Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (623)

Search Parameters:
Keywords = selective alkylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1962 KiB  
Review
From Survival to Parenthood: The Fertility Journey After Childhood Cancer
by Sofia Rahman, Veronica Sesenna, Diana Osorio Arce, Erika Maugeri and Susanna Esposito
Biomedicines 2025, 13(8), 1859; https://doi.org/10.3390/biomedicines13081859 - 30 Jul 2025
Viewed by 175
Abstract
Background: The advances in cancer diagnosis and treatment have significantly improved survival rates in pediatric patients, with five-year survival now exceeding 80% in many high-income countries. However, these life-saving therapies often carry long-term consequences, including impaired fertility. The reproductive health of childhood [...] Read more.
Background: The advances in cancer diagnosis and treatment have significantly improved survival rates in pediatric patients, with five-year survival now exceeding 80% in many high-income countries. However, these life-saving therapies often carry long-term consequences, including impaired fertility. The reproductive health of childhood cancer survivors has emerged as a key issue in survivorship care. Objective: This narrative review aims to examine the gonadotoxic effects of cancer treatments on pediatric patients, evaluate fertility preservation strategies in both males and females, and provide guidance on the long-term monitoring of reproductive function post treatment. Methods: A comprehensive literature review was conducted using PubMed, including randomized trials, cohort studies, and clinical guidelines published up to March 2024. The keywords focused on pediatric oncology, fertility, and reproductive endocrinology. Studies were selected based on relevance to treatment-related gonadotoxicity, fertility preservation options, and follow-up care. Results: Radiotherapy and alkylating agents pose the highest risk to fertility. Postpubertal patients have access to standardized preservation techniques, while prepubertal options remain experimental. Long-term effects include premature ovarian insufficiency, azoospermia, hypogonadism, and uterine dysfunction. The psychosocial impacts, especially in female survivors, are profound and often overlooked. Conclusions: Fertility preservation should be discussed at diagnosis and integrated into treatment planning in pediatric patients with cancer. While options for postpubertal patients are established, more research is needed to validate safe and effective strategies for younger populations. A multidisciplinary approach and long-term surveillance are essential for safeguarding future reproductive potential in childhood cancer survivors. Full article
(This article belongs to the Special Issue Advanced Cancer Diagnosis and Treatment: Third Edition)
Show Figures

Figure 1

13 pages, 25732 KiB  
Article
Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines
by Bingxiao Zheng, Liqin Yang, Yashuang Hei, Ling Yu, Sisi Wen, Lisi Ba, Long Ao and Zhiju Zhao
Molecules 2025, 30(15), 3089; https://doi.org/10.3390/molecules30153089 - 23 Jul 2025
Viewed by 201
Abstract
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO [...] Read more.
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO2(x)) via pyrolysis of silica-supported cobalt–phenanthroline complexes. The optimized Co-Ph@SiO2(900) catalyst achieved exceptional performance (>99% conversion, >98% selectivity) in the reductive amination of acetophenone to 1-phenylethanamine using NH3/H2. Systematic studies revealed that its exceptional performance originates from the in situ pyrolysis of the cobalt–phyllosilicate complex. This process promotes the uniform distribution of metal cobalt nanoparticles, simultaneously enhancing porosity and imparting bifunctional (acidic and basic) properties to the catalyst, resulting in outstanding catalytic activity and selectivity. The catalyst demonstrated broad applicability, efficiently converting diverse ketones (aryl-alkyl, dialkyl, bioactive) and aldehydes (halogenated, heterocyclic, biomass-derived) into primary amines with high yields (up to 99%) and chemoselectivity (>40 examples). This sustainable, non-noble metal-based catalyst system offers significant potential for industrial primary amine synthesis and provides a versatile tool for developing highly selective and active heterogeneous catalysts. Full article
Show Figures

