Modified Fischer–Tropsch Pathway for CO2 Hydrogenation to Aromatics: Impact of Si/Al Ratio of H-ZSM-5 Zeolite on Light Aromatics Selectivity
Abstract
1. Introduction
2. Results
2.1. Physicochemical Property of the H-ZSM-5 Zeolite
2.2. The Catalytic Performance of Aromatics Synthesis from CO2 Hydrogenation
2.3. Acidic Property of HZ-X Zeolites
2.4. Relationship Between Zeolite Acidic Property and Light Aromatics Synthesis Performance
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Catalyst Preparation
3.2.1. Synthesis of NaFeCo Catalyst
3.2.2. Synthesis of H-ZSM-5 Zeolites
3.3. Catalyst Characterization
- (1)
- NH3-TPD:
- (2)
- Py-IR:
3.4. Catalytic Activity Evaluation
- (1)
- CO2 conversion was calculated according to
- (2)
- Product selectivity was calculated as the percentage of CO2 converted into a given product and according to
- (3)
- CO selectivity for CO2 hydrogenation was calculated according to
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Luo, J. A coupled electrochemical system for CO2 capture, conversion and product purification. eScience 2023, 3, 100155. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Z.; Liu, L.; Wang, Y.; Kawi, S. Catalytic CO2 conversion to C1 chemicals over single-atom catalysts. Adv. Energ. Mater. 2023, 13, 2301852. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, C.; Tsubaki, N. Recent advancements and perspectives of the CO2 hydrogenation reaction. Green Carbon 2023, 1, 133–145. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Tsubaki, N. Clever Nanomaterials fabrication techniques encounter sustainable C1 catalysis. Acc. Chem. Res. 2023, 56, 2341–2353. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Chen, S.; Wang, X.; Zhou, Z.; Wu, Y.; Zhang, T.; Yang, G.; Han, Y.; Tan, Y. Hydrogenation of CO2 into aromatics over a ZnCrOX-zeolite composite catalyst. Chem. Commun. 2019, 55, 973–976. [Google Scholar] [CrossRef]
- Wei, J.; Yao, R.; Han, Y.; Ge, Q.; Sun, J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem. Soc. Rev. 2021, 50, 10764–10805. [Google Scholar] [CrossRef]
- Chang, Z.; Qu, Y.; Gu, Z.; Zhou, L.; Li, R.; Sun, Z.; Xu, M.; Chu, M. Production of aromatic hydrocarbons from catalytic pyrolysis of Huadian oil shale using ZSM-5 zeolites as catalyst. J. Anal. Appl. Pyrolysis 2021, 159, 104990. [Google Scholar] [CrossRef]
- Tsubaki, N.; Wang, Y.; Yang, G.; He, Y. Rational design of novel reaction pathways and tailor-made catalysts for value-added chemicals synthesis from CO2 hydrogenation. Bull. Chem. Soc. Jpn. 2023, 96, 291–302. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Wu, M.; Tsubaki, N.J.E. Thermocatalytic hydrogenation of CO2 into aromatics by tailor-made catalysts: Recent advancements and perspectives. EcoMat 2021, 3, e12080. [Google Scholar] [CrossRef]
- Li, W.; Zhan, G.; Liu, X.; Yue, Y.; Tan, K.B.; Wang, J.; Huang, J.; Li, Q. Assembly of ZnZrOX and ZSM-5 on hierarchically porous bio-derived SiO2 platform as bifunctional catalysts for CO2 hydrogenation to aromatics. Appli. Catal. B Environ. 2023, 330, 122575. [Google Scholar] [CrossRef]
- Wang, W.; He, R.; Wang, Y.; Li, M.; Liu, J.; Liang, J.; Yasuda, S.; Liu, Q.; Wu, M.; Tsubaki, N. Boosting methanol-mediated CO2 hydrogenation into aromatics by synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst. Chem. Eur. J. 2023, 29, e202301135. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Chen, Z.; Fu, Y.; Liu, Y.; Zhu, W.; Liu, Z. Selective conversion of CO2 and H2 into aromatics. Nat. Commun. 2018, 9, 3457. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, W.; Kazumi, S.; Li, H.; Yang, G.; Tsubaki, N. Direct and oriented conversion of CO2 into value-added aromatics. Chem. Eur. J. 2019, 25, 5149–5153. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, L.; Wang, X.; Zhou, W.; Chen, F.; Li, D.; Liu, K.; Ai, P.; Wei, Y.; Cai, M.; et al. Spaced-confined capsule catalysts with tunable micro-environments for efficient CO2 conversion. AIChE J. 2024, 70, e18445. [Google Scholar] [CrossRef]
