Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. α-Glucosidase Inhibitory Activity Evaluation
2.3. Kinetic Enzymatic Studies
2.4. Cytotoxicity
2.5. Hypoglycemic Effect in Normal Rats
2.6. Docking Studies on Compound 20c with ntMGAM
3. Experimental Section
3.1. Materials and Instruments
3.2. Synthesis
3.2.1. Preparation of 5-O-Tosyl-d-arabinitol (12)
3.2.2. General Procedure for the Synthesis of Acetals (13a–r)
- 5-O-tosyl-1,3-O-(2,3-Dichlorobenzylidene)-d-arabinitol (13a). 13a can be obtained from 12 with a yield of 49%. Pale-yellow oils. = −14.5 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.74 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.23 (t, J = 5.9 Hz, 2H), 7.19–7.11 (m, 1H), 5.64 (s, 1H), 4.23 (t, J = 9.7 Hz, 2H), 4.09–4.02 (m, 3H), 3.85 (s, 2H), 3.74 (b r, 1H), 3.62 (br,1H), 2.35 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.2, 136.8, 133.1, 132.2, 131.2, 131.1, 129.9, 128.0, 127.5, 125.8, 98.5, 78.2, 72.6, 71.3, 67.2, 62.5, 21.7. MS (ESI) 463.0 (m + 1).
- 5-O-Tosyl-1,3-O-(2,4-dichlorobenzylidene)-d-arabinitol (13b). 13b can be obtained from 12 with a yield of 54%. Pale-yellow oils. = −23.6 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.73 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.4 Hz, 1H), 7.36–7.32 (m, 1H), 7.25–7.18 (m, 3H), 5.61 (s, 1H), 4.27–4.18 (m, 2H), 4.06 (t, J = 4.4 Hz, 3H), 4.00 (br, 1H), 3.89–3.81 (m, 2H), 3.50 (br, 1H), 2.36 (s, 3H), 13C NMR (75 MHz, CDCl3) δ 145.1, 135.5, 133.5, 133.3, 132.3, 129.9, 129.3, 128.7, 128.0, 127.2, 97.9, 78.1, 72.6, 71.3, 67.2, 62.4, 21.7. MS (ESI) 463.0 (M + 1).
- 5-O-Tosyl-1,3-O-(2,5-dichlorobenzylidene)-d-arabinitol (13c). 13c can be obtained from 12 with a yield of 44%. Pale-yellow oils. = −11.6 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.75 (d, J = 8.2 Hz, 2H), 7.55 (s, 1H), 7.29–7.21 (m, 4H), 5.61 (s, 1H), 4.31–4.19 (m, 2H), 4.12–4.04 (m, 3H), 3.88–3.81 (m, 2H), 3.49 (s, 1H), 2.34 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.0, 136.2, 132.8, 132.2, 131.1, 130.7, 130.3, 130.0, 129.9, 128.0, 127.8, 97.7, 78.1, 72.6, 71.2, 67.1, 62.4, 21.7. MS (ESI) 463.0 (M + 1).
- 5-O-Tosyl-1,3-O-(2-chloro-3-fluorobenzylidene)-d-arabinitol (13d). 13d can be obtained from 12 with a yield of 43%. Pale-yellow oils. = −22.3(c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.75 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 7.7 Hz, 1H), 7.33–7.28 (m, 1H), 7.25 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.4 Hz, 1H), 5.65 (s, 1H), 4.27–4.21 (m, 2H), 4.12–4.04 (m, 3H), 3.89–3.84 (m, 2H), 3.35 (br, 1H), 2.37 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 158.0 (d, J = 247.9 Hz), 145.1, 136.8, 132.3, 130.0, 129.9, 128.1, 128.0, 127.7 (d, J = 7.8 Hz), 122.7 (d, J = 3.4 Hz), 120.0 (d, J = 18.9 Hz), 119.9, 117.1 (d, J = 21.3 Hz), 98.0 (d, J = 3.0 Hz), 78.2, 72.6, 71.3, 67.2, 62.5, 21.6. MS (ESI) 447.1 (M + 1).
- 5-O-Tosyl-1,3-O-(2-chloro-5-fluorobenzylidene)-d-arabinitol (13e). 13e can be obtained from 12 with a yield of 43%. Pale-yellow oils. = −24.2(c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.70 (dd, J = 8.4, 2.0 Hz, 2H), 7.26–7.19 (m, 4H), 6.98–6.91 (m, 1H), 5.57 (s, 1H), 4.23–4.13 (m, 2H), 4.08–4.00 (m, 4H), 3.82–3.77 (m, 2H), 3.17 (s, 1H), 2.92 (s, 1H), 2.32 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.2, 136.5 (d, J = 7.6 Hz), 132.3, 131.0 (d, J = 8.1 Hz), 130.1, 130.0, 128.1, 127.7 (d, J = 3.0 Hz), 117.5 (d, J = 23.0 Hz), 114.9 (d, J = 24.9 Hz), 98.0, 78.3, 72.7, 71.1, 67.5, 62.6, 21.7. MS (ESI) 447.1 (M + 1).
- 5-O-Tosyl-1,3-O-(3,4-Dichlorobenzylidene)-d-arabinitol (13f). 13f can be obtained from 12 with a yield of 42%. Pale-yellow oils. = −33.7 (c = 0.50,MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.80–7.75 (m, 2H), 7.44–7.42 (m, 1H), 7.39 (d, J = 8.3 Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H), 7.18 (dd, J = 8.3, 2.1 Hz, 1H), 5.40 (s, 1H), 4.22–4.18 (m, 2H), 4.10–4.02 (m, 2H), 3.90–3.87 (m, 1H), 3.87–3.80 (m, 2H), 3.65 (br, 2H), 2.36 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.3, 137.5, 133.1, 132.4, 132.3, 130.3, 130.0, 128.1, 128.0, 125.6, 99.3, 77.7, 72.4, 70.9, 67.3, 62.5, 21.7. MS (ESI) 463.0 (M + 1).
- 5-O-Tosyl-1,3-O-(3,5-Dichlorobenzylidene)-d-arabinitol (13g). 13g can be obtained from 12 with a yield of 55%. Pale-yellow oils. = −33.7 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.80 (d, J = 8.3 Hz, 2H), 7.35–7.33 (m, 2H), 7.31 (s, 1H), 7.26 (d, J = 2.0 Hz, 2H), 5.41 (s, 1H), 4.24 (d, J = 3.0 Hz, 2H), 4.10–4.03 (m, 2H), 3.91–3.82 (m, 3H), 3.09 (br, 1H), 2.86 (br, 1H), 2.39 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.4, 140.4, 135.0, 132.4, 132.4, 130.1, 129.2, 128.1, 124.7, 99.2, 77.9, 72.5, 70.8, 67.6, 62.6, 21.8. MS (ESI) 463.0 (M + 1).
- 5-O-Tosyl-1,3-O-(3-Chloro-5-fluorobenzylidene)-d-arabinitol (13h). 13h can be obtained from 12 with a yield of 41%. Pale-yellow oils. = −13.7 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.81 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 3H), 7.09 (dq, J = 8.3, 2.8, 2.2 Hz, 1H), 6.98 (dt, J = 8.9, 1.9 Hz, 1H), 5.43 (s, 1H), 4.30–4.20 (m, 3H), 4.07 (d, J = 11.5 Hz, 2H), 3.94–3.86 (m, 3H), 3.19 (d, J = 6.4 Hz, 1H), 2.92 (d, J = 10.3 Hz, 1H), 2.41 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.4, 140.9(d, J = 8.5 Hz), 135.1 (d, J = 10.6 Hz), 132.5, 130.1, 128.2, 128.1, 122.3 (d, J = 3.15 Hz), 116.8 (d, J = 24.6 Hz), 111.9 (d, J = 23.0 Hz), 99.2, 77.9, 72.5, 70.8, 67.6, 62.6, 21.7. MS (ESI) 447.1 (M + 1).
- 5-O-Tosyl-1,3-O-(3,5-bis(trifluoromethyl)benzylidene)-d-arabinitol (13i). 13i can be obtained from 12 with a yield of 56%. Pale-yellow oils. = −55.4 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.88 (d, J = 5.4 Hz, 3H), 7.81–7.78 (m, 2H), 7.30 (d, J = 8.1 Hz, 2H), 5.59 (s, 1H), 4.35–4.29 (m, 1H), 4.24 (d, J = 3.7 Hz, 2H), 4.14 (d, J = 12.1 Hz, 2H), 3.95 (d, J = 13.4 Hz, 2H), 3.46 (br, 2H), 2.38 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.5, 139.9, 132.4, 131.7 (q, J = 33.6 Hz), 130.3, 130.1, 128.1, 126.7, 124.07 (q, J = 161.5 Hz), 99.0, 78.1, 72.6, 71.0, 67.5, 62.6. MS (ESI) 531.0 (M + 1).