Figure 1

18 pages, 1829 KiB  
Article
The Red Shift in Estrogen Research: An Estrogen-Receptor Targeted aza-BODIPY–Estradiol Fluorescent Conjugate
by Tamás Hlogyik, Noémi Bózsity, Rita Börzsei, Benjámin Kovács, Péter Labos, Csaba Hetényi, Mónika Kiricsi, Ildikó Huliák, Zoltán Kele, Miklós Poór, János Erostyák, Attila Hunyadi, István Zupkó and Erzsébet Mernyák
Int. J. Mol. Sci. 2025, 26(15), 7075; https://doi.org/10.3390/ijms26157075 - 23 Jul 2025
Viewed by 193
Abstract
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It [...] Read more.
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It would be of particular interest to develop novel labeled estradiol derivatives with retained biological activity and improved optical properties. Due to their superior optical characteristics, aza-BODIPY dyes are frequently used labeling agents in biomedical applications. E2 was labeled with the aza-BODIPY dye at its phenolic hydroxy function via an alkyl linker and a triazole coupling moiety. The estrogenic activity of the newly synthesized fluorescent conjugate was evaluated via transcriptional luciferase assay. Docking calculations were performed for the classical and alternative binding sites (CBS and ABS) of human estrogen receptor α. The terminal alkyne function was introduced into the tetraphenyl aza-BODIPY core via selective formylation, oxidation, and subsequent amidation with propargyl amine. The conjugation was achieved via Cu(I)-catalyzed azide–alkyne click reaction of the aza-BODIPY-alkyne with the 3-O-(4-azidobut-1-yl) derivative of E2. The labeled estrogen induced a dose-dependent transcriptional activity of human estrogen receptor α with a submicromolar EC50 value. Docking calculations revealed that the steroid part has a perfect overlap with E2 in ABS. In CBS, however, a head-tail binding deviation was observed. A facile, fluorescent labeling methodology has been elaborated for the development of a novel red-emitting E2 conjugate with substantial estrogenic activity. Docking experiments uncovered the binding mode of the conjugate in both ABS and CBS. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 901 KiB  
Article
Structural Modifications at the C3 and C30 Positions of the Lupane Skeleton with Carbon-Centered Nucleophiles
by Davide Castiglione, Gianfranco Fontana, Laura Castoldi and Vittorio Pace
Molecules 2025, 30(15), 3064; https://doi.org/10.3390/molecules30153064 - 22 Jul 2025
Viewed by 286
Abstract
Lupeol, a naturally occurring pentacyclic triterpenoid widely distributed in various medicinal plants, has attracted significant attention due to its diverse pharmacological properties. In this study, we report the synthesis and structural modification of 14 lupeol derivatives through selective functionalizations at C3 and C30 [...] Read more.
Lupeol, a naturally occurring pentacyclic triterpenoid widely distributed in various medicinal plants, has attracted significant attention due to its diverse pharmacological properties. In this study, we report the synthesis and structural modification of 14 lupeol derivatives through selective functionalizations at C3 and C30 positions of the lupane skeleton, via the sequential chemoselective introduction of carbonyl moieties and the addition of organometallics. Emphasis has been given to the stereoselective alkylation at C3 using a range of carbanions, including organolithiums, organomagnesiums and organoindiums. The C30 position was modified through oxidative pathways to introduce several functionalities. Full article
Show Figures