- Song, G.; Li, M.; Yan, P.; Nawaz, M.A.; Liu, D. High conversion to aromatics via CO2 FT over a CO-Reduced CuFe2O3 catalyst integrated with HZSM5. ACS Catal. 2020, 10, 11268–11279. [Google Scholar] [CrossRef]
- Wen, C.; Jin, K.; Lu, L.; Jiang, Q.; Wu, J.; Zhuang, X.; Zhang, X.; Chen, L.; Wang, C.; Ma, L. Insight into the direct conversion of syngas toward aromatics over the Cu promoter Fe-zeolite tandem catalyst. Fuel 2023, 331, 125855. [Google Scholar] [CrossRef]
- Tian, G.; Li, Z.; Zhang, C.; Liu, X.; Fan, X.; Shen, K.; Meng, H.; Wang, N.; Xiong, H.; Zhao, M.; et al. Upgrading CO2 to sustainable aromatics via perovskite-mediated tandem catalysis. Nat. Commun. 2024, 15, 3037. [Google Scholar] [CrossRef]
- Wang, Y.; Kazumi, S.; Gao, W.; Gao, X.; Li, H.; Guo, X.; Yoneyama, Y.; Yang, G.; Tsubaki, N. Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway. Appl. Catal. B Environ. 2020, 269, 118792. [Google Scholar] [CrossRef]
- Xiang, Y.; Kruse, N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun. 2016, 7, 13058. [Google Scholar] [CrossRef]
- Galvis, H.M.T.; Bitter, J.H.; Khare, C.B.; Ruitenbeek, M.; Dugulan, A.I.; Jong, K.P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012, 335, 835–838. [Google Scholar] [CrossRef]
- Cui, X.; Gao, P.; Li, S.; Yang, C.; Liu, Z.; Wang, H.; Zhong, L.; Sun, Y. Selective production of aromatics directly from carbon dioxide hydrogenation. ACS Catal. 2019, 9, 3866–3876. [Google Scholar] [CrossRef]
- Ramirez, A.; Chowdhury, A.; Dokania, A.; Cnudde, P.; Caglayan, M.; Yarulina, I.; Abou-Hamad, E.; Gevers, L.; Ould-Chikh, S.; Wispelaere, K.; et al. Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics. ACS Catal. 2019, 9, 6320–6334. [Google Scholar] [CrossRef]
- Yue, Y.; Tian, J.; Ma, J.; Yang, S.; Li, W.; Huang, J.; Li, Q.; Zhan, G. Regulation of acidity properties of ZSM-5 and proximity between metal oxide and zeolite on bifunctional catalysts for enhanced CO2 hydrogenation to aromatics. Appl. Catal. B Environ. 2024, 355, 124158. [Google Scholar] [CrossRef]
- Wei, J.; Yao, R.; Ge, Q.; Xu, D.; Fang, C.; Zhang, J.; Xu, H.; Sun, J. Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation. Appl. Catal. B Environ. 2021, 283, 119648. [Google Scholar] [CrossRef]
- Gu, Y.; Liang, J.; Wang, Y.; Huo, K.; Li, M.; Wang, W.; He, R.; Yasuda, S.; Gao, X.; Yang, G.; et al. Tailoring the product distribution of CO2 hydrogenation via engineering of Al location in zeolite. Appl. Catal. B Environ. 2024, 349, 123842. [Google Scholar] [CrossRef]
- Yang, J.; Gong, K.; Miao, D.; Jiao, F.; Pan, X.; Meng, X.; Xiao, F.; Bao, X. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion. J. Energ. Chem. 2019, 35, 44–48. [Google Scholar] [CrossRef]
- Kosari, M.; Lee, K.; Chao, W.; Rimaz, S.; Zhou, S.; Hondo, E.; Xi, S.; Seayad, A.M.; Zeng, H.C.; Borgna, A. Optimizing hollow ZSM-5 spheres (HZSM5) morphology and its intrinsic acidity for hydrogenation of CO2 to DME with copper-aluminum. Chem. Eng. J. 2023, 470, 144196. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Xie, Y.; Zhang, S.; Ning, P.; Wang, X. Tailoring mesoporosity and acid sites for enhanced gaseous As2O3 adsorption by alkaline-etching ZSM-5 with different Si/Al ratios. Sep. Purif. Technol. 2025, 354, 129081. [Google Scholar] [CrossRef]
- Lukyanov, D.B.; Gnep, N.S.; Guisnet, M.R. Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5. Ind. Eng. Chem. Res. 1994, 33, 223–234. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Yang, J.; Qian, W.; Zhang, Y.; Li, X.; Huang, Y.; Zhang, T.; Chen, D. Exploring the reaction paths in the consecutive Fe-Based FT catalyst-zeolite process for syngas conversion. ACS Catal. 2020, 10, 3797–3806. [Google Scholar] [CrossRef]
- Cheng, C.; Li, G.; Ji, D.; Zhao, Y.; Shen, J. Regulating hierarchical structure and acidity of HZSM-5 for methanol to aromatics via protective desiliconization and external surface modification. Microporous Mesoporous Mater. 2021, 312, 110784. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, K.; Chen, X.; Xu, L.; Deng, C.; Wang, Q.; Gao, R.; Jun, K.; Kim, S.; Zhao, T.; et al. Direct hydrogenation of CO2 into valuable aromatics over K/Fe-Cu-Al@HZSM-5 tandem catalysts: Effects of zeolite surface acidity on aromatics formation. Fuel Process. Technol. 2023, 248, 107824. [Google Scholar] [CrossRef]