- 5-O-Tosyl-1,3-O-(5-fluoro-2-nitrobenzylidene)-d-arabinitol (13j). 13j can be obtained from 12 with a yield of 51%. Pale-yellow oils. = −38.7 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.94–7.90 (m, 1H), 7.81 (d, J = 6.4 Hz, 2H), 7.45 (d, J = 8.6 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.19–7.14 (m, 1H), 6.04 (s, 1H), 4.22 (d, J = 10.8 Hz, 2H), 4.07 (t, J = 8.8 Hz, 3H), 3.86 (d, J = 8.6 Hz, 2H), 3.31 (br, 2H), 2.39 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 166.2, 162.8, 145.2, 144.2, 134.78 (d, J = 9.0Hz), 132.4, 130.0, 128.1, 127.24 (J = 9.5Hz), 116.60 (d, J = 23.5 Hz), 115.18 (d, J = 26.1 Hz), 96.3, 78.6, 72.8, 71.3, 67.4, 62.4, 21.7. MS (ESI) 458.1 (M + 1).
- 5-O-Tosyl-1,3-O-(2-bromobenzylidene)-d-arabinitol (13k). 13k can be obtained from 12 with a yield of 54%. Pale-yellow oils. = −43.2 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.73 (d, J = 8.3 Hz, 2H), 7.58–7.52 (m, 1H), 7.50 (d, J = 1.4 Hz, 1H), 7.29–7.22 (m, 1H), 7.19 (d, J = 8.5 Hz, 3H), 5.56 (s, 1H), 4.31–4.22 (m, 1H), 4.18 (d, J = 12.9 Hz, 1H), 4.10–3.97 (m, 3H), 3.83 (d, J = 5.5 Hz, 2H), 3.74 (br, 2H), 2.31 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 144.9, 136.1, 132.7, 132.3, 130.6, 129.8, 127.9, 127.8, 127.4, 122.3, 100.2, 78.0, 72.5, 71.3, 67.0, 62.3, 21.6. MS (ESI) 473.0 (M + 1).
- 5-O-Tosyl-1,3-O-(m-bromobenzylidene)-d-arabinitol (13l). 13l can be obtained from 12 with a yield of 53%. Pale-yellow oils. = −30.2 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.78 (d, J = 7.8 Hz, 2H), 7.48 (s, 1H), 7.32–7.22 (m, 4H), 7.22–7.17 (m, 1H), 5.38 (s, 1H), 4.19 (q, J = 11.8, 11.0 Hz, 3H), 4.10–3.99 (m, 2H), 3.87–3.80 (m, 2H), 3.71 (br, 1H), 3.28 (br, 1H), 2.34 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.2, 139.5, 132.4, 132.1, 130.0, 129.9, 129.1, 128.0, 124.8, 122.3, 99.8, 77.7, 72.4, 71.0, 67.3, 62.5, 21.7. MS (ESI) 473.0 (M + 1).
- 5-O-Tosyl-1,3-O-(p-Bromobenzylidene)-d-arabinitol (13m). 13m can be obtained from 12 with a yield of 60%. Pale-yellow oils. = −42.2 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.79 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 7.9 Hz, 2H), 7.31 (d, 1H), 7.29–7.27 (d, 2H), 7.24 (d, 1H), 5.44 (s, 1H), 4.29–4.20 (m, 3H), 4.14–4.03 (m, 2H), 3.90–3.82 (m, 2H), 3.11 (br, 1H), 2.96 (br, 1H), 2.41 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.3, 136.4, 132.5, 131.7, 131.5, 130.1, 128.1, 127.8, 123.3, 100.3, 78.0, 72.5, 70.9, 67.6, 62.7, 21.8. MS (ESI) 473.0 (M + 1).
- 5-O-Tosyl-1,3-O-(2-fluorophenylmethylene)-d-arabinitol (13n). 13n can be obtained from 12 with a yield of 58%. Colorless oil. = −9.9 (c = 0.32, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.75 (d, J = 8.2 Hz, 2H), 7.51 (tdd, J = 7.5, 5.3, 1.9 Hz, 1H), 7.34 (tdd, J = 7.5, 5.3, 1.9 Hz, 1H), 7.24 (d, J = 8.2 Hz, 2H), 7.13 (td, J = 7.5, 1.1 Hz, 1H), 7.04 (ddd, J = 9.8, 8.3, 1.1 Hz, 1H), 5.68 (s, 1H), 4.29–4.23 (m, 1H), 4.23–4.17 (m, 1H), 4.13–4.02 (m, 3H), 3.87–3.89 (m, 2H), 3.19 (br., 2H), 2.36 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 161.7, 145.1, 131.0 (d, JC-F = 8.1 Hz), 130.0, 129.9, 128.1, 128.0, 127.6 (d, JC-F = 3.5 Hz), 124.1 (d, JC-F = 3.6 Hz), 115.5 (d, JC-F = 21.3 Hz), 96.6, 78.2, 72.6, 71.2, 67.5, 62.6, 21.7. MS (ESI) 413.1 (M + 1).
- 5-O-Tosyl-1,3-O-(2-iodobenzylidene)-d-arabinitol (13o). 13o can be obtained from 12 with a yield of 57%. Colorless oil. = −27.4 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.82 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.1 Hz, 2H), 7.54 (dd, J = 7.8, 1.7 Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.06 (td, J = 7.6, 1.8 Hz, 1H), 5.43 (s, 1H), 4.33 (d, J = 8.8 Hz, 1H), 4.27–4.19 (m, 1H), 4.16 (d, J = 5.4 Hz, 1H), 4.08 (t, J = 10.0 Hz, 2H), 3.87 (d, J = 8.1 Hz, 2H), 3.39 (br, 2H), 2.36 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.0, 139.4, 138.9, 132.4, 130.8, 129.9, 128.2, 128.0, 127.6, 103.8, 97.0, 78.1, 72.5, 71.5, 67.2, 62.4, 21.7. MS (ESI) 521.0 (M + 1).
- 5-O-Tosyl-1,3-O-(2-cyanobenzylidene)-d-arabinitol (13p). 13p can be obtained from 12 with a yield of 55%. Pale-yellow oils. = −28.7 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d)) δ 7.77–7.74 (m, 2H), 7.67 (d, J = 7.5 Hz, 1H), 7.60–7.55 (m, 2H), 7.48–7.44 (m, 1H), 7.24 (d, J = 8.3Hz, 2H), 5.63 (s, 1H), 4.30–4.22 (m, 3H), 4.14–4.10 (m, 3H), 3.90 (d, J = 8.9 Hz, 2H), 3.62 (br, 1H), 2.35 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.0, 140.4, 133.3, 132.9, 132.4, 129.9, 129.7, 128.1, 128.0, 127.7, 118.2, 110.6, 99.6, 78.2, 72.5, 71.4, 67.2, 62.6, 21.7. MS (ESI) 420.1 (M + 1).
- 5-O-Tosyl-1,3-O-(1-naphthalenebenzenemethylene)-d-arabinitol (13q). 13q can be obtained from 12 with a yield of 52%. Pale-yellow oils. = −24.7 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.95 (d, J = 7.5 Hz, 1H), 7.83 (t, J = 8.1 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 7.4 Hz, 1H), 7.51 (dt, J = 9.5, 5.8 Hz, 2H), 7.39 (t, J = 7.7 Hz, 1H), 7.05 (d, J = 8.0 Hz, 2H), 5.91 (s, 1H), 4.21 (d, J = 12.2 Hz, 1H), 4.17–4.12 (m, 2H), 4.07 (dd, J = 10.6, 5.0 Hz, 2H), 3.94 (d, J = 8.9 Hz, 1H), 3.84 (s, 1H), 3.29 (br, 2H), 2.15 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.0, 133.7, 132.6, 132.3, 130.4, 129.9, 129.8, 128.7, 128.0, 126.6, 125.9, 125.1, 123.8, 123.7, 99.3, 77.9, 72.5, 71.1, 67.3, 62.7, 21.5. MS (ESI) 445.1 (M + 1).
- 5-O-Tosyl-1,3-O-(2-phenylbenzylidene)-d-arabinitol (13r). 13r can be obtained from 12 with a yield of 57%. Pale-yellow oils. = −20.9 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.81 (d, J = 8.1 Hz, 2H), 7.76 (dd, J = 7.3, 1.9 Hz, 1H), 7.51–7.42 (m, 6H), 7.41–7.38 (m, 2H), 7.35–7.30 (m, 2H), 5.45 (s, 1H), 4.24–4.16 (m, 2H), 4.13–3.99 (m, 2H), 3.87 (d, J = 12.1 Hz, 1H), 3.78 (s, 1H), 3.67 (d, J = 8.3 Hz, 1H), 3.43 (br, 2H), 2.44 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.0, 141.1, 140.2, 134.7, 132.5, 130.1, 129.9, 129.3, 129.2, 128.2, 128.0, 127.6, 127.5, 126.6, 100.0, 78.1, 72.3, 71.4, 67.3, 62.5, 21.7. MS (ESI) 471.1 (M + 1).