Scheme 1

26 pages, 2712 KiB  
Article
[1,3]Thiazolo[3,2-b][1,2,4]triazolium Salts as Effective Antimicrobial Agents: Synthesis, Biological Activity Evaluation, and Molecular Docking Studies
by Mykhailo Slivka, Boris Sharga, Daryna Pylypiv, Hanna Aleksyk, Nataliya Korol, Maksym Fizer, Olena I. Fedurcya, Oleksandr G. Pshenychnyi and Ruslan Mariychuk
Int. J. Mol. Sci. 2025, 26(14), 6845; https://doi.org/10.3390/ijms26146845 - 16 Jul 2025
Viewed by 404
Abstract
This study focuses on the search for new effective synthetic antimicrobial compounds as a tool against the widespread presence of microorganisms resistant to existing drugs. Five derivatives of [1,3]thiazolo[3,2-b][1,2,4]triazoles were synthesized using an accessible protocol based on electrophilic heterocyclization and were characterized using [...] Read more.
This study focuses on the search for new effective synthetic antimicrobial compounds as a tool against the widespread presence of microorganisms resistant to existing drugs. Five derivatives of [1,3]thiazolo[3,2-b][1,2,4]triazoles were synthesized using an accessible protocol based on electrophilic heterocyclization and were characterized using infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, and their in vitro antimicrobial and antifungal activities were evaluated using the agar plate diffusion method and the microdilution plate procedure. Both antibacterial (Gram-positive and Gram-negative) and antifungal activities were found for the examined samples. The minimum inhibitory concentration (MIC) varied from 0.97 to 250 µg/mL, and the minimum bactericidal concentration (MBC) from 1.95 to 500 µg/mL. Compound 2a showed good antifungal action against Candida albicans and Saccharomyces cerevisiae with minimum fungicidal concentration (MFC) 125 and MIC 31.25 µg/mL. The molecular docking revealed that the 2-heptyl-3-phenyl-6,6-trimethyl-5,6-dihydro-3H-[1,3]thiazolo[3,2-b][1,2,4]triazol-7-ium cation stands out as a highly promising candidate for further investigation due to a wide range of interactions, including conventional hydrogen bonds, π–σ, π–π T-shaped, and hydrophobic alkyl interactions. The synthesis and preliminary evaluation of [1,3]thiazolo[3,2-b][1,2,4]triazoles yielded promising antimicrobial and antifungal candidates. The diverse interaction profile of the 2-heptyl derivative salt allows this compound’s selection for further biological studies. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

46 pages, 3942 KiB  
Review
Catalytic Fluorination with Modern Fluorinating Agents: Recent Developments and Synthetic Scope
by Muhammad Saeed Akhtar, Mohammad Aslam, Wajid Zaman, Kuppu Sakthi Velu, Seho Sun and Hee Nam Lim
Catalysts 2025, 15(7), 665; https://doi.org/10.3390/catal15070665 - 8 Jul 2025
Viewed by 1908
Abstract
Fluorinated organic molecules have become indispensable in modern chemistry, owing to the unique properties imparted by fluorine to other compounds, including enhanced metabolic stability, controlled lipophilicity, and improved bioavailability. The site-selective incorporation of fluorine atoms into organic frameworks is essential in pharmaceutical, agrochemical, [...] Read more.
Fluorinated organic molecules have become indispensable in modern chemistry, owing to the unique properties imparted by fluorine to other compounds, including enhanced metabolic stability, controlled lipophilicity, and improved bioavailability. The site-selective incorporation of fluorine atoms into organic frameworks is essential in pharmaceutical, agrochemical, and material science research. In recent years, catalytic fluorination has become an important methodology for the efficient and selective incorporation of fluorine atoms into complex molecular architectures. This review highlights advances in catalytic fluorination reactions over the past six years and describes the contributions of transition metal catalysts, photocatalysts, organocatalysts, and electrochemical systems that have enabled site-selective fluorination under a variety of conditions. Particular attention is given to the use of well-defined fluorinating agents, including Selectfluor, N-fluorobenzenesulfonimide (NFSI), AlkylFluor, Synfluor, and hypervalent iodine reagents. These reagents have been combined with diverse catalytic systems, such as AgNO3, Rh(II), Mo-based complexes, Co(II)-salen, and various organocatalysts, including β,β-diaryl serine catalysts, isothiourea catalysts, and chiral phase-transfer catalysts. This review summarizes proposed mechanisms reported in the original studies and discusses examples of electrophilic, nucleophilic, radical, photoredox, and electrochemical fluorination pathways. Recent developments in stereoselective and more sustainable protocols are also examined. By consolidating these strategies, this article provides an up-to-date perspective on catalytic fluorination and its impact on synthetic organic chemistry. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

