Prediction of Flavor Potential of Ocimum basilicum L. Side-Stream Phytoconstituents, Using Liquid Chromatography–Tandem Mass Spectrometry Analysis and In Silico Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of the Phenolic Fraction of Basil Side-Streams
2.3. Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) Information-Dependent Acquisition (IDA) for the Screening of Phenolic Compounds
- Chromatographic System:
- Mass Spectral Analysis:
2.4. Flavor Prediction Tools
2.4.1. Organoleptic Profile Prediction
2.4.2. Molecular Docking Studies
2.4.3. Bitter Taste Prediction Tool
3. Results and Discussion
3.1. Determining the Phenolic Profile of Post-Distillation Basil Side-Streams Using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) Information-Dependent Acquisition (IDA)
3.2. In Silico Tools for Ocimum basilicum Side-Stream Phytochemical Flavor Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azizah, N.S.; Irawan, B.; Kusmoro, J.; Safriansyah, W.; Farabi, K.; Oktavia, D.; Doni, F.; Miranti, M. Sweet Basil (Ocimum basilicum L.)―A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. Plants 2023, 12, 4148. [Google Scholar] [CrossRef]
- Dhama, K.; Sharun, K.; Gugjoo, M.B.; Tiwari, R.; Alagawany, M.; Iqbal Yatoo, M.; Thakur, P.; Iqbal, H.M.N.; Chaicumpa, W.; Michalak, I.; et al. A Comprehensive Review on Chemical Profile and Pharmacological Activities of Ocimum basilicum. Food Rev. Int. 2023, 39, 119–147. [Google Scholar] [CrossRef]
- Aminian, A.R.; Mohebbati, R.; Boskabady, M.H. The Effect of Ocimum basilicum L. and Its Main Ingredients on Respiratory Disorders: An Experimental, Preclinical, and Clinical Review. Front. Pharmacol. 2022, 12, 805391. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical Components and Pharmacological Benefits of Basil (Ocimum basilicum): A Review. Int. J. Food Prop. 2020, 23, 1961–1970. [Google Scholar] [CrossRef]
- da Silva, W.M.F.; Kringel, D.H.; de Souza, E.J.D.; da Rosa Zavareze, E.; Dias, A.R.G. Basil Essential Oil: Methods of Extraction, Chemical Composition, Biological Activities, and Food Applications. Food Bioprocess Technol. 2022, 15, 1–27. [Google Scholar] [CrossRef]
- Marcelino, S.; Gaspar, P.D.; Paço, A. Sustainable Waste Management in the Production of Medicinal and Aromatic Plants—A Systematic Review. Sustainability 2023, 15, 13333. [Google Scholar] [CrossRef]
- Chandra, P.; Kumar, J. Linking the Medicinal and Aromatic Plants Business to Sustainable Resource Management and Economic Prosperity: A Value Chain Analysis. Area Dev. Policy 2021, 6, 470–482. [Google Scholar] [CrossRef]
- Beltrán-Noboa, A.; Proaño-Ojeda, J.; Guevara, M.; Gallo, B.; Berrueta, L.A.; Giampieri, F.; Perez-Castillo, Y.; Battino, M.; Álvarez-Suarez, J.M.; Tejera, E. Metabolomic Profile and Computational Analysis for the Identification of the Potential Anti-Inflammatory Mechanisms of Action of the Traditional Medicinal Plants Ocimum basilicum and Ocimum tenuiflorum. Food Chem. Toxicol. 2022, 164, 113039. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cantrell, C.L.; Mathews, S.T.; Paudel, P.; Lee, J.; Mentreddy, S.R. Agronomy, Chemical Analysis, and Antidiabetic Activity of Basil (Ocimum Species). ACS Food Sci. Technol. 2022, 2, 1243–1256. [Google Scholar] [CrossRef]
- Shoeib, N.A.; Al-Madboly, L.A.; Ragab, A.E. In Vitro and in Silico β-Lactamase Inhibitory Properties and Phytochemical Profile of Ocimum basilicum Cultivated in Central Delta of Egypt. Pharm. Biol. 2022, 60, 1969–1980. [Google Scholar] [CrossRef]
