Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = shogaols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3393 KiB  
Article
Integrated Phytochemical Profiling, UPLC-HRMS Characterization, and Bioactivity Evaluation of Zingiber officinale and Piper nigrum
by Aicha Boubker, Abdelmoula El Ouardi, Taha El Kamli, Mohammed Kaicer, Faouzi Kichou, Khaoula Errafii, Adnane El Hamidi, Rachid Ben Aakame and Aicha Sifou
Int. J. Mol. Sci. 2025, 26(16), 7782; https://doi.org/10.3390/ijms26167782 - 12 Aug 2025
Viewed by 216
Abstract
The phytochemical profiles, antioxidant capacities, mineral composition, and antibacterial activities of Zingiber officinale (Z. officinal) and Piper nigrum (P. nigrum) were explored through aqueous, ethanolic, and methanolic extractions. The extracts were analyzed for polyphenols, flavonoids, and tannins, and their [...] Read more.
The phytochemical profiles, antioxidant capacities, mineral composition, and antibacterial activities of Zingiber officinale (Z. officinal) and Piper nigrum (P. nigrum) were explored through aqueous, ethanolic, and methanolic extractions. The extracts were analyzed for polyphenols, flavonoids, and tannins, and their antioxidant potential was assessed using the DPPH assay. UPLC-HRMS identified major bioactive compounds, including 6-gingerol and shogaol in Z. officinale, and piperine and piperlonguminine in P. nigrum. Mineral analysis showed that P. nigrum was particularly rich in essential elements, including calcium (Ca), magnesium (Mg), and iron (Fe). In antibacterial testing, P. nigrum demonstrated wider zones of inhibition against E. coli, whereas Z. officinale was more active at lower concentrations, showing MICs as low as 3.91 µg/mL against Salmonella and S. aureus. PCA analysis revealed strong correlations between phenolic content and biological effects. These results underscore the potential of both spices as effective natural agents for use in food preservation and health-promoting applications. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role: 2nd Edition)
Show Figures

Figure 1

27 pages, 4829 KiB  
Article
Quantitative Analysis of Ginger Maturity and Pulsed Electric Field Thresholds: Effects on Microstructure and Juice’s Nutritional Profile
by Zhong Han, Pan He, Yu-Huan Geng, Muhammad Faisal Manzoor, Xin-An Zeng, Suqlain Hassan and Muhammad Talha Afraz
Foods 2025, 14(15), 2637; https://doi.org/10.3390/foods14152637 - 28 Jul 2025
Viewed by 516
Abstract
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect [...] Read more.
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect on juice yield and bioactive compound extraction was systematically evaluated. At 2.5 kV/cm, old ginger exhibited a pronounced dielectric breakdown effect due to enhanced electrolyte content and cell wall lignification, resulting in a higher degree of cell disintegration (0.65) compared with fresh ginger (0.44). This translated into a significantly improved juice yield of 90.85% for old ginger, surpassing the 84.16% limit observed in fresh ginger. HPLC analysis revealed that the extraction efficiency of 6-gingerol and 6-shogaol increased from 1739.16 to 2233.60 µg/g and 310.31 to 339.63 µg/g, respectively, in old ginger after PEF treatment, while fresh ginger showed increases from 1257.88 to 1824.05 µg/g and 166.43 to 213.52 µg/g, respectively. Total phenolic content (TPC) and total flavonoid content (TFC) also increased in both tissues, with OG-2.5 reaching 789.57 µg GAE/mL and 336.49 µg RE/mL, compared with 738.19 µg GAE/mL and 329.62 µg RE/mL in FG-2.5. Antioxidant capacity, as measured by ABTS•+ and DPPH inhibition, improved more markedly in OG-2.5 (37.8% and 18.7%, respectively) than in FG-2.5. Moreover, volatile compound concentrations increased by 177.9% in OG-2.5 and 137.0% in FG-2.5 compared with their respective controls, indicating differential aroma intensification and compound transformation. Structural characterization by SEM and FT-IR further corroborated enhanced cellular disruption and biochemical release in mature tissue. Collectively, these results reveal a maturity-dependent mechanism of electro-permeabilization in plant tissues, offering new insights into optimizing non-thermal processing for functional food production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