17 pages, 4128 KiB  
Article
Molecular Hybrids of Thiazolidinone: Bridging Redox Modulation and Cancer Therapy
by Nourah A. Al Zahrani, Manal A. Alshabibi, Abrar A. Bakr, Fahad A. Almughem, Abdullah A. Alshehri, Huda A. Al-Ghamdi, Essam A. Tawfik and Laila A. Damiati
Int. J. Mol. Sci. 2025, 26(13), 6529; https://doi.org/10.3390/ijms26136529 - 7 Jul 2025
Viewed by 487
Abstract
Heterocyclic compounds have shown that they hold significant therapeutic activities, highlighting the importance of discovering and developing novel candidates against cancers, infections, and oxidative stress-associated disorders. In this study, we demonstrated the biological activity of our previously synthesized thiazolidinone derivatives (TZDs-1, 6, and [...] Read more.
Heterocyclic compounds have shown that they hold significant therapeutic activities, highlighting the importance of discovering and developing novel candidates against cancers, infections, and oxidative stress-associated disorders. In this study, we demonstrated the biological activity of our previously synthesized thiazolidinone derivatives (TZDs-1, 6, and 7). Furthermore, we synthesized and structurally characterized a new derivative (TZD-5) using IR, 1H NMR, and 13C NMR spectroscopy, confirming the presence of its key functional groups, namely, carbonyl and imine. Their antioxidant activity was assessed through the DPPH assay, with TZD-5 showing the most potent effect (IC50 = 24.4 µg/mL), comparable to ascorbic acid, an effect attributed to the methoxy group introduced via N-alkylation. Cytotoxicity was evaluated using the MTS assay on normal (HFF-1) and cancerous (HepG2 and A549) cell lines at two time points: 24- and 48 h exposure. Our findings highlight clear differences in cytotoxicity and selectivity among the tested thiazolidinone derivatives. TZD-1 and TZD-6 demonstrated significant, dose-dependent cytotoxic effects on both cancerous (HepG2 and A549) and normal (HFF-1) cell lines, thus limiting their therapeutic potential due to insufficient selectivity. TZD-5 exhibited moderate selectivity with higher susceptibility for HepG2 cells compared to normal cells. Notably, TZD-7 showed the most favorable cytotoxic profile, demonstrating strong selective cytotoxicity toward cancer cell lines with minimal adverse effects on normal fibroblasts. Overall, the results highlight TZD-5 and TZD-7 as promising candidates for antioxidant and selective anticancer therapies. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

28 pages, 1957 KiB  
Article
Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors
by Xiaosong He, Jiahao Yi, Jianchen Yang, Genzoh Tanabe, Osamu Muraoka and Weijia Xie
Molecules 2025, 30(13), 2856; https://doi.org/10.3390/molecules30132856 - 4 Jul 2025
Viewed by 384
Abstract
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the [...] Read more.
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the sulfonium cation center. In vitro biological evaluation showed that selenonium replacement could significantly improve their α-glucosidase inhibitory activity. The most potent inhibitor 20c (10.0 mg/kg) reduced postprandial blood glucose by 48.6% (15 min), 52.8% (30 min), and 48.1% (60 min) in sucrose-loaded mice, outperforming acarbose (20.0 mg/kg). Docking studies of 20c with ntMGAM presented a new binding mode. In addition to conventional hydrogen bonding and electrostatic interaction, amino residue Ala-576 was first identified to contribute to binding affinity through π-alkyl and alkyl interactions with the chlorinated substituent and aromatic ring. The selected compounds exhibited a high degree of safety in cytotoxicity tests against normal cells. Kinetic characterization of α-glucosidase inhibition confirmed a fully competitive inhibitory mode of action for these sulfonium salts. Full article
(This article belongs to the Special Issue Trends of Drug Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

