foaming capacity, and emulsifying activity index). Of the tested defatting methods, supercritical CO2 extraction and the combination provided the best results from most aspects. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

14 pages, 1594 KiB  
Article
Assessing Sugarcane Molasses’ Bioactive Compound Content upon Ultrasound-Assisted Hydroethanolic Extraction at Various pH Values
by Boukaga Farmani, Miljana Djordjević, Somayeh Mohammadkhani and Marijana Djordjević
Agriculture 2025, 15(2), 158; https://doi.org/10.3390/agriculture15020158 - 13 Jan 2025
Cited by 1 | Viewed by 1446
Abstract
As widely generated by-products with significant bioactive compound content, sugarcane molasses exhibits high potential for valorization. For the purpose of bioactive compound extraction from sugarcane molasses, ultrasound-assisted extraction with various hydroethanolic solvents (0, 2.5, 5, 7.5, and 10% ethanol) at different pH values [...] Read more.
As widely generated by-products with significant bioactive compound content, sugarcane molasses exhibits high potential for valorization. For the purpose of bioactive compound extraction from sugarcane molasses, ultrasound-assisted extraction with various hydroethanolic solvents (0, 2.5, 5, 7.5, and 10% ethanol) at different pH values (4.11, 5.11, 6.11, and 7.11) was examined. In the obtained sugarcane molasses extracts, the content of total phenolics, monomeric anthocyanins, total flavonoids, total tannins, and antioxidant capacity (DPPH) was estimated alongside the determination of molasses’ major components through GC-MS analysis Based on the GC-MS analysis of molasses, sugars and nitrogenous compounds emerged as the most abundant compounds classes. Hydroethanolic solvent of 2.5% at pH 6.11 exhibited the most prominent extraction power regarding total phenolics (22074.98 µg GAE mL−1) and total flavonoids (245.42 µg QE mL−1). Furthermore, extraction with 2.5% hydroethanolic solvent at pH 5.11 displayed the highest total tannins (1177.85 µg CE mL−1). The behavior of monomeric anthocyanins in ultrasound-assisted extraction with hydroethanolic solvent was slightly different, where 2.5% hydroethanolic solvent extracted the highest amount at pH 4.11 (11.1 µg CGE mL−1) and 7.11 (10.68 µg CGE mL−1). The results of the DPPH assay indicated that extracts obtained using 2.5% hydroethanolic solvent at pH 4.11 (68.35%) and pH 5.11 (68.10%) evinced the highest neutralization power against DPPH free radicals. In conclusion, 2.5% ultrasound-assisted hydroethanolic solvent and pH 4.11-6.11 were the most suitable for extracting bioactive compounds from sugarcane molasses. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

16 pages, 3616 KiB  
Article
Bacterial Nanocellulose Grafted in Yeast Films: The Influence of Plasticizer and Emulsifier Concentration on Film Properties
by Iulia Bleoanca, Leontina Grigore-Gurgu, Alina Cantaragiu Ceoromila, Daniela Borda, Felicia Stan and Catalin Fetecau
Appl. Sci. 2024, 14(24), 12010; https://doi.org/10.3390/app142412010 - 22 Dec 2024
Cited by 1 | Viewed by 1023
Abstract
A new generation of food packaging materials, centered on green solutions, is currently being developed in labs basing these materials on underused secondary industrial food by-products which have the ability to reduce the amount of petroleum-based packaging generated in order to minimize environmental [...] Read more.
A new generation of food packaging materials, centered on green solutions, is currently being developed in labs basing these materials on underused secondary industrial food by-products which have the ability to reduce the amount of petroleum-based packaging generated in order to minimize environmental harm and food by-products while ensuring food quality and safety. This study presents a sustainable biopolymeric combination based on bacterial nanocellulose grafted in yeast films, its potential to improve matrices properties, and the influence of plasticizer and emulsifier concentrations on mechanical properties, volatile fingerprint, and antimicrobial activity of films. Yeast films with 1.00% glycerol and 1.00% Tween 80, functionalized with a 2.00% mixture of cinnamon–lavender essential oils and with 2.00% bacterial cellulose produced from SCOBY presented improved mechanical properties compared to the control and exerted antipathogenic activity against Listeria monocytogens, Staphylococcus aureus, and Escherichia coli. Yeast films with grafted bacterial cellulose could be a sustainable food packaging solution for future applications. Full article
Show Figures