29 pages, 2729 KiB  
Article
Computational Evaluation and Multi-Criteria Optimization of Natural Compound Analogs Targeting SARS-CoV-2 Proteases
by Paul Andrei Negru, Andrei-Flavius Radu, Ada Radu, Delia Mirela Tit and Gabriela Bungau
Curr. Issues Mol. Biol. 2025, 47(7), 577; https://doi.org/10.3390/cimb47070577 - 21 Jul 2025
Viewed by 440
Abstract
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize [...] Read more.
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize the potential of natural-origin compounds as supportive agents with immunomodulatory, anti-inflammatory, and antioxidant benefits. The present study significantly advances prior molecular docking research through comprehensive virtual screening of structurally related analogs derived from antiviral phytochemicals. These compounds were evaluated specifically against the SARS-CoV-2 main protease (3CLpro) and papain-like protease (PLpro). Utilizing chemical similarity algorithms via the ChEMBL database, over 600 candidate molecules were retrieved and subjected to automated docking, interaction pattern analysis, and comprehensive ADMET profiling. Several analogs showed enhanced binding scores relative to their parent scaffolds, with CHEMBL1720210 (a shogaol-derived analog) demonstrating strong interaction with PLpro (−9.34 kcal/mol), and CHEMBL1495225 (a 6-gingerol derivative) showing high affinity for 3CLpro (−8.04 kcal/mol). Molecular interaction analysis revealed that CHEMBL1720210 forms hydrogen bonds with key PLpro residues including GLY163, LEU162, GLN269, TYR265, and TYR273, complemented by hydrophobic interactions with TYR268 and PRO248. CHEMBL1495225 establishes multiple hydrogen bonds with the 3CLpro residues ASP197, ARG131, TYR239, LEU272, and GLY195, along with hydrophobic contacts with LEU287. Gene expression predictions via DIGEP-Pred indicated that the top-ranked compounds could influence biological pathways linked to inflammation and oxidative stress, processes implicated in COVID-19’s pathology. Notably, CHEMBL4069090 emerged as a lead compound with favorable drug-likeness and predicted binding to PLpro. Overall, the applied in silico framework facilitated the rational prioritization of bioactive analogs with promising pharmacological profiles, supporting their advancement toward experimental validation and therapeutic exploration against SARS-CoV-2. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

22 pages, 3024 KiB  
Article
Effects of Ginger Supplementation on Markers of Inflammation and Functional Capacity in Individuals with Mild to Moderate Joint Pain
by Jacob Broeckel, Landry Estes, Megan Leonard, Broderick L. Dickerson, Drew E. Gonzalez, Martin Purpura, Ralf Jäger, Ryan J. Sowinski, Christopher J. Rasmussen and Richard B. Kreider
Nutrients 2025, 17(14), 2365; https://doi.org/10.3390/nu17142365 - 18 Jul 2025
Viewed by 2462
Abstract
Background: Ginger contains gingerols, shagaols, paradols, gingerdiones, and terpenes, which have been shown to display anti-inflammatory properties and inhibit pain receptors. For this reason, ginger has been marketed as a natural analgesic. This study examined whether a specialized ginger extract obtained through supercritical [...] Read more.
Background: Ginger contains gingerols, shagaols, paradols, gingerdiones, and terpenes, which have been shown to display anti-inflammatory properties and inhibit pain receptors. For this reason, ginger has been marketed as a natural analgesic. This study examined whether a specialized ginger extract obtained through supercritical CO2 extraction and subsequent fermentation affects pain perception, functional capacity, and markers of inflammation. Methods: Thirty men and women (56.0 ± 9.0 years, 164.4 ± 14 cm, 86.5 ± 20.9 kg, 31.0 ± 7.5 kg/m2) with a history of mild to severe joint and muscle pain as well as inflammation participated in a placebo-controlled, randomized, parallel-arm study. Participants donated fasting blood, completed questionnaires, rated pain in the thighs to standardized pressure, and then completed squats/deep knee bends, while holding 30% of body mass, for 3 sets of 10 repetitions on days 0, 30, and 56 of supplementation. Participants repeated tests after 2 days of recovery following each testing session. Participants were matched by demographics and randomized to ingest 125 mg/d of a placebo or ginger (standardized to contain 10% total gingerols and no more than 3% total shogaols) for 58 days. Data were analyzed by a general linear model (GLM) analysis of variance with repeated measures, mean changes from the baseline with 95% confidence intervals, and chi-squared analysis. Results: There was evidence that ginger supplementation attenuated perceptions of muscle pain in the vastus medialis; improved ratings of pain, stiffness, and functional capacity; and affected several inflammatory markers (e.g., IL-6, INF-ϒ, TNF-α, and C-Reactive Protein concentrations), particularly following two days of recovery from resistance exercise. There was also evidence that ginger supplementation increased eosinophils and was associated with less frequent but not significantly different use of over-the-counter analgesics. Conclusions: Ginger supplementation (125 mg/d, providing 12.5 mg/d of gingerols) appears to have some favorable effects on perceptions of pain, functional capacity, and inflammatory markers in men and women experiencing mild to moderate muscle and joint pain. Registered clinical trial #ISRCTN74292348. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