- Anbarasan, R.; Gomez Carmona, D.; Mahendran, R. Human Taste-Perception: Brain Computer Interface (BCI) and Its Application as an Engineering Tool for Taste-Driven Sensory Studies. Food Eng. Rev. 2022, 14, 408–434. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Zhao, W.; Li, J.; Shuian, D.; Liu, J. Identification of Oncorhynchus mykiss Nebulin-Derived Peptides as Bitter Taste Receptor TAS2R14 Blockers by in Silico Screening and Molecular Docking. Food Chem. 2022, 368, 130839. [Google Scholar] [CrossRef] [PubMed]
- Malavolta, M.; Pallante, L.; Mavkov, B.; Stojceski, F.; Grasso, G.; Korfiati, A.; Mavroudi, S.; Kalogeras, A.; Alexakos, C.; Martos, V.; et al. A Survey on Computational Taste Predictors. Eur. Food Res. Technol. 2022, 248, 2215–2235. [Google Scholar] [CrossRef]
- Goel, A.; Gajula, K.; Gupta, R.; Rai, B. In-Silico Screening of Database for Finding Potential Sweet Molecules: A Combined Data and Structure Based Modeling Approach. Food Chem. 2021, 343, 128538. [Google Scholar] [CrossRef]
- Spaggiari, G.; Di Pizio, A.; Cozzini, P. Sweet, Umami and Bitter Taste Receptors: State of the Art of in Silico Molecular Modeling Approaches. Trends Food Sci. Technol. 2020, 96, 21–29. [Google Scholar] [CrossRef]
- Pallante, L.; Malavolta, M.; Grasso, G.; Korfiati, A.; Mavroudi, S.; Mavkov, B.; Kalogeras, A.; Alexakos, C.; Martos, V.; Amoroso, D.; et al. On the Human Taste Perception: Molecular-Level Understanding Empowered by Computational Methods. Trends Food Sci. Technol. 2021, 116, 445–459. [Google Scholar] [CrossRef]
- Martens, K.; Steelant, B.; Bullens, D.M.A. Taste Receptors: The Gatekeepers of the Airway Epithelium. Cells 2021, 10, 2889. [Google Scholar] [CrossRef]
- Lee, S.-J.; Depoortere, I.; Hatt, H. Therapeutic Potential of Ectopic Olfactory and Taste Receptors. Nat. Rev. Drug Discov. 2019, 18, 116–138. [Google Scholar] [CrossRef]
- Shaji, C.S.; Saraswathy, R. Taste Receptors Influencing Effective Modalities in Human Health—A Cutting Edge Update on TAS1R and TAS2R Receptor Polymorphisms in Taste Perception and Disease Risk. Nutr. Health 2023, 2601060231186865. [Google Scholar] [CrossRef]
- Kavga, A.; Strati, I.F.; Sinanoglou, V.J.; Fotakis, C.; Sotiroudis, G.; Christodoulou, P.; Zoumpoulakis, P. Evaluating the Experimental Cultivation of Peppers in Low-Energy-Demand Greenhouses. An Interdisciplinary Study. J. Sci. Food Agric. 2019, 99, 781–789. [Google Scholar] [CrossRef]
- Tsiaka, T.; Kritsi, E.; Bratakos, S.M.; Sotiroudis, G.; Petridi, P.; Savva, I.; Christodoulou, P.; Strati, I.F.; Zoumpoulakis, P.; Cavouras, D.; et al. Quality Assessment of Ground Coffee Samples from Greek Market Using Various Instrumental Analytical Methods, In Silico Studies and Chemometrics. Antioxidants 2023, 12, 1184. [Google Scholar] [CrossRef] [PubMed]
- Pallante, L.; Cannariato, M.; Vezzulli, F.; Malavolta, M.; Lambri, M.; Deriu, M.A. Machine Learning Aided Molecular Modelling of Taste to Identify Food Fingerprints. Chem. Eng. Trans. 2023, 102, 283–288. [Google Scholar] [CrossRef]
- Androutsos, L.; Pallante, L.; Bompotas, A.; Stojceski, F.; Grasso, G.; Piga, D.; Di Benedetto, G.; Alexakos, C.; Kalogeras, A.; Theofilatos, K.; et al. Predicting Multiple Taste Sensations with a Multiobjective Machine Learning Method. NPJ Sci. Food 2024, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release 2020-3, Protein Preparation Wizard; Schrödinger, LLC: New York, NY, USA, 2020.