Figure 1

17 pages, 3051 KiB  
Article
Microbiome Evolution of Brewer’s Spent Grain and Spent Coffee Ground Solid Sidestreams Under Industrial Storage Conditions
by Christian Hermansen, Qi Kang Chong, Sherilyn Ho, Federica Natali, Melanie Weingarten and Eric Charles Peterson
Appl. Sci. 2024, 14(21), 9759; https://doi.org/10.3390/app14219759 - 25 Oct 2024
Viewed by 2203
Abstract
Brewer’s spent grain (BSG) and spent coffee ground (SCG) are solid sidestreams from beverage production increasingly being upcycled into food, feed and other value-added products. These solid sidestreams are prone to microbial spoilage, negatively impacting their upcycling potential. Three samples each of BSG [...] Read more.
Brewer’s spent grain (BSG) and spent coffee ground (SCG) are solid sidestreams from beverage production increasingly being upcycled into food, feed and other value-added products. These solid sidestreams are prone to microbial spoilage, negatively impacting their upcycling potential. Three samples each of BSG and SCG were obtained from generators and recycling facilities in Singapore, and their chemical, elemental, and microbial composition was characterized. The spoilage mechanisms were investigated during storage under anaerobic and aerobic conditions. Bacterial loads of sidestreams were low from craft brewery and café sources (<1 and 3.53 ± 0.03 log10 CFU/g) and high from recycling facilities (>6 log10 CFU/g). The microbiome of BSG from recycling facilities was dominated by Bacilli, and B. coagulans was identified as the most prevalent species. SCG from recycling facilities was dominated by lactic acid bacteria, with L. panis being the most prevalent species. Storage up to 14 days under anaerobic conditions led to further bacterial proliferation mainly by Bacilli, lactic acid bacteria, and acetic acid bacteria, while aerobic storage led to extensive fungal contamination, including potential aflatoxin-producing Aspergillus flavus. The results shed light on the spoilage mechanisms, while highlighting the short shelf-life and food safety risks of BSG and SCG to inform valorization strategies. Full article
Show Figures

Figure 1

14 pages, 1681 KiB  
Article
Prediction of Flavor Potential of Ocimum basilicum L. Side-Stream Phytoconstituents, Using Liquid Chromatography–Tandem Mass Spectrometry Analysis and In Silico Techniques
by Eftichia Kritsi, Thalia Tsiaka, Anna Boroboka, Garyfallia Koletsou, Spyridon Theofilatos, Artemis Maggenaki, Paris Christodoulou, Georgia Ladika, Konstantinos Tsiantas, Georgios Sotiroudis and Vassilia J. Sinanoglou
Separations 2024, 11(9), 261; https://doi.org/10.3390/separations11090261 - 3 Sep 2024
Cited by 1 | Viewed by 1579
Abstract
Although post-distillation side-streams of basil (Ocimum basilicum L.) pose significant economic and environmental challenges, they also bring forth new opportunities in the flavor industry. Thus, the objective of the current study was to assess the phenolic profile of basil side-stream extracts to [...] Read more.
Although post-distillation side-streams of basil (Ocimum basilicum L.) pose significant economic and environmental challenges, they also bring forth new opportunities in the flavor industry. Thus, the objective of the current study was to assess the phenolic profile of basil side-stream extracts to identify key compounds and to evaluate their taste properties, using liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis, flavor prediction tools and molecular docking. In particular, 52 phytoconstituents, mainly phenolic acids, salvianolic acids, flavonoids and fatty acids derivatives, were elucidated in the side-streams of two different basil varieties (Minimum and Genovese) harvested and distilled in early and late autumn, highlighting the effect of pre-harvest factors on basil’s phenolic fingerprint. Furthermore, the results of tests undertaken using taste prediction tools showed that most of the identified compounds were very likely to taste bitter, while six of them (caffeoylferuloyltartaric acid, isoquercetin, lithospermic acid A, sagerinic acid, salvianolic acids C and F) presented a high bitterant capacity (70–90%). Moreover, according to molecular docking studies, these compounds exhibited a stronger binding affinity to the hTAS2R46 bitter receptor compared to its known agonist, strychnine. This outcome and consequently their bitterness were mainly attributed to interactions with Glu265, Thr180 and/or Trp88 through the formation of direct hydrogen bonds. Therefore, the present results provide insights into the taste profiles of basil side-streams, leading to more sustainable and innovative uses of aromatic herbs residues. Full article
Show Figures