19 pages, 733 KiB  
Article
Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations
by Lucía Plana, Javier Marhuenda, Raúl Arcusa, Ana María García-Muñoz, Pura Ballester, Begoña Cerdá, Desirée Victoria-Montesinos and Pilar Zafrilla
Antioxidants 2025, 14(7), 873; https://doi.org/10.3390/antiox14070873 - 17 Jul 2025
Viewed by 659
Abstract
Ginger (Zingiber officinale Roscoe) has been widely recognized for its antioxidant properties, primarily attributed to its phenolic compounds such as gingerols and shogaols. However, limited data exist regarding how different pharmaceutical forms influence the bioaccessibility and antioxidant efficacy of these compounds. [...] Read more.
Ginger (Zingiber officinale Roscoe) has been widely recognized for its antioxidant properties, primarily attributed to its phenolic compounds such as gingerols and shogaols. However, limited data exist regarding how different pharmaceutical forms influence the bioaccessibility and antioxidant efficacy of these compounds. This study aimed to evaluate the antioxidant capacity and bioaccessibility of ginger in different pharmaceutical forms—capsules (20 mg, 40 mg, and 80 mg), a pure powdered extract, and a liquid formulation—standardized to ≥6% gingerols. The phenolic profile of each formulation was characterized using HPLC-DAD (High-Performance Liquid Chromatography with Diode Array Detection), followed by the evaluation of antioxidant capacity through DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ORAC (Oxygen Radical Absorbance Capacity) assays, and the assessment of bioaccessibility via an in vitro digestion model. The results demonstrated that antioxidant activity was positively correlated with extract concentration and was highest in the liquid formulation (426.0 ± 0.05 µmol Trolox equivalents (TE) and 11,336.7 ± 0.20 µmol TE in the DPPH and ORAC assays, respectively). The bioaccessibility of 6-gingerol and 6-shogaol significantly increased in the liquid form, reaching 23.44% and 11.31%, respectively, compared to ≤4% in the pure extract. These findings highlight the influence of the formulation matrix on compound release and support the use of liquid preparations to enhance the functional efficacy of ginger-derived nutraceuticals. This standardized comparative approach, using formulations derived from the same extract, offers new insights into how the delivery matrix influences the functional performance of ginger compounds, providing guidance for the development of more effective nutraceutical strategies. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

28 pages, 1439 KiB  
Review
Immunometabolic Effects of Ginger (Zingiber officinale Roscoe) Supplementation in Obesity: A Comprehensive Review
by María Elizabeth Preciado-Ortiz, Gildardo Gembe-Olivarez, Erika Martínez-López and Juan José Rivera-Valdés
Molecules 2025, 30(14), 2933; https://doi.org/10.3390/molecules30142933 - 11 Jul 2025
Viewed by 2191
Abstract
Obesity is a global public health concern characterized by low-grade chronic inflammation and metabolic dysregulation. Ginger (Zingiber officinale Roscoe) contains bioactive compounds that have demonstrated potential anti-obesity and immunomodulatory effects. This review aims to synthesize the current evidence regarding the immunometabolic effects [...] Read more.
Obesity is a global public health concern characterized by low-grade chronic inflammation and metabolic dysregulation. Ginger (Zingiber officinale Roscoe) contains bioactive compounds that have demonstrated potential anti-obesity and immunomodulatory effects. This review aims to synthesize the current evidence regarding the immunometabolic effects of ginger supplementation in obesity, integrating findings from in vitro, in vivo, and clinical studies. Evidence indicates that ginger and its principal compounds, such as 6-gingerol and 6-shogaol, inhibit adipocyte differentiation and lipid accumulation, reduce pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and the chemoattractant protein of monocytes-1 (MCP-1), improve lipid profiles, and enhance anti-inflammatory adipokines like adiponectin. Clinical trials report improvements in insulin sensitivity, reductions in inflammatory markers, and body weight management in individuals with obesity. This review paper also highlights the cellular and molecular mechanisms of immunometabolic effects of ginger and its bioactive compounds. Therefore, ginger supplementation exhibits promising immunometabolic effects with the potential to support the prevention and treatment of obesity and its comorbidities. However, further rigorous clinical trials are necessary to confirm its efficacy and safety as well as its role in complementing existing strategies for obesity management. Full article
(This article belongs to the Special Issue Anti-Inflammatory Natural Compounds)
Show Figures