3.2.3. General Procedure for the Synthesis of Epoxides (14a–r)
- 4,5-Anhydro-1,3-O-(2,3-dichlorobenzylidene)-d-arabinitol (14a). 14a can be obtained from 13a with a yield of 85%. Colorless oil. = –31.6 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.61 (d, J = 7.7 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.27–7.21 (m, 1H), 5.82 (s, 1H), 4.23 (dt, J = 12.0, 1.8 Hz, 1H), 4.08 (d, J = 12.1 Hz, 1H), 3.76 (d, J = 5.3 Hz, 2H), 3.33–3.29 (m, 1H), 2.98 (br, 1H), 2.91–2.88 (m, 1H), 2.82 (dt, J = 4.6, 2.0 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 136.8, 133.3, 131.3, 127.6, 126.0, 99.1, 80.2, 72.6, 64.3, 50.7, 45.9. MS (ESI) 291.0 (M + 1).
- 4,5-Anhydro-1,3-O-(2,4-dichlorobenzylidene)-d-arabinitol (14b). 14b can be obtained from 13b with a yield of 89%. Colorless oil. = –26.4 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.64 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 2.1 Hz, 1H), 7.29 (dd, J = 8.3, 2.0 Hz, 1H), 5.78 (s, 1H), 4.24 (dd, J = 12.1, 1.8 Hz, 1H), 4.08 (dd, J = 12.1, 1.4 Hz, 1H), 3.78–3.74 (m, 2H), 3.32 (ddd, J = 5.4, 3.9, 2.6 Hz, 1H), 3.06 (d, J = 9.5 Hz, 1H), 2.91 (t, J = 4.5 Hz, 1H), 2.84–2.81 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 135.8, 133.5, 133.3, 129.5, 128.9, 127.4, 98.5, 80.1, 72.6, 64.3, 50.7, 45.9. MS (ESI) 291.0 (M + 1).
- 4,5-Anhydro-1,3-O-(2,5-dichlorobenzylidene)-d-arabinitol (14c). 14c can be obtained from 13c with a yield of 88%. Colorless oil. = –16.3 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.70 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 4.2 Hz, 2H), 5.79 (s, 1H), 4.25 (dd, J = 12.2, 1.9 Hz, 1H), 4.09 (d, J = 12.1 Hz, 1H), 3.80–3.75 (m, 2H), 3.34 (p, J = 2.9 Hz, 1H), 3.03 (br, 1H), 2.93 (t, J = 4.5 Hz, 1H), 2.85–2.83 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 136.1, 133.1, 131.1, 130.8, 130.6, 128.1, 98.4, 80.2, 72.6, 64.3, 50.7, 46.0. MS (ESI) 291.0 (M + 1).
- 4,5-Anhydro-1,3-O-(2-chloro-3-fluorobenzylidene)-d-arabinitol (14d). 14d can be obtained from 13d with a yield of 88%. Colorless oil. = –23.1 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.43 (d, J = 7.9 Hz, 1H), 7.23–7.17 (m, 1H), 7.09 (t, J = 8.6 Hz, 1H), 5.75 (s, 1H), 4.17 (d, J = 12.1 Hz, 1H), 4.02 (d, J = 1 2.1 Hz, 1H), 3.70 (d, J = 5.3 Hz, 2H), 3.27–3.23 (m, 1H), 2.99 (d, J = 9.1 Hz, 1H), 2.85–2.82 (m, 1H), 2.76 (dd, J = 5.1, 2.6 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 158.1 (d, J = 248.1 Hz), 136.8, 127.9 (d, J = 7.7 Hz), 123.0 (d, J = 3.7 Hz), 120.1 (d, J = 18.6 Hz)117.3 (d, J = 21.1 Hz), 98.5 (d, J = 3.9 Hz). 80.1, 72.6, 64.3, 50.7, 45.9. MS (ESI) 275.0 (M + 1).
- 4,5-Anhydro-1,3-O-(2-chloro-5-fluorobenzylidene)-d-arabinitol (14e). 14e can be obtained from 13e with a yield of 91%. Colorless oil. = –26.3 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.43 (dd, J = 9.1, 3.0 Hz, 1H), 7.32 (dd, J = 8.9, 5.0 Hz, 1H), 7.02 (tdd, J = 7.5, 3.1, 1.2 Hz, 1H), 5.78 (s, 1H), 4.25 (d, J = 12.1 Hz, 1H), 4.09 (d, J = 12.2 Hz, 1H), 3.80–3.76 (m, 2H), 3.33 (ddd, J = 5.1, 3.9, 2.4 Hz, 1H), 2.99 (d, J = 10.1 Hz, 1H), 2.92 (td, J = 4.5, 3.9, 1.3 Hz, 1H), 2.85–2.82 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 161.4 (d, J = 246.8 Hz), 136.5 (d, J = 7.6 Hz), 131.0 (d, J = 8.1 Hz), 127.6 (d, J = 3.3 Hz), 117.6 (d, J = 22.9 Hz), 115.2 (d, J = 24.8 Hz). 98.4, 80.2, 72.6, 64.3, 50.7, 45.9. MS (ESI) 275.0 (M + 1).
- 4,5-Anhydro-1,3-O-(3,4-Dichlorobenzylidene)-d-arabinitol (14f). 14f can be obtained from 13f with a yield of 94%. Colorless oil. = –53.2 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.61 (d, J = 2.0 Hz, 1H), 7.44 (d, J = 8.3 Hz, 1H), 7.32 (dd, J = 8.3, 2.0 Hz, 1H), 5.50 (s, 1H), 4.24 (dd, J = 12.1, 1.9 Hz, 1H), 4.05 (dd, J = 12.1, 1.4 Hz, 1H), 3.75 (t, J = 2.4 Hz, 2H), 3.31 (ddd, J = 5.0, 4.0, 2.6 Hz, 1H), 3.02 (br, 1H), 2.92 (dd, J = 5.1, 4.0 Hz, 1H), 2.85 (dd, J = 5.0, 2.7 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 137.5, 133.2, 132.5, 130.4, 128.3, 125.6, 99.7, 79.5, 72.3, 64.2, 50.9, 45.9. MS (ESI) 291.0 (M + 1).
- 4,5-Anhydro-1,3-O-(3,5-dichlorobenzylidene)-d-arabinitol (14g). 14g can be obtained from 13g with a yield of 93%. Colorless oil. = –38.4 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.39 (d, J = 2.0 Hz, 2H), 7.35 (t, J = 2.0 Hz, 1H), 5.49 (s, 1H), 4.24 (dd, J = 12.1, 1.8 Hz, 1H), 4.04 (dd, J = 12.1, 1.4 Hz, 1H), 3.78–3.75 (m, 2H), 3.32 (ddd, J = 5.0, 4.0, 2.6 Hz, 1H), 3.05 (d, J = 10.0 Hz, 1H), 2.93 (dd, J = 5.1, 3.9 Hz, 1H), 2.85 (dd, J = 5.0, 2.6 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 140.4, 135.0, 129.2, 124.9, 99.5, 79.6, 72.3, 64.2, 50.8, 45.9. MS (ESI) 291.0 (M + 1).
- 4,5-Anhydro-1,3-O-(3-chloro-5-fluorobenzylidene)-d-arabinitol (14h). 14h can be obtained from 13h with a yield of 84%. Colorless oil. = –40.6 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.26 (d, J = 1.9 Hz, 1H), 7.07 (ddt, J = 12.8, 8.4, 2.1 Hz, 2H), 5.46 (s, 1H), 4.21 (dd, J = 12.1, 1.8 Hz, 1H), 4.01 (dd, J = 12.1, 1.4 Hz, 1H), 3.73 (d, J = 6.0 Hz, 2H), 3.28 (td, J = 4.4, 2.5 Hz, 1H), 2.98 (d, J = 10.0 Hz, 1H), 2.89 (t, J = 4.6 Hz, 1H), 2.82 (dd, J = 5.0, 2.7 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 158.5 (d, J = 250.0 Hz), 134.6 (d, J = 3.8 Hz),128.7, 126.2 (d, J = 7.4 Hz), 121.0 (d, J = 18.0 Hz), 116.5 (d, J = 21.3 Hz). 99.9, 79.6, 72.3, 64.2, 50.9, 45.9. MS (ESI) 275.0 (M + 1).