Figure 1

18 pages, 4251 KiB  
Article
Development of Healthy and Clean-Label Crackers Incorporating Apple and Carrot Pomace Flours
by Saeed Salari, Thomas Castigliego, Joana Ferreira, Ana Lima and Isabel Sousa
Sustainability 2024, 16(14), 5995; https://doi.org/10.3390/su16145995 - 13 Jul 2024
Cited by 1 | Viewed by 2494
Abstract
The valorization of fruit and vegetable side-streams from the juice industry is an important contribution to the optimization of food resources and is an environmentally friendly practice in line with the concepts of circular economy and sustainability. The aim of this work is [...] Read more.
The valorization of fruit and vegetable side-streams from the juice industry is an important contribution to the optimization of food resources and is an environmentally friendly practice in line with the concepts of circular economy and sustainability. The aim of this work is to incorporate them back into the food value chain by adding them as ingredients in staple foods like crackers. This is also important in terms of food fortification, as they are rich in nutrients and bioactive compounds. Crackers are popular snacks with a huge global market value, enjoyed by consumers of all ages. The current study aims to integrate flour from dried apple and carrot pomaces, resulting from juice processing, as natural ingredients with potential health benefits. The incorporation levels ranged from 20 to 40% dry weight in crackers, and their impact on physicochemical and mechanical properties was evaluated, as well as bioactivity (potential impact on health) and sensory acceptance. The addition of pomaces resulted in significant changes in texture and color, as well as enhancing the antioxidant activity of the crackers. Crackers containing pomace flours, except for the cracker with 40% carrot pomace, showed a high overall sensory acceptability and good intentions to buy. Full article
(This article belongs to the Special Issue Food Science and Engineering for Sustainability)
Show Figures

Figure 1

18 pages, 2014 KiB  
Review
Harnessing the Potential of Sludge Fermentation Liquid to Induce Partial Nitrification
by Xu Wang, Cancan Jiang, Danhua Wang, Lijing Fan, Yang Yang, Tiancheng Yang, Jiang Peng, Xinyuan Zhang and Xuliang Zhuang
Fermentation 2024, 10(6), 289; https://doi.org/10.3390/fermentation10060289 - 30 May 2024
Viewed by 1930
Abstract
Extra energy consumption, inefficient nitrogen removal, and excessive sludge production are major challenges faced by wastewater treatment plants (WWTPs) that rely on the traditional activated sludge process. Fermentation of wasted activated sludge (WAS) and novel nitrogen removal technologies based on partial nitrification (PN) [...] Read more.
Extra energy consumption, inefficient nitrogen removal, and excessive sludge production are major challenges faced by wastewater treatment plants (WWTPs) that rely on the traditional activated sludge process. Fermentation of wasted activated sludge (WAS) and novel nitrogen removal technologies based on partial nitrification (PN) have emerged as promising solutions to these issues. Recent studies have revealed an innovative strategy that integrates these two processes by supplementing fermentation liquid into activated sludge to induce PN. This review summarizes the research progress on PN establishment induced by the fermentation process. The microbiology and establishment methods of PN are briefly introduced, followed by a detailed discussion on the process, influencing factors, and product characteristics of WAS fermentation. The core section focuses on the side-stream and main-stream approaches of fermentation-induced PN, comparing their performance and application prospects. The potential mechanisms are explored, with an emphasis on the roles of free ammonia for the side-stream approach and the high tolerance of ammonium oxidizers to in-site fermentation stress for the main-stream approach. Finally, the limitations of the current research and future perspectives are discussed, highlighting the need for further investigation into microbial ecology, process optimization, and long-term stability. This review aims to provide insights into the synergistic integration of WAS fermentation and PN for sustainable and energy-efficient wastewater treatment. Full article
(This article belongs to the Special Issue Treatment of Municipal Wastewater by Anaerobic Biotechnology)
Show Figures

Figure 1

Back to TopTop