Graphical abstract

14 pages, 2084 KiB  
Article
Optimized High-Pressure Ultrasonic-Microwave-Assisted Extraction of Gingerol from Ginger: Process Design and Performance Evaluation
by Yang Zhang, Siyi Yang, Wensi Li, Xiaoyan Li, Xiangqin Lai, Xiang Li, Wuwan Xiong and Bo Zhang
Processes 2025, 13(7), 2149; https://doi.org/10.3390/pr13072149 - 6 Jul 2025
Viewed by 489
Abstract
This study employed high-pressure ultrasonic-microwave-assisted extraction (HP-UMAE) to extract gingerols from ginger. The extraction yield and total polyphenol content of the extracts were determined. Their antioxidant activity was assessed by DPPH and ABTS radical scavenging assays, and compared with extracts obtained by leaching [...] Read more.
This study employed high-pressure ultrasonic-microwave-assisted extraction (HP-UMAE) to extract gingerols from ginger. The extraction yield and total polyphenol content of the extracts were determined. Their antioxidant activity was assessed by DPPH and ABTS radical scavenging assays, and compared with extracts obtained by leaching extraction, reflux extraction, ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and ultrasonic-microwave-assisted extraction (UMAE). The results demonstrated that HP-UMAE achieved the highest extraction yield and the strongest ABTS radical scavenging activity among the evaluated methods. Furthermore, HP-UMAE extracts exhibited the highest concentrations of key gingerol constituents: 6-gingerol (14.29 mg/L), 8-gingerol (0.38 mg/L), 10-gingerol (1.95 mg/L), and 6-shogaol (4.32 mg/L). This enhanced efficacy is attributed to the synergistic combination of ultrasonic cavitation and microwave-induced thermal effects under elevated pressure. This synergy creates conditions promoting cellular wall disruption, facilitating the release of intracellular components, while concurrently enhancing solvent penetration and gingerol solubility. Scanning electron microscopy (SEM) analysis confirmed the significant structural damage inflicted on ginger cell walls following HP-UMAE treatment. The process parameters for HP-UMAE were optimized using single-factor experiments. The optimal extraction conditions were determined as follows: microwave power 800 W, ultrasonic power 1000 W, liquid-to-solid ratio 55:1, and temperature 100 °C (corresponding pressure 2 MPa). Under these optimized parameters, the extraction yield and ABTS radical scavenging rate reached their peak performance, yielding values of 4.52% and 43.23%, respectively. Full article
Show Figures

Figure 1

20 pages, 1856 KiB  
Article
Pharmacological Evaluation of a Traditional Thai Polyherbal Formula for Alzheimer’s Disease: Evidence from In Vitro and In Silico Studies
by Pornthip Waiwut, Pitchayakarn Takomthong, Rutchayaporn Anorach, Nattareeyada Lomaboot, Supawadee Daodee, Yaowared Chulikhit, Orawan Monthakantirat, Charinya Khamphukdee and Chantana Boonyarat
Int. J. Mol. Sci. 2025, 26(13), 6287; https://doi.org/10.3390/ijms26136287 - 29 Jun 2025
Viewed by 413
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by multifactorial pathogenesis, including oxidative stress, cholinergic dysfunction, β-amyloid (Aβ) aggregation, and neuroinflammation. In this study, we investigated the neuroprotective potential of the Pheka capsule (PC) formula, a traditional Thai polyherbal medicine comprising Oroxylum [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by multifactorial pathogenesis, including oxidative stress, cholinergic dysfunction, β-amyloid (Aβ) aggregation, and neuroinflammation. In this study, we investigated the neuroprotective potential of the Pheka capsule (PC) formula, a traditional Thai polyherbal medicine comprising Oroxylum indicum (OI), Zingiber officinale (ZO), and Boesenbergia rotunda (BR). Phytochemical analysis by HPLC confirmed the presence of key bioactive compounds including baicalein, baicalin, oroxylin A, 6-gingerol, 6-shogaol, pinocembrin, and pinostrobin. The PC formula exhibited strong antioxidant activity, highly selective butyrylcholinesterase (BChE) inhibition with a selectivity index (SI) of BChE > 20, suppression of Aβ aggregation, and protection against H2O2-induced neuronal damage in vitro. Network pharmacology analysis identified multiple AD-relevant targets and pathways, including APP, GSK3B, CASP3, GAPDH, PTGS2, and PPARG, implicating the PC formula in modulating oxidative stress, apoptosis, and inflammation. Notably, OI emerged as the primary contributor to the formula’s multitargeted actions. These findings support the therapeutic potential of the PC formula as a multitarget agent for AD, aligning with the growing interest in polypharmacological strategies for complex neurodegenerative diseases. Further in vivo and clinical studies are warranted to confirm its efficacy and safety. Full article
(This article belongs to the Special Issue Natural Products for Neuroprotection and Neurodegeneration)
Show Figures