14 pages, 1180 KiB  
Review
Effects of the Alkylating Agent Cyclophosphamide in Potentiating Anti-Tumor Immunity
by Benjamin D. Gephart, Don W. Coulter and Joyce C. Solheim
Int. J. Mol. Sci. 2025, 26(13), 6440; https://doi.org/10.3390/ijms26136440 - 4 Jul 2025
Viewed by 425
Abstract
Cyclophosphamide (CPX) is an alkylating agent commonly used for various hematological and solid malignancies. In addition to its use as a cytotoxic agent to directly kill tumor cells, numerous immunomodulatory properties of CPX in the tumor microenvironment (TME) of several cancer types have [...] Read more.
Cyclophosphamide (CPX) is an alkylating agent commonly used for various hematological and solid malignancies. In addition to its use as a cytotoxic agent to directly kill tumor cells, numerous immunomodulatory properties of CPX in the tumor microenvironment (TME) of several cancer types have also been documented. These properties include the selective depletion of immune-suppressive regulatory T cells (Tregs), triggering of immunogenic cell death (ICD) and enhanced antigen presentation, and release of type I interferons (IFNs). Moreover, preclinical models as well as human clinical trials have investigated the efficacy of the low-dose “metronomic” scheduling of CPX in combination with immunotherapies such as immune checkpoint inhibitors, dendritic cell tumor vaccines, and tumor antigen peptide vaccines. The metronomic dosing schedule involves administering a continuous (or frequent, such as daily) low dose of chemotherapy rather than using the canonical approach of administering the maximum tolerated dose. Despite the approval of immune checkpoint inhibitors for clinical usage against an increasing number of cancers, many malignancies simply do not respond to checkpoint inhibition, in part due to the heterogeneous intratumoral network of immune-suppressive cell populations. The immunomodulatory effects of cyclophosphamide have strong translational applicability and could serve to enhance and bolster anti-tumor immunity, potentially synergizing with immune checkpoint inhibitors and other existing immunotherapy agents. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 1988 KiB  
Article
Discovery of Cyclopentane-Based Phospholipids as Miltefosine Analogs with Superior Potency and Enhanced Selectivity Against Naegleria fowleri
by Ahmed H. E. Hassan, Hương Giang Lê, Tuấn Cường Võ, Minji Kim, Joo Hwan No, Mohamed H. Aboutaleb, Jaehoon Sim, Byoung-Kuk Na and Yong Sup Lee
Pharmaceuticals 2025, 18(7), 984; https://doi.org/10.3390/ph18070984 - 30 Jun 2025
Viewed by 315
Abstract
Background/Objectives: Naegleria fowleri is a free-living amoeba that invades brain tissues causing fatal primary amoebic meningoencephalitis (PAM). An effective and tolerable therapeutic agent is still lacking. Methods: A series of conformationally restricted analogs of miltefosine with varied restriction positions, stereochemical configuration and [...] Read more.
Background/Objectives: Naegleria fowleri is a free-living amoeba that invades brain tissues causing fatal primary amoebic meningoencephalitis (PAM). An effective and tolerable therapeutic agent is still lacking. Methods: A series of conformationally restricted analogs of miltefosine with varied restriction positions, stereochemical configuration and lengths of alkyl chain was investigated to discover more effective and less toxic agents than miltefosine. Results: Among tested compounds, derivatives 2a, 3b and 3d featuring 1,2- or 2,3-positional restriction with trans-configuration and tridecyl or behenyl alkyl chains were discovered as more potent and less cytotoxic agents. Compounds 2a, 3b and 3d elicited 3.49-, 3.58- and 6.03-fold relative potencies to miltefosine and 7.53, 3.90 and 3.49 selectivity indices, respectively. Furthermore, compounds 2a and 3b showed IC90 values for N. fowleri lower than CC50 against glial C6 cells. Compounds 2a, 3b and 3d induced morphological changes and programmed cell death of N. fowleri via the apoptosis-like pathway. The induced death of N. fowleri involved DNA fragmentation along with the loss of mitochondrial membrane potential. Conclusions: The current research presents compounds 2a and 3b as more potent, selective and effective agents than miltefosine against N. fowleri for further development. Full article
(This article belongs to the Special Issue Recent Advancements in the Development of Antiprotozoal Agents)
Show Figures