- 4,5-Anhydro-1,3-O-(3,5-bis(trifluoromethyl)benzylidene)-d-arabinitol (14i). 14i can be obtained from 13i with a yield of 87%. Colorless oil. = –18.1 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.97 (s, 2H), 7.87 (s, 1H), 5.65 (s, 1H), 4.29 (d, J = 12.3 Hz, 1H), 4.10 (d, J = 12.2 Hz, 1H), 3.80 (d, J = 8.8 Hz, 2H), 3.37–3.33 (m, 1H), 3.00–2.93 (m, 2H), 2.87 (dd, J = 5.1, 2.7 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 139.8, 131.8 (q, J = 33.7 Hz), 126.7 (d, J = 2.61 Hz), 125.1, 123.1 (dq, J = 7.6, 3.9 Hz), 121.5, 99.2, 79.7, 72.4, 64.2, 50.8, 45.9. MS (ESI) 359.1 (M + 1).
- 4,5-Anhydro-1,3-O-(5-fluoro-2-nitrobenzylidene)-d-arabinitol (14j). 14j can be obtained from 13j with a yield of 86%. Colorless oil. = –11.4 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.96 (dd, J = 9.0, 4.9 Hz, 1H), 7.59 (dd, J = 9.2, 2.9 Hz, 1H), 7.17 (ddd, J = 9.0, 7.1, 2.9 Hz, 1H), 6.17 (s, 1H), 4.23 (dd, J = 12.1, 1.8 Hz, 1H), 4.09 (dd, J = 12.2, 1.4 Hz, 1H), 3.79–3.75 (m, 2H), 3.29 (ddd, J = 5.1, 4.0, 2.6 Hz, 1H), 2.93–2.89 (m, 2H), 2.82–2.80 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 164.7 (d, J = 256.5 Hz), 135.0 (d, J = 8.9 Hz), 127.5 (d, J = 9.6 Hz), 116.7 (d, J = 23.3 Hz), 115.3 (d, J = 26.0 Hz), 99.7, 96.7, 80.3, 72.7, 64.3, 50.6, 45.7. MS (ESI) 286.1 (M + 1).
- 4,5-Anhydro-1,3-O-(o-bromobenzylidene)-d-arabinitol (14k). 14k can be obtained from 13k with a yield of 92%. Colorless oil. = –34.7 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.68 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.22 (t, J = 7.7 Hz, 1H), 5.77 (s, 1H), 4.24 (d, J = 12.1 Hz, 1H), 4.08 (d, J = 12.0 Hz, 1H), 3.75 (t, J = 7.1 Hz, 2H), 3.35–3.31 (m, 1H), 3.07 (d, J = 10.0 Hz, 1H), 2.87 (dt, J = 18.0, 4.6 Hz, 2H). 13C NMR (75 MHz, CDCl3) δ 136.1, 132.9, 130.9, 128.1, 127.6, 122.4, 101.0, 80.2, 72.6, 64.3, 50.7, 46.0. MS (ESI) 301.0 (M + 1).
- 4,5-Anhydro-1,3-O-(m-bromobenzylidene)-d-arabinitol (14l). 14l can be obtained from 13l with a yield of 85%. Colorless oil. = –28.9 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.66 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 5.51 (s, 1H), 4.23 (dd, J = 12.1, 1.9 Hz, 1H), 4.04 (dd, J = 12.1, 1.4 Hz, 1H), 3.77–3.73 (m, 2H), 3.31 (ddd, J = 5.2, 4.0, 2.6 Hz, 1H), 3.02 (br, 1H), 2.91 (dd, J = 5.1, 3.9 Hz, 1H), 2.85 (dd, J = 5.0, 2.7 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 139.5, 132.3, 130.0, 129.3, 124.8, 122.4, 100.3, 79.6, 72.3, 64.3, 50.9, 46.0. MS (ESI) 301.0 (M + 1).
- 4,5-Anhydro-1,3-O-(p-bromobenzylidene)-d-arabinitol (14m). 14m can be obtained from 13m with a yield of 85%. Colorless oil. = −42.4 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.56 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 5.56 (s, 1H), 4.28 (dd, J = 12.0, 1.9 Hz, 1H), 4.10 (dd, J = 12.0, 1.4 Hz, 1H), 3.81–3.78 (m, 2H), 3.35 (dt, J = 4.7, 2.3 Hz, 1H), 3.11 (br, 1H), 2.97–2.88 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 136.5, 131.5, 127.9, 123.4, 100.6, 79.6, 72.3, 64.3, 50.9, 46.0. MS (ESI) 301.0 (M + 1).
- 4,5-Anhydro-1,3-O-(o-fluorophenylmethylene)-d-arabinitol (14n). 14n can be obtained from 13n with a yield of 91%. Pale-yellow oils. = −33.1 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.62 (td, J = 7.5, 1.9 Hz, 1H), 7.38–7.33 (m, 1H), 7.16 (td, J = 7.5, 1.3 Hz, 1H), 7.09–7.03 (m, 1H), 5.83 (s, 1H), 4.24 (dd, J = 12.1, 2.0 Hz, 1H), 4.08 (dd, J = 12.1, 1.3 Hz, 1H), 3.79–3.74 (m, 2H), 3.32 (ddd, J = 5.2, 4.0, 2.6 Hz, 1H), 2.96–2.89 (m, 2H), 2.83 (dd, J = 5.2, 2.6 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 131.2 (d, JC-F = 8.5 Hz), 127.8 (d, JC-F = 3.6 Hz), 124.3 (d, JC-F = 3.6 Hz), 115.7 (d, JC-F = 21.1 Hz), 97.0 (d, JC-F = 4.2 Hz), 80.1, 72.6, 64.5, 50.8, 46.0. MS (ESI) 241.1 (M + 1).
- 4,5-Anhydro-1,3-O-(o-iodobenzylidene)-d-arabinitol (14o). 14o can be obtained from 13o with a yield of 90%. Colorless oil. = –29.6 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.85 (dd, J = 7.9, 1.2 Hz, 1H), 7.65 (dd, J = 7.8, 1.7 Hz, 1H), 7.40 (td, J = 7.6, 1.2 Hz, 1H), 7.08 (td, J = 7.6, 1.8 Hz, 1H), 5.60 (s, 1H), 4.26 (dd, J = 12.1, 1.9 Hz, 1H), 4.11 (dd, J = 12.1, 1.4 Hz, 1H), 3.80 (s, 1H), 3.76 (dd, J = 5.5, 1.2 Hz, 1H), 3.35 (ddd, J = 5.4, 3.9, 2.6 Hz, 1H), 3.11 (d, J = 10.4 Hz, 1H), 2.92 (dd, J = 5.1, 4.0 Hz, 1H), 2.88 (dd, J = 5.1, 2.6 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 139.6, 138.9, 131.1, 128.4, 127.8, 104.6, 97.0, 80.3, 72.5, 64.3, 50.6, 46.0. MS (ESI) 349.0 (M + 1).
- 4,5-Anhydro-1,3-O-(o-cyanobenzylidene)-d-arabinitol (14p). 14p can be obtained from 13p with a yield of 91%. Colorless oil. = –49.1 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.71 (d, J = 7.4 Hz, 1H), 7.64–7.57 (m, 1H), 7.51–7.46 (m, 1H), 5.72 (s, 1H), 4.29 (dd, J = 12.1, 2.0 Hz, 1H), 4.10 (d, J = 12.1 Hz, 1H), 3.88 (d, J = 4.7 Hz, 1H), 3.81 (br, 1H), 3.42–3.28 (m, 2H), 2.91 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 140.3, 133.6, 132.9, 129.9, 127.9, 118.5, 110.9, 100.4, 79.4, 72.6, 64.5, 62.5, 50.9, 45.6. MS (ESI) 248.1 (M + 1).
- 4,5-Anhydro-1,3-O-(1-naphthalene)-d-arabinitol (14q). 14q can be obtained from 13q with a yield of 85%. Colorless oil. = –35.2 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.89–7.88 (m, 1H), 7.81 (dd, J = 7.2, 1.3 Hz, 1H), 7.51 (dtd, J = 11.3, 8.1, 4.4 Hz, 3H), 6.10 (s, 1H), 4.30 (dd, J = 12.0, 2.0 Hz, 1H), 4.15 (dd, J = 12.1, 1.4 Hz, 1H), 3.87–3.79 (m, 2H), 3.38–3.36 (m, 1H), 3.09 (br, 1H), 2.91–2.87 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 133.8, 132.6, 130.4, 130.0, 128.8, 126.5, 125.8, 125.1, 124.2, 123.8, 100.3, 79.9, 72.5, 64.5, 51.0, 46.0. MS (ESI) 273.1 (M + 1).