Figure 1

7 pages, 1083 KiB  
Proceeding Paper
The Effect of Temperature on the Upscaling Process of 6-Gingerol and 6-Shogaol Extraction from Zingiber officinale Using Subcritical Water Extraction
by Mohd Sharizan Md Sarip, Nik Muhammad Azhar Nik Daud, Zuhaili Idham, Mohd Asraf Mohd Zainudin, Amirul Ridzuan Abu Bakar, Muhammad Syafiq Hazwan Ruslan and Ahmad Hazim Abdul Aziz
Eng. Proc. 2025, 87(1), 74; https://doi.org/10.3390/engproc2025087074 - 10 Jun 2025
Viewed by 449
Abstract
Subcritical water extraction (SWE) is an eco-friendly technology offering advantages such as green solvent and selectivity, especially for extracting bioactive compounds. Despite its potential, limited data exists on upscaling this process. This study investigates the upscaling of SWE by comparing two systems: a [...] Read more.
Subcritical water extraction (SWE) is an eco-friendly technology offering advantages such as green solvent and selectivity, especially for extracting bioactive compounds. Despite its potential, limited data exists on upscaling this process. This study investigates the upscaling of SWE by comparing two systems: a commercially available high-pressure system (ASE 200, 32 mL capacity) and high-volume subcritical water extraction (HVSWE) (1000 mL capacity). Medicinal compounds, 6-gingerol and 6-shogaol, were extracted from ginger using SWE at temperatures ranging from 130 °C to 200 °C, at a constant pressure of 3.5 MPa, for 30 min. High-Performance Liquid Chromatography (HPLC) was employed for quantitative analysis. The optimal extraction temperature for 6-gingerol using the high-volume SWE system was 130 °C, yielding 1741.54 ± 0.96 µg/g, whereas ASE 200 achieved optimal extraction at 140 °C with 1957.22 ± 2.55 µg/g. For 6-shogaol, both systems demonstrated an optimal extraction temperature of 170 °C, with yields of 541.78 ± 3.16 µg/g and 1135.23 ± 1.18 µg/g for the high-volume SWE and ASE 200 systems, respectively. These variations stem from the 35-fold difference in capacity, influencing heat and mass transfer during extraction. Thus, scale-up factors must be carefully considered to enhance the mass transfer efficiency and optimize SWE processes at larger scales. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