- Schrödinger Release 2020-3, Maestro; Schrödinger, LLC: New York, NY, USA, 2020.
- Schrödinger Release 2020-3, LigPrep; Schrödinger, LLC: New York, NY, USA, 2020.
- Schrödinger Release 2020-3, Glide; Schrödinger, LLC: New York, NY, USA, 2020.
- Huang, W.; Shen, Q.; Su, X.; Ji, M.; Liu, X.; Chen, Y.; Lu, S.; Zhuang, H.; Zhang, J. BitterX: A Tool for Understanding Bitter Taste in Humans. Sci. Rep. 2016, 6, 23450. [Google Scholar] [CrossRef]
- Hawrył, A.; Hawrył, M. Chromatographic Fingerprinting of Some Basils and the Evaluation of Their Antioxidant Properties with Chemometric Calculations. J. Liq. Chromatogr. R. T. 2020, 43, 750–760. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Corrado, G.; Pannico, A.; De Pascale, S.; Rouphael, Y. Morpho-Physiological Responses and Secondary Metabolites Modulation by Preharvest Factors of Three Hydroponically Grown Genovese Basil Cultivars. Front. Plant Sci. 2021, 12, 671026. [Google Scholar] [CrossRef]
- Aguilar-Hernández, G.; García-Magaña, M.d.L.; Vivar-Vera, M.d.l.Á.; Sáyago-Ayerdi, S.G.; Sánchez-Burgos, J.A.; Morales-Castro, J.; Anaya-Esparza, L.M.; Montalvo González, E. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Annona Muricata By-Products and Pulp. Molecules 2019, 24, 904. [Google Scholar] [CrossRef]
- Brahmi, F.; Blando, F.; Sellami, R.; Mehdi, S.; De Bellis, L.; Negro, C.; Haddadi-Guemghar, H.; Madani, K.; Makhlouf-Boulekbache, L. Optimization of the Conditions for Ultrasound-Assisted Extraction of Phenolic Compounds from Opuntia Ficus-Indica [L.] Mill. Flowers and Comparison with Conventional Procedures. Ind. Crops Prod. 2022, 184, 114977. [Google Scholar] [CrossRef]
- Rai, A.K.; Khan, S.; Kumar, A.; Dubey, B.K.; Lal, R.K.; Tiwari, A.; Trivedi, P.K.; Elliott, C.T.; Ch, R. Comprehensive Metabolomic Fingerprinting Combined with Chemometrics Identifies Species- and Variety-Specific Variation of Medicinal Herbs: An Ocimum Study. Metabolites 2023, 13, 122. [Google Scholar] [CrossRef]
- Ciriello, M.; Kyriacou, M.C.; De Pascale, S.; Rouphael, Y. An Appraisal of Critical Factors Configuring the Composition of Basil in Minerals, Bioactive Secondary Metabolites, Micronutrients and Volatile Aromatic Compounds. J. Food Compos. Anal. 2022, 111, 104582. [Google Scholar] [CrossRef]
- Gavrić, T.; Jurković, J.; Gadžo, D.; Čengić, L.; Sijahović, E.; Bašić, F. Fertilizer Effect on Some Basil Bioactive Compounds and Yield. Ciênc. Agrotec. 2021, 45, e003121. [Google Scholar] [CrossRef]
- Mosadegh, H.; Trivellini, A.; Ferrante, A.; Lucchesini, M.; Vernieri, P.; Mensuali, A. Applications of UV-B Lighting to Enhance Phenolic Accumulation of Sweet Basil. Sci. Hortic. 2018, 229, 107–116. [Google Scholar] [CrossRef]