Graphical abstract

15 pages, 1066 KiB  
Article
Preparation and Evaluation of Long-Acting Injectable Levocetirizine Prodrug Formulation
by Jun-hyun Ahn
Pharmaceutics 2025, 17(7), 806; https://doi.org/10.3390/pharmaceutics17070806 - 21 Jun 2025
Viewed by 530
Abstract
Background/Objectives: Levocetirizine (LCZ) is a second-generation antihistamine with minimal central nervous system effects. However, its short half-life necessitates daily dosing, potentially reducing adherence in pediatric populations. This study aimed to develop a long-acting injectable LCZ formulation by synthesizing lipophilic prodrugs and evaluating [...] Read more.
Background/Objectives: Levocetirizine (LCZ) is a second-generation antihistamine with minimal central nervous system effects. However, its short half-life necessitates daily dosing, potentially reducing adherence in pediatric populations. This study aimed to develop a long-acting injectable LCZ formulation by synthesizing lipophilic prodrugs and evaluating their physicochemical stability, enzymatic hydrolysis, and pharmacokinetics in vivo. Methods: Two prodrugs of LCZ, LCZ decanoate (LCZ-D) and LCZ laurate (LCZ-L), were synthesized via esterification with alkyl alcohols. The compounds were characterized using NMR, FT-IR, and DSC. Prodrugs were formulated with an oil-based vehicle (castor oil and benzyl benozate), and their hydrolysis was evaluated using porcine liver esterase (PLE) and rat plasma. Pharmacokinetic profiles were assessed in Sprague Dawley rats after oral or intramuscular administration. Stability was tested at 25 °C, 40 °C, and 60 °C for 6 weeks. Results: LCZ-D and LCZ-L exhibited first-order hydrolysis kinetics, with rates following the order of PLE (2.0 > 0.5 units/mL) > plasma > PLE (0.2 units/mL). The Cmax of LCZ-D and LCZ-L were 13.95 and 5.12 ng/mL, respectively, with corresponding AUC0–45d values of 6423.12 and 2109.22 h·ng/mL. Formulations containing excipients with lower log P values led to increased systemic exposure. All formulations maintained therapeutic plasma concentrations for over 30 days. The inclusion of the antioxidant BHT (0.03% v/v) improved oxidative stability, reducing degradation at 60 °C from 4.72% to 1.17%. Conclusions: All formulations demonstrated potential for the long-acting delivery of LCZ, maintaining therapeutic plasma levels for over 30 days. Moreover, the release behavior and systemic exposure could be effectively modulated by excipient selection. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

15 pages, 1315 KiB  
Article
Functionalisation of Lignin-Derived Diols for the Synthesis of Thermoplastic Polyurethanes and Polyester Resins
by Rachele N. Carafa, Justin J. S. Kosalka, Brigida V. Fernandes, Unnati Desai, Daniel A. Foucher and Guerino G. Sacripante
Molecules 2025, 30(12), 2604; https://doi.org/10.3390/molecules30122604 - 16 Jun 2025
Viewed by 443
Abstract
The functionalisation of lignin-derived phenolics (guaiacol, 4-propylguaiacol, eugenol, isoeugenol, phenol, m-cresol, catechol, syringol, syringaldehyde, and vanillin) for the synthesis of thermoplastic polyurethanes (PUs) and polyester (PE) resins is herein described. Diols were synthesised from phenolics in a one-step reaction using either glycerol [...] Read more.
The functionalisation of lignin-derived phenolics (guaiacol, 4-propylguaiacol, eugenol, isoeugenol, phenol, m-cresol, catechol, syringol, syringaldehyde, and vanillin) for the synthesis of thermoplastic polyurethanes (PUs) and polyester (PE) resins is herein described. Diols were synthesised from phenolics in a one-step reaction using either glycerol carbonate or ethylene carbonate as a greener, solvent-free synthetic route. Nine of the diols were selected for the synthesis of Pus, and two of the diols were used for the synthesis of PE resins, with their physical and thermal properties characterised. Analysis of the PUs by differential scanning calorimetry (DSC) confirmed their amorphous nature, while thermogravimetric analysis (TGA) suggested improved thermal stability for all PUs with the addition of an alkyl or aldehyde substituent on the benzene ring regardless of the diisocyanate used. However, lower PU thermal stabilities were observed with the use of an aliphatic diisocyanate over an aromatic diisocyanate in the absence of an additional substituent. Analysis of the PEs by DSC also confirmed that the clear resins were all amorphous, and gel permeation chromatography (GPC) revealed significantly higher molecular weights and dispersities when an aliphatic diacid was utilised over an aromatic diacid. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Graphical abstract