47 pages, 12171 KiB  
Article
Design and Evaluation of a Zingiber officinale–Kaolinite–Maltodextrin Delivery System: Antioxidant, Antimicrobial, and Cytotoxic Activity Assessment
by Adina-Elena Segneanu, Ionela Amalia Bradu, Gabriela Vlase, Titus Vlase, Cornelia Bejenaru, Ludovic Everard Bejenaru, George Dan Mogoşanu, Maria Viorica Ciocîlteu, Dumitru-Daniel Herea and Eugen Radu Boia
Pharmaceutics 2025, 17(6), 751; https://doi.org/10.3390/pharmaceutics17060751 - 6 Jun 2025
Cited by 1 | Viewed by 753
Abstract
Background/Objectives: Zingiber officinale Roscoe (Zingiberaceae) is widely recognized for its diverse biological activities; however, the stability and bioavailability of its bioactive compounds remain significant challenges. This study aimed to investigate an innovative approach to enhance the stability and efficacy of [...] Read more.
Background/Objectives: Zingiber officinale Roscoe (Zingiberaceae) is widely recognized for its diverse biological activities; however, the stability and bioavailability of its bioactive compounds remain significant challenges. This study aimed to investigate an innovative approach to enhance the stability and efficacy of Z. officinale phytoconstituents through advanced encapsulation techniques. Methods: Two novel carrier systems were developed: (i) direct micro-spray encapsulation of Z. officinale in maltodextrin (MZO) and (ii) a two-step process involving the creation of a kaolinite-based phytocarrier system (ZO–kaolinite), followed by micro-spray encapsulation in maltodextrin to form the MZO–kaolinite system. Results: Comprehensive chemical profiling using GC–MS and ESI–QTOF–MS identified 105 phytochemicals, including terpenoids, gingerols, shogaols, flavonoids, and phenolic acids. Morphostructural analyses (XRD, FTIR, Raman, SEM) confirmed the successful development of the newly engineered kaolinite carrier systems (ZO–kaolinite and MZO–kaolinite systems). Both the ZO–kaolinite and MZO–kaolinite systems exhibited superior antioxidant activity, potent antimicrobial efficacy against major bacterial pathogens (Staphylococcus aureus, Enterococcus faecalis, Bacillus cereus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli), and enhanced cytotoxicity against MCF-7, HCT-116, and HeLa cancer cell lines. Conclusions: This study underscores the synergistic action of kaolinite and maltodextrin in developing multifunctional therapeutic systems, emphasizing the importance of phytoconstituent stabilization and nanotechnology in addressing antimicrobial resistance and advancing innovative medical applications. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds in Micro- and Nanocarriers)
Show Figures

Graphical abstract

16 pages, 1210 KiB  
Article
Effect of Thermal Processing by Spray Drying on Key Ginger Compounds
by Alina Warren-Walker, Manfred Beckmann, Alison Watson, Steffan McAllister and Amanda J. Lloyd
Metabolites 2025, 15(6), 350; https://doi.org/10.3390/metabo15060350 - 24 May 2025
Viewed by 858
Abstract
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute [...] Read more.
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute to its health benefits. This study aimed to investigate the impact of spray drying on the chemical profile of ginger, particularly focusing on the transformation of gingerols into shogaols and related compounds. Methods: Fresh ginger juice was spray-dried using various carrier agents, including Clear Gum (CO03), pea protein, and inulin. Mass spectra of the resulting powders were acquired using High-Resolution Flow Infusion Electrospray Ionisation Mass Spectrometry (HR-FIE-MS) to obtain fingerprint data. Key bioactive compounds were tentatively identified to Level 2, and their relative intensities were assessed to evaluate the effects of different carriers on the chemical composition of the ginger powders. Results: Spray drying with the commercial carrier CO03 resulted in an increase in shogaol analogues ([10]-, [8]-, and cis-[8]-shogaol), gingerenone B, and oxidation products such as 6-hydroxyshogaol, 6-dehydroshogaol, and zingerone. In contrast, natural carriers like pea protein and inulin led to lower relative intensities of these bioactives, suggesting limited capacity for promoting thermal transformations. Spray drying without a carrier produced a shogaol-dominant profile but resulted in powders with poor handling properties, such as stickiness and agglomeration. Antioxidant and total polyphenol assays showed that spray drying reduced antioxidant capacity, while total polyphenol content was more preserved; natural carriers such as inulin better maintained bioactivity compared to modified starch or pea protein. Conclusions: Among the five formulations evaluated—ginger juice with no carrier, with CO03 (two dilutions), pea protein, or inulin—CO03-based samples showed the greatest chemical transformation, while inulin and pea protein better preserved antioxidant capacity but induced fewer metabolite changes. Thus, choice of carrier in the spray-drying process influences the chemical profile and functional characteristics of resultant ginger powders. While CO03 effectively enhances the formation of bioactive shogaols and related compounds, its ultra-processed nature may not align with clean-label product trends. Natural carriers, although more label-friendly, may not create the desired chemical transformations. Therefore, optimising carrier selection is important to balance bioactivity, product stability, and consumer acceptability in the development of ginger-based functional products. Full article
Show Figures