- Magar, R.T.; Sohng, J.K. A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives. J. Microbiol. Biotechnol. 2020, 30, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Sotoyama, M.; Uchida, S.; Tanaka, S.; Hakamata, A.; Odagiri, K.; Inui, N.; Watanabe, H.; Namiki, N. Citric Acid Suppresses the Bitter Taste of Olopatadine Hydrochloride Orally Disintegrating Tablets. Biol. Pharm. Bull. 2017, 40, 451–457. [Google Scholar] [CrossRef]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.; Behrens, M. The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors. Chem. Senses 2010, 35, 157–170. [Google Scholar] [CrossRef]
- Kooistra, A.J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; Munk, C.; Keserű, G.M.; Gloriam, D.E. GPCRdb in 2021: Integrating GPCR Sequence, Structure and Function. Nucleic Acids Res. 2021, 49, D335–D343. [Google Scholar] [CrossRef] [PubMed]
- Wooding, S.P.; Ramirez, V.A.; Behrens, M. Bitter Taste Receptors: Genes, Evolution and Health. Evol. Med. Public Health. 2021, 9, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Zhang, C.-H.; Lifshitz, L.M.; ZhuGe, R. Extraoral Bitter Taste Receptors in Health and Disease. J. Gen. Physiol. 2017, 149, 181–197. [Google Scholar] [CrossRef]
- Cannariato, M.; Fanunza, R.; Zizzi, E.A.; Miceli, M.; Benedetto, G.D.; Deriu, M.A.; Pallante, L. Exploring TAS2R46 Biomechanics through Molecular Dynamics and Network Analysis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Xu, W.; Wu, L.; Liu, S.; Liu, X.; Cao, X.; Zhou, C.; Zhang, J.; Fu, Y.; Guo, Y.; Wu, Y.; et al. Structural Basis for Strychnine Activation of Human Bitter Taste Receptor TAS2R46. Science 2022, 377, 1298–1304. [Google Scholar] [CrossRef]
- Gaillard, D.; Kinnamon, S.C. New Evidence for Fat as a Primary Taste Quality. Acta Physiol. 2019, 226, e13246. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Gomez-Carneros, C. Bitter Taste, Phytonutrients, and the Consumer: A Review123. Am. J. Clin. Nutr. 2000, 72, 1424–1435. [Google Scholar] [CrossRef]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef]
- Karolkowski, A.; Belloir, C.; Briand, L.; Salles, C. Non-Volatile Compounds Involved in Bitterness and Astringency of Pulses: A Review. Molecules 2023, 28, 3298. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Liu, D.; Yang, H.; Zhou, C.; Deng, S.; Xu, N.; He, X.; Liu, Y.; Shao, M.; Yu, L.; et al. Salvianolic Acids from Salvia Miltiorrhiza Bunge and Their Anti-Inflammatory Effects through the Activation of α7nAchR Signaling. J. Ethnopharmacol. 2023, 317, 116743. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, X. Research Progress on Regulation of Immune Response by Tanshinones and Salvianolic Acids of Danshen (Salvia Miltiorrhiza Bunge). Molecules 2024, 29, 1201. [Google Scholar] [CrossRef] [PubMed]
Compounds | Precursor Ion [M − H]− | Product Ions MS/MS | Chemical Group |
---|---|---|---|
1-octen-yl pentosyl glucoside | 421.20 | 259.22 | O-acyl carbohydrate |
3-(3,4-dihydroxyphenyl) lactic acid glucoside | 359.10 | 310.10, 219.10, 197.10, 161.10, 145.10 | Hydroxy monocarboxylic acid glucoside |
Caffeic acid | 179.04 | 135.04, 117.03, 107.05 | Phenolic acid |
Caffeoyl-dihydroxyphenyllactoyltartaric acid | 491.12 | 329.03, 293.04, 251.04 | Phenolic acid derivative |