- Wu, X.; Wang, C.; Zhao, S.; Wang, Y.; Zhang, T.; Yao, J.; Gao, W.; Zhang, B.; Arakawa, T.; He, Y.; et al. Dual-engine-driven realizing high-yield synthesis of para-xylene directly from CO2-containing syngas. Nat. Commun. 2024, 15, 8064. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Gao, W.; Liu, G.; Tsubaki, N. A review of CO2 hydrogenation to liquid fuels. ChemSusChem 2025, 18, e202402756. [Google Scholar]
- Lin, S.; He, R.; Wang, W.; Wang, Y.; Gu, Y.; Liu, Q.; Wu, M. Highly selective transformation of CO2 + H2 into para-xylene via a bifunctional catalyst composed of Cr2O3 and twin-structured ZSM-5 zeolite. Catalysts 2023, 13, 1080. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Huang, X.; Zhu, Y.; Li, G.; Gu, Q.; Chen, J.; Ma, L.; Li, X.; He, Q.; et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nat. Commun. 2019, 10, 4348. [Google Scholar] [CrossRef]
- Xin, S.; Wang, Q.; Xu, J.; Chu, Y.; Wang, P.; Feng, N.; Qi, G.; Tébosc, J.; Lafon, O.; Fan, F.; et al. The acidic nature of “NMR-invisible” tri-coordinated framework aluminum species in zeolites. Chem. Sci. 2019, 10, 10159–10169. [Google Scholar] [CrossRef]
- Wang, S.; Wang, P.; Qin, Z.; Chen, Y.; Dong, M.; Li, J.; Zhang, K.; Liu, P.; Wang, J.; Fan, W. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11. ACS Catal. 2018, 8, 5485–5505. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Du, K.; Li, W.; Ding, L.; Chen, W.; Xie, S.; Zhang, Y.; Tang, Y. Synthesis of ZSM-5 zeolite nanosheets with tunable silanol nest contents across an ultra-wide pH range and their catalytic validation. Angew. Chem. Int. Ed. 2024, 63, e202405092. [Google Scholar] [CrossRef]
- Wang, H.; Hou, Y.; Sun, W.; Hu, Q.; Xiong, H.; Wang, T.; Yan, B.; Qian, W. Insight into the effects of water on the ethene to aromatics reaction with HZSM-5. ACS Catal. 2020, 10, 5288–5298. [Google Scholar] [CrossRef]
- Ene, A.B.; Archipov, T.; Roduner, E. Spectroscopic study of the adsorption of benzene on Cu/HZSM5 zeolites. J. Phys. Chem. C 2010, 114, 14571–14578. [Google Scholar] [CrossRef]
- Inagaki, S.; Sato, K.; Hayashi, S.; Tatami, J.; Kubota, Y.; Wakihara, T. Mechanochemical approach for selective deactivation of external surface acidity of ZSM-5 zeolite catalyst. ACS Appli. Mater. Interfaces 2015, 7, 4488–4493. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Lyu, H.; Chai, Y.; Liu, B.; Zhao, D.; Liu, C. Selective aromatization of 1-hexene to BTX over core-shell structured Silicalite-1@ZSM-5 catalyst. Sep. Purif. Technol. 2024, 349, 127881. [Google Scholar] [CrossRef]
- Emeis, C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 147, 347–354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Sun, Y.; Lin, S.; Bian, Z.; Han, Y.; Bi, X.; Zhang, Z.; Liu, X.; Liu, D.; Wang, Y.; et al. Modified Fischer–Tropsch Pathway for CO2 Hydrogenation to Aromatics: Impact of Si/Al Ratio of H-ZSM-5 Zeolite on Light Aromatics Selectivity. Catalysts 2025, 15, 557. https://doi.org/10.3390/catal15060557
Wang S, Sun Y, Lin S, Bian Z, Han Y, Bi X, Zhang Z, Liu X, Liu D, Wang Y, et al. Modified Fischer–Tropsch Pathway for CO2 Hydrogenation to Aromatics: Impact of Si/Al Ratio of H-ZSM-5 Zeolite on Light Aromatics Selectivity. Catalysts. 2025; 15(6):557. https://doi.org/10.3390/catal15060557
Chicago/Turabian StyleWang, Shaocong, Yu Sun, Shiyuan Lin, Zhongxu Bian, Yuanyuan Han, Xinze Bi, Zhaorui Zhang, Xiaojie Liu, Dandan Liu, Yang Wang, and et al. 2025. "Modified Fischer–Tropsch Pathway for CO2 Hydrogenation to Aromatics: Impact of Si/Al Ratio of H-ZSM-5 Zeolite on Light Aromatics Selectivity" Catalysts 15, no. 6: 557. https://doi.org/10.3390/catal15060557
APA StyleWang, S., Sun, Y., Lin, S., Bian, Z., Han, Y., Bi, X., Zhang, Z., Liu, X., Liu, D., Wang, Y., & Wu, M. (2025). Modified Fischer–Tropsch Pathway for CO2 Hydrogenation to Aromatics: Impact of Si/Al Ratio of H-ZSM-5 Zeolite on Light Aromatics Selectivity. Catalysts, 15(6), 557. https://doi.org/10.3390/catal15060557