Figure 1

20 pages, 3716 KiB  
Article
Antimicrobial Action of Ginger and Ornamental Rock Wastes for Cement Mortar
by Romário Moreira Siqueira, Bruna Sthefanie Paz de Souza, Jonas Alexandre, Aline Chaves Intorne, Edmilson José Maria, Sergio Neves Monteiro and Afonso Rangel Garcez de Azevedo
Sustainability 2025, 17(10), 4698; https://doi.org/10.3390/su17104698 - 20 May 2025
Viewed by 673
Abstract
This study investigated the technical feasibility and antimicrobial potential of incorporating ornamental rock, limestone, and ginger waste into coating mortars with the aim of developing an innovative and sustainable solution for civil construction. This study evaluated the synergistic action of these materials on [...] Read more.
This study investigated the technical feasibility and antimicrobial potential of incorporating ornamental rock, limestone, and ginger waste into coating mortars with the aim of developing an innovative and sustainable solution for civil construction. This study evaluated the synergistic action of these materials on the microbiological and mechanical resistance of mortar, contributing to the greater durability and efficiency of the coatings. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses were performed to characterize the morphology, chemical composition, and crystalline structure of the added materials, confirming their suitability for the cement matrix. Tests in the fresh state evaluated parameters such as density, consistency index, and entrained air content, demonstrating the viability of the formulations, whereas flexural and compressive strength tests indicated significant improvements in the mechanical performance of the modified mortar. Microbiological tests demonstrated a significant reduction in microbial colonization, indicating the action of ginger’s bioactive compounds, such as gingerol and shogaol, which have antimicrobial properties and are effective in inhibiting the growth of pathogenic microorganisms, as confirmed by the reduction in the bacterial colony count from 4 × 102 to 1 × 102 CFU mL−1. Comparisons with conventional compositions indicate that the proposed approach outperformed traditional formulations in terms of both mechanical resistance and microbiological control. Thus, the results validate this research as a promising strategy for improving the durability and performance of coating mortars, reducing maintenance costs, and promoting the sustainable use of alternative materials in civil construction. Full article
(This article belongs to the Special Issue Sustainable Advancements in Construction Materials)
Show Figures

Figure 1

16 pages, 8173 KiB  
Article
One-Pot Fabrication of Ginger-Waste-Derived Ionic Liquid Electrospun Films: An Efficient Preparation Strategy with Enhanced Antibacterial Functionality
by Xingran Kou, Kangning Ma, Xin Huang, Hui Wang and Qinfei Ke
Foods 2025, 14(6), 1058; https://doi.org/10.3390/foods14061058 - 20 Mar 2025
Cited by 1 | Viewed by 552
Abstract
In the process of ginger deep processing, a lot of waste is generated which is rich in biopolymers and active ingredients such as cellulose, starch, gingerol, and gingerol, but its low utilization rate leads to waste of resources. In this study, ginger waste [...] Read more.
In the process of ginger deep processing, a lot of waste is generated which is rich in biopolymers and active ingredients such as cellulose, starch, gingerol, and gingerol, but its low utilization rate leads to waste of resources. In this study, ginger waste residue, cellulose, and bioactive substances were spun into fiber materials by wet electrospinning technology with 1-butyl-3-methylimidazole acetate ([Bmim]Ac) as solvent. Fiber plasticization and [Bmim]Ac removal were achieved by dynamic deionized water coagulation bath. Scanning electron microscopy (SEM) and tensile strength analysis showed that the obtained GC-1 and GC-2 films have a non-uniform diameter, with a clear fiber structure and strong tensile strength. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed that cellulose transforms from type I to type II crystal structure, and [Bmim]Ac is effectively removed. The inhibition rate of 6-Shogaol-impregnated GC film against Escherichia coli and Staphylococcus aureus was 99%. The experiment of strawberry preservation verified the potential of GC film in food preservation. In this study, the high-value utilization of ginger waste in food packaging was realized by preparing antibacterial electrospun fiber films. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