Caffeoylferuloyltartaric acid (cichoric acid methyl ether) | 487.08 | 325.60, 310.70, 291.50 | Phenolic acid derivative |
Caftaric acid (Caffeoryl-tartaric acid) | 311.04 | 179.03, 149.01, 135.04 | Phenolic acid |
Chicoric acid | 947.10 * | 473.10, 341.10, 311.10, 293.10, 149.10 | Phenolic acid |
Chlorogenic acid | 353.09 | 191.05, 179.04, 161.02 | Phenolic acid |
Dihydroxy dimethoxyflavone | 313.07 | 298.10, 283.11 | Flavone |
Dihydroxybenzoic acid-O-pentosyl pentoside | 447.11 | 429.10, 403.10, 297.10, 153.10, 137.10 | Phenolic acid glucoside |
Dihydroxy-octadecadienoic acid | 311.22 | 275.21 | Hydroxy fatty acid |
Dihydroxy-octadecatrienoic acid | 309.21 | 273.20 | Hydroxy fatty acid |
Dihydroxy-oleanenoic acid | 471.34 | 399.30 | Hydroxy fatty acid |
Ethyl caffeate | 207.07 | 179.03, 161.02, 135.04 | Phenolic acid ester |
Ethyl protocatechuate | 181.05 | 153.02, 108.02 | Phenolic acid ester |
Fertaric acid (feruloytartaric acid) | 325.06 | 193.10, 134.04, 149.10 | Phenolic acid |
Ferulic acid | 193.05 | 178.03, 149.06, 134.04 | Phenolic acid |
Gallic acid | Phenolic acid | ||
Galloylglucose | 331.07 | 271.04, 211.02, 169.01, 151.00 | Tannin |
Hydroxy jasmonic acid-O-glucoside | 387.17 | 207.20, 163.20 | Sesquiterpene derivative |
Hydroxy-octadecatrienoic acid | 293.21 | 275.20, 211.20, 161.20 | Lineolic acid derivative |
Hydroxy-oxo-phytodienoic acid | 307.19 | 289.20, 265.20, 223.20 | Derivative of fatty acid |
Isocitric acid | Tricarboxylic acid | ||
Isoquercetin | 463.09 | 300.04, 286.90, 243.90 | Tetrahydroxyflavone |
Lithospermic acid A | 537.10 | 493.10, 358.10, 339.50, 293.50, 135.40 | Phenolic acid |
Methyl gallate | 183.03 | 168.00, 124.02 | Phenolic acid ester |
Nepetoidin glucoside | 475.12 | 323.10, 313.10, 161.10, 151.10 | Caffeic acid derivative |
O-caffeoyl rosmarinic acid (isomelitric acid A) | 537.10 | 493.10, 427.10, 377.10, 339.10, 161.10 | Catechol |
Palmitic acid | 255.23 | 182.20 | Fatty acids |
p-Coumaric acid | 163.04 | 133.03, 119.05, 121.01 | Phenolic acid |
p-Hydroxybenzoic acid | 137.02 | 108.2, 93.04, 90.90 | Phenolic acid |
Protocatechuic acid | 153.11 | 135.10, 132.91, 123.04, 109.03 | Phenolic acid |
Quercetin 3-O-glucoside | 463.10 | 301.04 | Flavonol derivative |
Quercetin-3-O-apiosyl (1–2) galactoside | 595.10 | 445.10, 300.04 | Flavonol derivative |
Quercetin-O-pentosyl-glucoside | 595.13 | 463.10, 445.10, 301.10 | Flavonol derivative |
Rosmarinic acid | 359.08 | 223.04,197.05, 179.04, 161.03, 135.03 | Phenolic acid |
Rosmarinic acid glucoside A | 521.12 | 359.10, 197.10, 179.04, 161.04, 135.06 | Phenolic acid derivative |
Rosmarinic acid glucoside B | 521.12 | 359.10, 323.10, 197.04, 179.04, 161.04, 135.06 | Phenolic acid derivative |
Rosmarinic acid-O-glucoside | 521.14 | 359.10, 341.10 | Phenolic acid derivative |
Rutin | 609.5 | 463.04, 301.10, 272.05, 256.03, 179.10, 151.10 | Flavonol derivative |
Sagerinic acid | 719.10 | 359.60, 197.70, 179.70, 161.10 | Lignan |