8 pages, 854 KiB  
Communication
Onvansertib-Based Second-Line Therapies in Combination with Gemcitabine and Carboplatin in Patient-Derived Platinum-Resistant Ovarian Carcinomas
by Federica Guffanti, Ilaria Mengoli, Francesca Ricci, Ludovica Perotti, Elena Capellini, Laura Sala, Simone Canesi, Chu-Chiao Wu, Robert Fruscio, Maya Ridinger, Giovanna Damia and Michela Chiappa
Int. J. Mol. Sci. 2025, 26(12), 5708; https://doi.org/10.3390/ijms26125708 - 14 Jun 2025
Viewed by 555
Abstract
Platinum resistance represents an urgent medical need in the management of ovarian cancer. The activity of the combinations of onvansertib, an inhibitor of polo-like kinase 1, with gemcitabine or carboplatin was tested using patient-derived xenografts of high-grade serous ovarian carcinoma resistant to cisplatin [...] Read more.
Platinum resistance represents an urgent medical need in the management of ovarian cancer. The activity of the combinations of onvansertib, an inhibitor of polo-like kinase 1, with gemcitabine or carboplatin was tested using patient-derived xenografts of high-grade serous ovarian carcinoma resistant to cisplatin (DDP). Two PDX models were selected from our xenobank: one with acquired resistance to DDP (#266R) and the other (#315) with intrinsic DDP resistance. Tumor-bearing mice were randomized to receive vehicle, single onvansertib, gemcitabine and carboplatin, and their combinations. Onvansertib/gemcitabine and onvansertib/carboplatin combinations were well tolerated. In the #266R model, single drug treatments were completely inactive, while the combinations of onvansertib/gemcitabine and onvansertib/carboplatin resulted in a significant increase in survival compared to controls and single drugs (p < 0.001 versus control, onvansertib, gemcitabine and carboplatin). Similar efficacy was observed in the s.c. #315 PDX model; indeed, onvansertib and carboplatin monotherapies were inactive, gemcitabine monotherapy was marginally active, while both combinations were highly active. The molecular mechanism underlying the efficacy of the combinations suggests a higher induction of DNA damage which seems plausible considering that, in both cases, gemcitabine and carboplatin, respectively, interfere with DNA metabolism and induce alkylation damage. The results suggest that the combinations of onvansertib/gemcitabine and onvansertib/carboplatin are safe and were shown to be of therapeutic value in the platinum-resistant setting of ovarian carcinoma, strongly supporting their clinical translatability. Full article
(This article belongs to the Special Issue Resistance to Therapy in Ovarian Cancers)
Show Figures