33 pages, 1933 KiB  
Review
Interplay Between Traditional and Scientific Knowledge: Phytoconstituents and Their Roles in Lung and Colorectal Cancer Signaling Pathways
by Ilma Imtiaz, Janet Schloss and Andrea Bugarcic
Biomolecules 2025, 15(3), 380; https://doi.org/10.3390/biom15030380 - 5 Mar 2025
Cited by 2 | Viewed by 2298
Abstract
Natural plant products have been used for cancer treatment since ancient times and continue to play a vital role in modern anticancer drug development. However, only a small fraction of identified medicinal plants has been thoroughly investigated, particularly for their effects on cellular [...] Read more.
Natural plant products have been used for cancer treatment since ancient times and continue to play a vital role in modern anticancer drug development. However, only a small fraction of identified medicinal plants has been thoroughly investigated, particularly for their effects on cellular pathways in lung and colorectal cancers, two under-researched cancers with poor prognostic outcomes (lung cancers). This review focuses on the lung and colorectal cancer signaling pathways modulated by bioactive compounds from eleven traditional medicinal plants: Curcuma longa, Astragalus membranaceus, Glycyrrhiza glabra, Althaea officinalis, Echinacea purpurea, Sanguinaria canadensis, Codonopsis pilosula, Hydrastis canadensis, Lobelia inflata, Scutellaria baicalensis, and Zingiber officinale. These plants were selected based on their documented use in traditional medicine and modern clinical practice. Selection criteria involved cross-referencing herbs identified in a scoping review of traditional cancer treatments and findings from an international survey on herbal medicine currently used for lung and colorectal cancer management by our research group and the availability of existing literature on their anticancer properties. The review identifies several isolated phytoconstituents from these plants that exhibit anticancer properties by modulating key signaling pathways such as PI3K/Akt/mTOR, RAS/RAF/MAPK, Wnt/β-catenin, and TGF-β in vitro. Notable constituents include sanguinarine, berberine, hydrastine, lobeline, curcumin, gingerol, shogaol, caffeic acid, echinacoside, cichoric acid, glycyrrhizin, 18-β-glycyrrhetinic acid, astragaloside IV, lobetyolin, licochalcone A, baicalein, baicalin, wogonin, and glycyrol. Curcumin and baicalin show preclinical effectiveness but face bioavailability challenges, which may be overcome by combining them with piperine or using oral extracts to enhance gut microbiome conversion, integrating traditional knowledge with modern strategies for improved outcomes. Furthermore, herbal extracts from Echinacea, Glycyrrhiza, and Codonopsis, identified in traditional knowledge, are currently in clinical trials. Notably, curcumin and baicalin also modulate miRNA pathways, highlighting a promising intersection of modern science and traditional medicine. Thus, the development of anticancer therapeutics continues to benefit from the synergy of traditional knowledge, scientific innovation, and technological advancements. Full article
Show Figures

Figure 1

15 pages, 2804 KiB  
Article
Immunomodulatory Potential of 6-Gingerol and 6-Shogaol in Lactobacillus plantarum-Fermented Zingiber officinale Extract on Murine Macrophages
by Ji Eun Kim, Kwang-Hyun Park, Jinny Park, Byeong Soo Kim, Geun-Seop Kim and Dong Geon Hwang
Int. J. Mol. Sci. 2025, 26(5), 2159; https://doi.org/10.3390/ijms26052159 - 27 Feb 2025
Cited by 1 | Viewed by 1433
Abstract
In this study, we aimed to investigate whether the physiological activity of ethanol extracts of Zingiber officinale was improved after fermentation with Lactobacillus plantarum strains KCTC 3108 (FLP8) and KCL005 (FLP9). Total polyphenol and flavonoid content was substantially increased after fermentation with FLP8 [...] Read more.
In this study, we aimed to investigate whether the physiological activity of ethanol extracts of Zingiber officinale was improved after fermentation with Lactobacillus plantarum strains KCTC 3108 (FLP8) and KCL005 (FLP9). Total polyphenol and flavonoid content was substantially increased after fermentation with FLP8 and FLP9 for 48 h and 24 h, respectively, compared with the unfermented control. The 6-gingerol content was significantly increased in FLP9 after 24 h of fermentation, whereas in FLP8, it remained comparable to pre-fermentation levels. The 6-shogaol content significantly increased in FLP8 and FLP9 at 48 h and 24 h, respectively, compared with the pre-fermentation levels. The anti-inflammatory effects were evaluated using RAW 264.7 cells stimulated with lipopolysaccharides. The fermented product of FLP8 at 48 h and FLP9 at 24 h maintained over 80% cell viability at a concentration of 200 µg/mL and significantly reduced nitric oxide production compared to the lipopolysaccharide-stimulated control. Moreover, each extract downregulated pro-inflammatory gene expression. Furthermore, the purified 6-gingerol and 6-shogaol, which were purchased as reference compounds, were included in the fermentation extracts of FLP8 at 48 h and FLP9 at 24 h, and both inhibited cell migration in a dose-dependent manner without any cytotoxicity. In conclusion, the fermentation of Z. officinale with these L. plantarum strains enhanced its antioxidant and anti-inflammatory activities, with significant increases in bioactive compound content. Full article
Show Figures

Figure 1

Back to TopTop