- 4,5-Anhydro-1,3-O-(2-phenylbenzylidene)-d-arabinitol (14r). 14r can be obtained from 13r with a yield of 87%. Colorless oil. = –13.0 (c = 0.50, MeOH). 1H NMR (300 MHz, chloroform-d) δ 7.70–7.63 (m, 1H), 7.36–7.32 (m, 7H), 7.22–7.17 (m, 1H), 5.32 (s, 1H), 4.06 (t, J = 10.0 Hz, 1H), 3.78 (d, J = 11.8 Hz, 1H), 3.57 (d, J = 10.6 Hz, 1H), 3.41 (d, J = 5.5 Hz, 1H), 3.17 (t, J = 4.3 Hz, 1H), 2.78–2.71 (m, 2H), 2.63–2.58 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 141.1, 140.4, 134.7, 130.3, 129.6, 129.3, 128.1, 127.8, 127.5, 126.5, 100.4, 79.9, 72.3, 64.4, 50.7, 45.9. MS (ESI) 299.1 (M + 1).
3.2.4. General Procedure for Coupling Reactions
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(2,3-dichlorobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19a). 19a was obtained from 14a and 15 with a yield of 46%. Pale-yellow oils. = –15.6 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.77 (dd, J = 7.8, 1.6 Hz, 1H), 7.55 (dd, J = 8.0, 1.7 Hz, 1H), 7.34 (t, J = 7.9 Hz, 1H), 5.93 (s, 1H), 4.64 (q, J = 2.6 Hz, 1H), 4.42–4.35 (m, 2H), 4.22–4.17 (m, 2H), 4.11–4.05 (m, 1H), 4.03–4.02 (m, 2H), 3.96 (s, 1H), 3.92 (d, J = 2.1 Hz, 1H), 3.86 (dd, J = 3.2, 1.7 Hz, 3H), 3.74 (dd, J = 13.2, 8.8 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 138.8, 133.7, 132.0, 132.0, 128.8, 127.8, 99.6, 82.8, 79.5, 73.9, 73.8, 67.1, 63.1, 61.0, 52.0, 51.9. HRMS (ESI) calcd for C17H23Cl2O7S+ [M]+ 441.0536 found 441.0528.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(2,4-dichlorobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19b). 19b was obtained from 14b and 15 with a yield of 46%. Pale-yellow oils. = –15.2 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.80 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 2.1 Hz, 1H), 7.36 (dd, J = 8.4, 2.1 Hz, 1H), 5.88 (s, 1H), 4.65 (q, J = 2.6 Hz, 1H), 4.41–4.35 (m, 2H), 4.25–4.17 (m, 2H), 4.11–4.00 (m, 3H), 3.98–3.96 (m, 1H), 3.92–3.91 (m, 1H), 3.88–3.83 (m, 3H), 3.74 (dd, J = 13.1, 9.3 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 136.4, 135.4, 134.6, 130.7, 129.9, 128.3, 99.0, 82.6, 79.4, 73.8, 73.7, 67.1, 63.0, 60.9, 51.9, 51.8. HRMS (ESI) calcd for C17H23Cl2O7S+ [M]+ 441.0536 found 441.0537.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(2,5-dichlorobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19c). 19c was obtained from 14c and 15 with a yield of 46%. Pale-yellow oils. = –24.3 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.85–7.82 (m, 1H), 7.41–7.35 (m, 2H), 5.90 (s, 1H), 4.63 (d, J = 2.5 Hz, 1H), 4.38 (q, J = 5.4 Hz, 2H), 4.23–4.17 (m, 2H), 4.09–3.96 (m, 4H), 3.92 (q, J = 3.9, 3.2 Hz, 1H), 3.87–3.84 (m, 3H), 3.73 (dd, J = 13.1, 8.7 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 138.2, 134.0, 132.2, 131.8, 131.4, 129.6, 98.9, 82.7, 79.5, 73.9, 73.8, 67.1, 63.1, 60.9, 52.0, 51.9. HRMS (ESI) calcd for C17H23Cl2O7S+ [M]+ 441.0536 found 441.0526.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(2-chloro-3-fluorobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19d). 19d was obtained from 14d and 15 with a yield of 55%. Pale-yellow oils. = –26.3 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.64 (dt, J = 7.8, 1.4 Hz, 1H), 7.36 (td, J = 8.1, 5.1 Hz, 1H), 7.25 (td, J = 8.7, 1.7 Hz, 1H), 5.92 (s, 1H), 4.64 (q, J = 2.6 Hz, 1H), 4.42–4.35 (m, 2H), 4.22 (dd, J = 3.8, 1.7 Hz, 2H), 4.11–4.00 (m, 4H), 3.96–3.92 (m, 1H), 3.88–3.86 (m, 3H), 3.74 (dd, J = 13.2, 8.8 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 159.1 (d, J = 246.4 Hz), 138.7, 129.1 (d, J = 7.8 Hz), 124.7 (d, J = 3.3 Hz), 120.8 (d, J = 18.6 Hz), 117.9 (d, J = 21.3 Hz), 99.0 (d, J = 3.6 Hz), 82.7, 79.5, 73.9, 73.8, 67.1, 63.1, 61.0, 52.0, 51.9. HRMS (ESI) calcd for C17H23ClFO7S+ [M]+ 425.0832 found 425.0816.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(2-chloro-5-fluorobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19e). 19e was obtained from 14e and 15 with a yield of 51%. Pale-yellow oils. = –24.6 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.61 (dd, J = 9.4, 3.1 Hz, 1H), 7.48–7.42 (m, 1H), 7.16 (td, J = 8.3, 3.1 Hz, 1H), 5.92 (s, 1H), 4.69–4.61 (m, 1H), 4.45–4.39 (m, 2H), 4.24 (dd, J = 5.0, 1.8 Hz, 2H), 4.14–4.09 (m, 2H), 3.95 (d, J = 2.2 Hz, 1H), 3.90 (t, J = 3.3 Hz, 4H), 3.81–3.74 (m, 1H). 13C NMR (75 MHz, methanol-d4) δ 162.7 (d, J = 245.2 Hz), 138.6 (d, J = 7.7 Hz), 132.0 (d, J = 8.3 Hz), 128.7, 118.4 (d, J = 23.4 Hz), 116.4 (d, J = 25.2 Hz), 99.0, 82.7, 79.5, 73.9, 73.8, 67.1, 63.1, 60.9, 52.0, 51.8. HRMS (ESI) calcd for C17H23ClFO7S+ [M]+ 425.0832 found 425.0811.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(3,4-dichlorobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19f). 19f was obtained from 14f and 15 with a yield of 43%. Pale-yellow oils. = –26.4 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.74–7.72 (m, 1H), 7.54–7.44 (m, 2H), 5.65 (d, J = 4.6 Hz, 1H), 4.64 (q, 1H), 4.42–4.33 (m, 2H), 4.25–4.12 (m, 3H), 4.11–4.02 (m, 3H), 3.98–3.92 (m, 2H), 3.87–3.83 (m, 2H), 3.79–3.71 (m, 1H). 13C NMR (75 MHz, methanol-d4) δ 140.0, 131.3, 129.8, 127.5, 100.9, 82.6, 79.5, 73.8, 73.6, 67.3, 63.2, 61.0, 52.0, 51.9. HRMS (ESI) calcd for C17H23Cl2O7S+ [M]+ 441.0536 found 441.0519.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(3,5-dichlorobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19g). 19g was obtained from 14g and 15 with a yield of 47%. Pale-yellow oils. = –19.9 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.54–7.52 (m, 2H), 7.43 (t, J = 2.0 Hz, 1H), 5.64 (s, 1H), 4.64 (q, J = 2.6 Hz, 1H), 4.41–4.33 (m, 2H), 4.24–4.13 (m, 3H), 4.04 (dd, J = 8.2, 4.4 Hz, 2H), 3.98–3.88 (m, 3H), 3.87 (d, J = 2.6 Hz, 2H), 3.76 (dd, J = 13.2, 9.1 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 143.0, 135.9, 129.8, 126.5, 126.3, 100.7, 82.6, 79.5, 73.7, 73.6, 67.3, 63.2, 61.0, 52.1, 51.9. HRMS (ESI) calcd for C17H23Cl2O7S+ [M]+ 441.0536 found 441.0522.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(3-chloro-5-fluorobenzylidene)-d-arabinitol5-yl) episulfoniumylidene]-d-arabinitol chloride (19h). 19h was obtained from 14h and 15 with a yield of 41%. Pale-yellow oils. = –23.9 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 5.86 (d, J = 1.8 Hz, 1H), 5.75–5.66 (m, 1H), 5.62 (dh, J = 9.2, 2.1 Hz, 1H), 4.10 (d, J = 3.9 Hz, 1H), 3.11–3.04 (m, 1H), 2.87–2.70 (m, 2H), 2.63 (qd, J = 11.5, 10.9, 5.6 Hz, 3H), 2.55–2.47 (m, 2H), 2.44–2.36 (m, 2H), 2.33–2.24 (m, 3H), 2.24–2.18 (m, 1H). 13C NMR (75 MHz, methanol-d4) δ 162.6 (d, J = 248.1 Hz), 142.0 (d, J = 8.3 Hz), 134.5 (d, J = 10.5 Hz), 122.6 (d, J = 3.0 Hz), 116.0 (d, J = 25.3 Hz), 112.1 (d, J = 23.0 Hz), 99.4, 81.3, 78.2, 72.4, 72.3, 66.0, 61.9, 59.7. HRMS (ESI) calcd for C17H23ClFO7S+ [M]+ 425.0832 found 425.0866.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(3,5-bis(trifluoromethyl)benzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19i). 