Salvialinic acid (danshensu) | 197.04 | 161.06 | Phenolic acid |
Salvianolic acid A | 493.10 | 359.10, 313.10, 295.10, 185.10 | Phenolic acid |
Salvianolic acid B | 717.14 | 519, 10, 339.10, 321.10, 293.10, 277.10 | Phenolic acid |
Salvianolic acid C | 491.10 | 311.90, 293.50, 179.30, 135.20 | Phenolic acid |
Salvianolic acid F | 313.07 | 269.60, 254,.50, 227.70 | Phenolic acid |
Salvianolic acid G | 717.14 | 555.10, 537.10, 519, 10, 339.10, 321.10, 295.10 | Phenolic acid |
Salvianolic acid H/I | 537.10 | 493.10, 339.04, 313.05, 295.10, 197.10, 179.10 | Phenolic acid |
Salvianolic acid K | 555.11 | 537.10, 493.10, 295.04 | Phenolic acid |
Salvigenin (5-Hydroxy-6,7,4’-trimethoxyflavone) | 327.21 | 311.12, 277.10, 215.04 | Flavone |
Trihydroxy-octadecendic acid | 329.07 | 315.10, 299.10 | Linoleic acid derivative |
Vanillic acid | 167.03 | 152.01, 125.87, 108.02 | Phenolic acid |
Compounds | %Bitter (Virtuous Multitaste) | TAS2R46 Probability (BitterX) |
---|---|---|
Strychnine | 75% | 74.34% |
Caffeoylferuloyltartaric acid | 55% | 58.26% |
Isoquercetin | 86% | 60.99% |
Lithospermic acid A | 53% | 70.83% |
Sagerinic acid | 52% | 51.78% |
Salvianolic acid C | 64% | 74.46% |
Salvianlolic acid F | 78% | 65.81% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kritsi, E.; Tsiaka, T.; Boroboka, A.; Koletsou, G.; Theofilatos, S.; Maggenaki, A.; Christodoulou, P.; Ladika, G.; Tsiantas, K.; Sotiroudis, G.; et al. Prediction of Flavor Potential of Ocimum basilicum L. Side-Stream Phytoconstituents, Using Liquid Chromatography–Tandem Mass Spectrometry Analysis and In Silico Techniques. Separations 2024, 11, 261. https://doi.org/10.3390/separations11090261
Kritsi E, Tsiaka T, Boroboka A, Koletsou G, Theofilatos S, Maggenaki A, Christodoulou P, Ladika G, Tsiantas K, Sotiroudis G, et al. Prediction of Flavor Potential of Ocimum basilicum L. Side-Stream Phytoconstituents, Using Liquid Chromatography–Tandem Mass Spectrometry Analysis and In Silico Techniques. Separations. 2024; 11(9):261. https://doi.org/10.3390/separations11090261
Chicago/Turabian StyleKritsi, Eftichia, Thalia Tsiaka, Anna Boroboka, Garyfallia Koletsou, Spyridon Theofilatos, Artemis Maggenaki, Paris Christodoulou, Georgia Ladika, Konstantinos Tsiantas, Georgios Sotiroudis, and et al. 2024. "Prediction of Flavor Potential of Ocimum basilicum L. Side-Stream Phytoconstituents, Using Liquid Chromatography–Tandem Mass Spectrometry Analysis and In Silico Techniques" Separations 11, no. 9: 261. https://doi.org/10.3390/separations11090261
APA StyleKritsi, E., Tsiaka, T., Boroboka, A., Koletsou, G., Theofilatos, S., Maggenaki, A., Christodoulou, P., Ladika, G., Tsiantas, K., Sotiroudis, G., & Sinanoglou, V. J. (2024). Prediction of Flavor Potential of Ocimum basilicum L. Side-Stream Phytoconstituents, Using Liquid Chromatography–Tandem Mass Spectrometry Analysis and In Silico Techniques. Separations, 11(9), 261. https://doi.org/10.3390/separations11090261