Graphical abstract

14 pages, 1634 KiB  
Article
Modified Fischer–Tropsch Pathway for CO2 Hydrogenation to Aromatics: Impact of Si/Al Ratio of H-ZSM-5 Zeolite on Light Aromatics Selectivity
by Shaocong Wang, Yu Sun, Shiyuan Lin, Zhongxu Bian, Yuanyuan Han, Xinze Bi, Zhaorui Zhang, Xiaojie Liu, Dandan Liu, Yang Wang and Mingbo Wu
Catalysts 2025, 15(6), 557; https://doi.org/10.3390/catal15060557 - 4 Jun 2025
Viewed by 705
Abstract
Despite significant advancements in designing tandem catalysts for CO2 hydrogenation to aromatics, the role of zeolite acid property in regulating the selectivity of light aromatics (benzene, toluene, and xylene, abbreviated as BTX) remains unclear. Herein, we report H-ZSM-5 zeolite (denoted as HZ-X, [...] Read more.
Despite significant advancements in designing tandem catalysts for CO2 hydrogenation to aromatics, the role of zeolite acid property in regulating the selectivity of light aromatics (benzene, toluene, and xylene, abbreviated as BTX) remains unclear. Herein, we report H-ZSM-5 zeolite (denoted as HZ-X, where X represents the Si/Al ratio) integrated with a Na-promoted FeCo-based catalyst (NaFeCo) for CO2 hydrogenation into aromatics via a modified Fischer–Tropsch synthesis pathway. This study systematically modulates the Si/Al ratio of acidic zeolite and examines its critical role in influencing the light aromatics selectivity. The optimized NaFeCo/HZ-50 catalyst achieves a CO2 conversion of 43% with an aromatics selectivity of 41%, including a BTX fraction of 57% in total aromatics. Multiple characterization techniques (NH3-TPD, Py/DTBPy-IR, 27Al NMR, etc.) clarify that acidic zeolite HZ-50 exhibits appropriate acid density and lower external surface acid sites, which synergistically boost the efficient aromatics and BTX synthesis while suppressing the undesirable alkylation and isomerization reactions on the external acid sites. This work develops a highly efficient multifunctional catalyst for CO2 hydrogenation to light aromatics, especially offering guidance for the rational design of acidic zeolite with unique shape-selective functions. Full article
(This article belongs to the Special Issue Catalysis on Zeolites and Zeolite-Like Materials, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 4005 KiB  
Article
Measurement and Modelling of Carbon Dioxide in Triflate-Based Ionic Liquids: Imidazolium, Pyridinium, and Pyrrolidinium
by Raheem Akinosho, Amr Henni and Farhan Shaikh
Liquids 2025, 5(2), 15; https://doi.org/10.3390/liquids5020015 - 30 May 2025
Viewed by 398
Abstract
Carbon dioxide, the primary greenhouse gas responsible for global warming, represents today a critical environmental challenge for humans. Mitigating CO2 emissions and other greenhouse gases is a pressing global concern. The primary goal of this study is to investigate the potential of [...] Read more.
Carbon dioxide, the primary greenhouse gas responsible for global warming, represents today a critical environmental challenge for humans. Mitigating CO2 emissions and other greenhouse gases is a pressing global concern. The primary goal of this study is to investigate the potential of particular ionic liquids (ILs) in capturing CO2 for the sweetening of natural and other gases. The solubility of CO2 was measured in three distinct ILs, which shared a common anion (triflate, TfO) but differed in their cations. The selected ionic liquids were {1-butyl-3-methylimidazolium triflate [BMIM][TfO], 1-butyl-1-methylpyrrolidinium triflate [BMP][TfO], and 1-butyl-4-methylpyridium triflate [MBPY][TfO]}. The solvents were screened based on results from a molecular computational study that predicted low CO2 Henry’s Law constants. Solubility measurements were conducted at 303.15 K, 323.15 K, and 343.15 K and pressures up to 1.5 MPa using a gravimetric microbalance (IGA-003). The CO2 experimental results were modeled using the Peng–Robinson Equation of state with three mixing rules: van der Waals one (vdWI), van der Waals two (vdWII), and the non-random two-liquid (NRTL) Wong–Sandler (WS) mixing rule. For the three ILs, the NRTL-WS mixing rule regressed the data with the lowest average deviation percentage of 1.24%. The three solvents had similar alkyl chains but slightly different polarities. [MBPY][TfO], with the largest size, exhibited the highest CO2 solubility at all three temperatures. Calculation of its relative polarity descriptor (N) shows it was the least polar of the three ILs. Conversely, [BMP][TfO] showed the highest Henry’s Law constant (lowest solubility) across the studied temperature range. Comparing the results to published data, the study concludes that triflate-based ionic liquids with three fluorine atoms had lower capacity for CO2 compared to bis(trifluoromethylsulfonyl) imide (Tf2N)-based ionic liquids with six fluorine atoms. Additionally, the study provided data on the enthalpy and entropy of absorption. A final comparison shows that the ILs had a lower CO2 capacity than Selexol, a solvent widely used in commercial carbon capture operations. Compared to other ILs, the results confirm that the type of anion had a more significant impact on solubility than the cation. Full article
Show Figures

Figure 1

Back to TopTop