19i was obtained from 14i and 15 with a yield of 38%. Pale-yellow oils. = –26.1 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 8.19–8.16 (m, 2H), 7.96 (s, 1H), 5.85 (d, J = 1.9 Hz, 1H), 4.62 (dq, J = 14.0, 2.9 Hz, 1H), 4.45–4.36 (m, 2H), 4.29–4.23 (m, 2H), 4.12–4.04 (m, 3H), 3.96–3.95 (m, 2H), 3.92–3.87 (m, 3H), 3.77 (dd, J = 13.2, 8.9 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 142.4, 130.2, 132.6 (q, J = 33.4 Hz), 126.6, 128.6 (d, J = 3.2 Hz), 123.6 (dq, J = 8.3, 4.8 Hz), 122.9, 100.7, 82.7, 79.5, 73.7, 67.3, 63.2, 61.0, 52.0, 51.9. HRMS (ESI) calcd for C19H23F6O7S+ [M]+ 509.1063 found 509.1085.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(5-fluoro-2-nitrobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19j). 19j was obtained from 14j and 15 with a yield of 39%. Pale-yellow oils. = –29.7 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 8.02–7.97 (m, 2H), 7.67 (dd, J = 9.5, 2.8 Hz, 1H), 7.37–7.31 (m, 1H), 6.18 (s, 1H), 4.68–4.58 (m, 1H), 4.43 (d, J = 2.5 Hz, 1H), 4.39–4.33 (m, 1H),4.25–4.15 (m, 3H),4.10 (d, J = 7.2 Hz, 3H),3.99–3.94 (m, 2H), 3.88–3.83 (m, 2H),3.65–3.58 (m, 1H). 13C NMR (75 MHz, methanol-d4) δ 165.7 (d, J = 253.6 Hz), 146.0 (d, J = 3.2 Hz), 136.3 (d, J = 9.2 Hz), 128.3 (d, J = 10.0 Hz), 117.7 (d, J = 23.6 Hz), 116.1 (d, J = 26.1 Hz), 97.5, 82.4, 79.6, 79.4, 73.9, 73.8, 66.8, 62.9, 60.9, 51.8, 51.5. HRMS (ESI) calcd for C17H23FNO9S+ [M]+ 436.1072 found 436.1035.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(o-bromobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19k). 19k was obtained from 14k and 15 with a yield of 51%. Pale-yellow oils. = –13.7 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.83 (dd, J = 7.8, 1.8 Hz, 1H), 7.60 (dd, J = 7.9, 1.3 Hz, 1H), 7.44–7.39 (m, 1H), 7.31 (qd, J = 7.2, 2.6 Hz, 1H), 5.87 (s, 1H), 4.67 (q, J = 2.4 Hz, 1H), 4.45–4.38 (m, 2H), 4.29–4.20 (m, 2H), 4.16–4.11 (m, 1H), 4.08–4.00 (m, 2H), 4.00–3.92 (m, 2H), 3.92–3.88 (m, 3H), 3.79 (dt, J = 13.1, 7.1 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 138.0, 133.6, 131.8, 129.6, 128.5, 123.4, 101.7, 82.7, 79.4, 73.9, 73.7, 67.1, 63.1, 60.9, 51.9. HRMS (ESI) calcd for C17H24BrO7S+ [M]+ 451.0421 found 451.0411.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(m-bromobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19l). 19l was obtained from 14l and 15 with a yield of 54%. Pale-yellow oils. = –13.9 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.75 (t, J = 1.9 Hz, 1H), 7.50 (dd, J = 7.8, 1.8 Hz, 2H), 7.32–7.25 (m, 1H), 5.63 (s, 1H), 4.64–4.58 (m, 1H), 4.42–4.34 (m, 2H), 4.23–4.16 (m, 2H), 4.13–4.06 (m, 2H), 3.98–3.88 (m, 3H), 3.86 (d, J = 2.6 Hz, 2H), 3.83–3.82 (m, 1H), 3.77 (dd, J = 9.0, 4.1 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 141.8, 133.0, 131.0, 130.6, 126.5, 123.0, 101.6, 82.6, 79.5, 73.8, 73.6, 67.3, 63.2, 61.5, 61.0, 52.0, 51.9. HRMS (ESI) calcd for C17H24BrO7S+ [M]+ 451.0421 found 451.0429.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(p-bromobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19m). 19m was obtained from 14m and 15 with a yield of 56%. Pale-yellow oils. = –18.7 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.54–7.45 (m, 4H), 5.63 (s, 1H), 4.63 (q, J = 2.6 Hz, 1H), 4.42–4.34 (m, 2H), 4.22–4.16 (m, 2H), 4.08–4.00 (m, 3H), 3.98–3.95 (m, 1H), 3.92–3.90 (m, 1H), 3.87–3.82 (m, 3H), 3.79–3.72 (m, 1H). 13C NMR (75 MHz, methanol-d4) δ 138.7, 132.2, 129.5, 123.8, 101.7, 82.5, 79.5, 73.8, 73.5, 67.3, 63.2, 61.5, 60.9, 52.0, 51.9. HRMS (ESI) calcd for C17H24BrO7S+ [M]+ 451.0421 found 451.0433.
- 1,4-Dideoxy-1,4-{(R)-[5-deoxy-1,3-O-(o-fluorophenylmethylene)-d-arabinitol-5-yl] episulfoniumylidene}-d-arabinitol chloride (19n). 19n was obtained from 14n and 15 with a yield of 45%. Pale-yellow oils. = −31.6 (c = 0.542, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.65 (td, J = 7.5, 1.8 Hz, 1H), 7.28 (tdd, J = 7.5, 5.3, 1.8 Hz, 1H), 7.09 (td, J = 7.5, 1.1 Hz, 1H), 6.98 (ddd, J = 10.5, 8.3, 1.1 Hz, 1H), 5.82 (s, 1H), 4.53 (q, J = 2.6 Hz, 1H), 4.32–4.26 (m, 2H), 4.09 (qd, J = 12.3, 1.8 Hz, 2H), 3.93 (dd, J = 7.3, 5.5 Hz, 2H), 3.88 (dd, J = 8.0, 1.6 Hz, 1H), 3.85–3.79 (m, 1H), 3.75 (td, J = 8.0, 7.3, 2.5 Hz, 4H), 3.63 (dd, J = 13.2, 8.7 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 163.1, 159.8, 132.0 (d, JC-F = 8.4 Hz), 129.3 (d, J = 3.3 Hz), 129.3 (d, JC-F = 3.3 Hz), 125.2 (d, JC-F = 3.6 Hz), 116.1 (d, JC-F = 21.5 Hz), 97.3 (d, JC-F = 4.8 Hz), 82.7, 79.5, 74.0, 73.7, 67.2, 63.3, 61.0, 51.9. HRMS (ESI) calcd for C17H24FO7S+ [M]+ 391.1221, found 391.1214.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(o-iodobenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19o). 19o was obtained from 14o and 15 with a yield of 50%. Pale-yellow oils. = –29.2 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.84 (dd, J = 8.1, 3.9 Hz, 1H), 7.73 (dd, J = 8.4, 4.1 Hz, 1H), 7.40 (td, J = 7.6, 3.7 Hz, 1H), 7.12–7.06 (m, 1H), 5.64 (d, J = 4.2 Hz, 1H), 4.64–4.56 (m, 1H), 4.42–4.34 (m, 2H), 4.27–4.19 (m, 2H), 4.08–3.97 (m, 3H), 3.93–3.85 (m, 3H), 3.79–3.64 (m, 1H). 13C NMR (75 MHz, methanol-d4) δ 139.6, 139.1, 130.6, 127.9, 104.2, 96.8, 81.4, 78.2, 72.6, 72.5, 65.8, 61.7, 59.7, 50.8, 50.6, 47.5, 47.2, 46.9. HRMS (ESI) calcd for C17H24IO7S+ [M]+ 499.0282 found 499.0295.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(o-cyanobenzyliden)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19p). 19p was obtained from 14p and 15 with a yield of 48%. Pale-yellow oils. = –32.5 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.86 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 11.3 Hz, 2H), 7.56 (d, J = 7.6 Hz, 1H), 5.90 (s, 1H), 4.65 (s, 1H), 4.41 (s, 2H), 4.26 (d, J = 7.2 Hz, 2H), 4.08 (t, J = 12.8 Hz, 4H), 3.89 (s, 4H), 3.78 (d, J = 9.4 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 142.0, 134.2, 130.8, 128.2, 118.9, 111.7, 100.0, 82.3, 79.6, 79.2, 73.7, 73.6, 67.0, 63.1, 60.9, 51.7, 51.6. HRMS (ESI) calcd for C18H24NO7S+ [M]+ 398.1268 found 398.1273.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(1-naphthalene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19q). 19q was obtained from 14q and 15 with a yield of 56%. Pale-yellow oils. = –63.2 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 8.33 (d, J = 8.3 Hz, 1H), 7.91–7.85 (m, 2H), 7.80 (dt, J = 7.4, 1.9 Hz, 1H), 7.50 (ddt, J = 14.4, 6.6, 1.6 Hz, 3H), 6.20 (s, 1H), 4.58 (q, J = 2.5 Hz, 1H), 4.48–4.40 (m, 1H), 4.34–4.33 (m, 1H), 4.28 (t, J = 2.4 Hz, 2H), 4.16–4.06 (m, 4H), 3.98–3.96 (m, 1H), 3.93–3.87 (m, 2H), 3.85–3.83 (m, 1H), 3.79 (d, J = 2.4 Hz, 2H), 3.76–3.70 (m, 1H). 13C NMR (75 MHz, methanol-d4) δ 135.2, 134.6, 131.9, 130.6, 129.4, 127.2, 126.8, 126.0, 125.7, 125.6, 101.7, 82.8, 79.4, 73.8, 73.7, 67.4, 63.4, 60.9, 54.8, 52.0. HRMS (ESI) calcd for C21H27O7S+ [M]+ 423.1472 found 423.1477.
- 1,4-Dideoxy-1,4-[(R)-(5-deoxy-1,3-O-(2-phenylbenzylidene)-d-arabinitol-5-yl) episulfoniumylidene]-d-arabinitol chloride (19r). 19r was obtained from 14r and 15 with a yield of 41%. Pale-yellow oils. = –37.6 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.90–7.87 (m, 1H), 7.42–7.39 (m, 7H), 7.27–7.24 (m, 1H), 5.51 (s, 1H), 4.62 (d, J = 2.7 Hz, 1H), 4.39–4.36 (m, 2H), 4.30–4.15 (m, 3H),4.11–4.05 (m, 3H), 3.94–3.90 (m, 3H), 3.71 (s, 2H), 3.60 (d, J = 5.1 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 142.4, 141.8, 136.4, 130.7, 130.3, 130.0, 129.4, 129.1, 128.5, 128.2, 100.9, 82.9, 79.4, 73.8, 73.5, 67.2, 63.1, 61.0, 52.2, 51.9. HRMS (ESI) calcd for C23H29O7S+ [M]+ 449.1629 found 449.1663.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(2,3-Dichlorophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20a). 20a was obtained from 14a and 16 with a yield of 43%. Colorless solid. = –24.7 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.79–7.75 (m, 1H), 7.56 (dd, J = 8.1, 1.6 Hz, 1H), 7.34 (t, J = 7.9 Hz, 1H), 5.94 (s, 1H), 4.74 (q, J = 2.5 Hz, 1H), 4.47–4.43 (m, 1H), 4.36 (m, J = 8.1, 3.8 Hz, 1H), 4.21 (dd, J = 3.0, 1.6 Hz, 2H), 4.19–4.15 (m, 1H), 4.01–3.95 (m, 2H), 3.95–3.85 (m, 2H), 3.85–3.77 (m, 2H), 3.76 (d, J = 2.5 Hz, 2H). 13C NMR (75 MHz, methanol-d4) δ 138.9, 133.8, 132.1, 128.8, 127.8, 99.7, 83.5, 80.4, 80.3, 74.2, 73.8, 67.1, 63.4, 61.0, 49.8. HRMS (ESI) calcd for C17H23Cl2O7Se+ [M]+ 488.9981 found 488.9987.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(2,4-Dichlorophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20b). 20b was obtained from 14b and 16 with a yield of 43%. Colorless solid. = –23.8 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.80 (dd, J = 8.4, 3.9 Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.37 (dd, J = 8.5, 2.2 Hz, 1H), 5.89 (s, 1H), 4.79–4.60 (m, 1H), 4.46 (dd, J = 2.9, 1.3 Hz, 1H), 4.35 (m, J = 8.0, 3.8 Hz, 1H), 4.21–4.13 (m, 3H), 4.11–4.06 (m, 1H), 4.03–3.93 (m, 3H), 3.91–3.87 (m, 1H), 3.82 (d, J = 8.4 Hz, 2H), 3.75 (d, J = 2.5 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 136.6, 135.5, 134.7, 130.7, 130.0, 128.3, 99.1, 83.4, 80.4, 80.3, 74.2, 73.8, 67.1, 63.3, 61.0, 49.7,49.5. HRMS (ESI) calcd for C17H23Cl2O7Se+ [M]+ 488.9981 found 488.9979.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(2,5-Dichlorophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20c). 20c was obtained from 14c and 16 with a yield of 43%. Colorless solid. = –33.6 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.85 (s, 1H), 7.41–7.35 (m, 2H), 5.91 (s, 1H), 4.74 (s, 1H), 4.47 (d, J = 2.8 Hz, 1H), 4.36 (td, J = 8.2, 3.8 Hz, 1H), 4.20 (dd, J = 5.0, 2.1 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 4.06–3.88 (m, J = 6.9, 6.2 Hz, 4H), 3.84–3.83 (m, 1H), 3.78 (dd, J = 10.3, 3.0 Hz, 2H). 13C NMR (75 MHz, methanol-d4) δ 138.2, 134.0, 132.2, 131.8, 131.5, 129.6, 99.0, 83.4, 80.4, 80.3, 74.1, 73.8, 67.0, 63.3, 61.0, 49.8, 49.3. HRMS (ESI) calcd for C17H23Cl2O7Se+ [M]+ 488.9981 found 488.9984.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(2-Chloro-3-fluorophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20d). 20d was obtained from 14d and 16 with a yield of 52%. Colorless solid. = –36.2 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.64 (d, J = 7.7 Hz, 1H), 7.37 (m, J = 7.9, 5.3 Hz, 1H), 7.29–7.23 (m, 1H), 4.74 (s, 1H), 4.47 (d, J = 2.9 Hz, 1H), 4.36 (dt, J = 8.2, 4.1 Hz, 1H), 4.22–4.17 (m, 3H), 4.06–3.90 (m, 4H), 3.83 (d, J = 8.5 Hz, 2H), 3.76 (d, J = 2.6 Hz, 2H). 13C NMR (75 MHz, methanol-d4) δ 160.8, 157.5, 138.8, 129.2, 129.1, 124.7, 124.6, 120.7, 118.1, 117.8, 99.1, 99.1, 83.5, 80.4, 80.2, 74.2, 73.8, 67.1, 63.4, 61.0, 49.7,49.6. HRMS (ESI) calcd for C17H23ClFO7Se+ [M]+ 473.0276 found 473.0298.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(2-Chloro-5-fluorophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20e). 20e was obtained from 14e and 16 with a yield of 45%. Colorless solid. = –33.9 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.58 (dd, J = 9.4, 3.2 Hz, 1H), 7.41 (dd, J = 8.8, 4.9 Hz, 1H), 7.13 (m, J = 8.3, 3.1 Hz, 1H), 5.90 (s, 1H), 4.74 (s, 1H), 4.46 (d, J = 2.7 Hz, 1H), 4.39–4.33 (m, 1H), 4.33–4.13 (m, 3H), 4.10 (q, J = 7.2 Hz, 1H), 4.03–3.91 (m, 3H), 3.91–3.81 (m, 2H), 3.78 (dd, J = 12.6, 3.1 Hz, 2H). 13C NMR (75 MHz, methanol-d4) δ 132.0, 131.9, 118.6, 118.3, 116.6, 116.3, 99.0, 83.4, 80.4, 80.3, 74.2, 73.8, 67.0, 63.3, 61.5, 61.0, 49.8. HRMS (ESI) calcd for C17H23ClFO7Se+ [M]+ 473.0276 found 473.0277.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(3,4-Dichlorophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20f). 20f was obtained from 14f and 16 with a yield of 52%. Colorless solid. = –34.7 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.75 (d, J = 2.1 Hz, 1H), 7.54–7.45 (m, 2H), 5.65 (s, 1H), 4.74 (d, J = 2.8 Hz, 1H), 4.47 (d, J = 3.1 Hz, 1H), 4.35 (m, J = 7.7, 3.9 Hz, 1H), 4.19 (m, J = 6.9, 5.8, 3.1 Hz, 3H), 4.13–4.04 (m, 1H), 3.97 (m, J = 11.5, 6.1, 3.7 Hz, 3H), 3.89–3.78 (m, 2H), 3.78–3.72 (m, 1H). 13C NMR (75 MHz, methanol-d4) δ 140.0, 133.1, 131.4, 129.8, 127.5, 100.9, 83.1, 80.4, 80.2, 74.0, 73.6, 67.3, 63.4, 61.0, 49.0,48.7. HRMS (ESI) calcd for C17H23Cl2O7Se+ [M]+ 488.9981 found 488.9986.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(3,5-Dichlorophenyl)-5-hydroxy-1,3–dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium Chloride (20g). 20g was obtained from 14g and 16 with a yield of 46%. Colorless solid. = –29.8 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.54 (t, J = 2.3 Hz, 2H), 7.43 (t, J = 1.9 Hz, 1H), 5.65 (d, J = 3.7 Hz, 1H), 4.75 (p, J = 2.9 Hz, 1H), 4.47 (m, J = 4.6, 2.8, 1.5 Hz, 1H), 4.35 (m, J = 7.9, 3.8 Hz, 1H), 4.20 (m, J = 13.1, 6.2, 4.4 Hz, 3H), 4.13–4.06 (m, 1H), 4.01–3.92 (m, 3H), 3.89–3.81 (m, 2H), 3.78–3.73 (m, 2H). 13C NMR (75 MHz, methanol-d4) δ 143.0, 135.9, 129.8, 126.4, 126.4, 100.7, 83.2, 80.4, 80.2, 73.9, 73.6, 67.2, 63.4, 61.1, 49.7,49.6. HRMS (ESI) calcd for C17H23Cl2O7Se+ [M]+ 488.9981 found 488.9984.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(3-Chloro-5-fluorophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20h). 20h was obtained from 14h and 16 with a yield of 43%. Colorless solid. = –32.5 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.43 (s, 1H), 7.28 (d, J = 9.6 Hz, 1H), 7.20 (s, 1H), 5.65 (s, 1H), 4.74 (s, 1H), 4.47 (dd, J = 4.6, 2.2 Hz, 1H), 4.36 (td, J = 7.8, 7.1, 3.0 Hz, 1H), 4.18 (dt, J = 6.9, 2.6 Hz, 3H), 4.02–3.92 (m, 4H), 3.86–3.81 (m, 2H), 3.78–3.72 (m, 2H). 13C NMR (75 MHz, methanol-d4) δ 165.5, 143.4, 143.3, 136.0, 135.8, 123.9, 123.8, 117.5, 117.2, 113.5, 113.2, 100.7, 83.2, 82.6, 81.4, 80.4, 80.2, 74.0, 73.6, 67.3, 66.6, 63.4, 61.1, 49.7. HRMS (ESI) calcd for C17H23ClFO7Se+ [M]+ 473.0276 found 473.0297.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(3,5-Bis(trifluoromethyl)phenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20i). 20i was obtained from 14i and 16 with a yield of 40%. Colorless solid. = –42.3 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.72 (d, J = 6.6 Hz, 2H), 7.52 (s, 1H), 4.29 (s, 1H), 4.02 (d, J = 3.0 Hz, 1H), 3.92 (q, J = 5.8, 4.1 Hz, 1H), 3.89–3.78 (m, 2H), 3.74–3.71 (m, 1H), 3.65–3.48 (m, 3H), 3.42 (d, J = 5.2 Hz, 2H), 3.36–3.28 (m, 2H).13C NMR (75 MHz, methanol-d4) δ 142.4, 142.4, 132.8, 132.4, 128.5, 126.6, 123.0, 100.7, 83.3, 82.7, 80.4, 80.2, 73.9, 73.7, 67.2, 63.4, 61.1, 54.8, 49.7,49.6. HRMS (ESI) calcd for C19H23F6O7Se+ [M]+ 557.0508 found 557.0525.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(5-Fluoro-2-nitrophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20j). 20j was obtained from 14j and 16 with a yield of 39%. Colorless solid. = –43.2 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.99 (dd, J = 8.9, 4.9 Hz, 1H), 7.67 (dd, J = 9.6, 2.9 Hz, 1H), 7.34 (td, J = 9.3, 8.5, 2.7 Hz, 1H), 6.20 (d, J = 7.4 Hz, 1H), 4.78 (s, 1H), 4.51 (s, 1H), 4.33 (m, J = 7.8, 5.1 Hz, 1H), 4.28–4.18 (m, 3H), 4.10 (q, J = 7.2 Hz, 1H), 4.01 (m, J = 14.1, 13.0, 7.9 Hz, 2H), 3.94–3.85 (m, 3H), 3.77 (dd, J = 11.9, 3.2 Hz, 1H), 3.68 (dd, J = 11.9, 7.7 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 167.4, 164.1, 136.4, 136.3, 128.4, 128.3, 117.9, 117.5, 116.2, 115.9, 97.6, 83.2, 80.5, 80.2, 74.4, 73.9, 66.6, 63.1, 61.5, 61.1,49.5,49.3. HRMS (ESI) calcd for C17H23FNO9Se+ [M]+ 484.0517 found 484.0536.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(2-Bromophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20k). 20k was obtained from 14k and 16 with a yield of 53%. Colorless solid. = –24.3 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.82–7.79 (m, 1H), 7.57 (dd, J = 7.9, 1.3 Hz, 1H), 7.41–7.36 (m, 1H), 7.27 (td, J = 7.7, 1.8 Hz, 1H), 5.85 (s, 1H), 4.73 (q, J = 2.8 Hz, 1H), 4.46 (pd, J = 3.7, 2.9, 1.5 Hz, 1H), 4.36 (td, J = 8.0, 3.8 Hz, 1H), 4.25–4.15 (m, 3H), 4.10 (q, J = 7.1 Hz, 1H), 3.98–3.94 (m, 2H), 3.91 (dd, J = 4.3, 3.1 Hz, 1H), 3.87–3.82 (m, 2H), 3.74 (d, J = 2.5 Hz, 2H). 13C NMR (75 MHz, methanol-d4) δ 138.0, 133.6, 131.8, 129.6, 128.6, 123.4, 101.7, 83.4, 80.4, 80.2, 74.2, 73.8, 67.1, 63.4, 61.5, 61.0, 48.7. HRMS (ESI) calcd for C17H24BrO7Se+ [M]+ 498.9865 found 498.9867.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(3-Bromophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20l). 20l was obtained from 14l and 16 with a yield of 51%. Colorless solid. = –24.7 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.76 (s, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.32–7.27 (m, 1H), 5.65 (d, J = 3.4 Hz, 1H), 4.73 (s, 1H), 4.47 (m, 1H), 4.36 (td, J = 7.6, 3.9 Hz, 1H), 4.29–4.16 (m, 3H), 4.14–4.00 (m, 2H), 3.99–3.95 (m, 2H), 3.87–3.80 (m, 2H), 3.77–3.69 (m, 2H). 13C NMR (75 MHz, methanol-d4) δ 141.8, 133.0, 131.0, 130.6, 126.5, 123.1, 101.6, 83.2, 80.4, 80.2, 74.0, 73.6, 67.3, 63.5, 61.1, 49.7,49.6. HRMS (ESI) calcd for C17H24BrO7Se+ [M]+ 498.9865 found 498.9869.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(4-Bromophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20m). 20m was obtained from 14m and 16 with a yield of 53%. Colorless solid. = –29.2 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.50 (q, J = 8.6 Hz, 4H), 5.64 (s, 1H), 4.73 (d, J = 2.6 Hz, 1H), 4.60 (br, 1H), 4.46 (d, J = 2.5 Hz, 1H), 4.36 (td, J = 7.4, 4.2 Hz, 1H), 4.18–4.12 (m, 3H), 3.98 (d, J = 5.2 Hz, 1H), 3.96–3.90 (m, 2H), 3.87–3.79 (m, 2H), 3.77–3.68 (m, 2H). 13C NMR (75 MHz, methanol-d4) δ 138.7, 132.3, 129.5, 123.9, 101.8, 83.2, 80.4, 80.2, 74.1, 73.6, 67.4, 63.5, 61.1, 49.7. HRMS (ESI) calcd for C17H24BrO7Se+ [M]+ 498.9865 found 498.9868.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(2-Fluorophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20n). 20n was obtained from 14n and 16 with a yield of 47%. Colorless solid. = –43.7 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.76 (td, J = 7.4, 2.0 Hz, 1H), 7.43–7.36 (m, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.09 (dd, J = 10.5, 8.3 Hz, 1H), 5.93 (s, 1H), 4.72 (d, J = 2.7 Hz, 1H), 4.45 (d, J = 2.9 Hz, 1H), 4.37 (m, J = 7.8, 4.0 Hz, 1H), 4.23–4.15 (m, 3H), 4.12–4.00 (m, 1H), 3.98–3.92 (m, 2H), 3.89 (t, J = 3.8 Hz, 1H), 3.86–3.78 (m, 2H), 3.75 (d, J = 2.6 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 132.1, 132.0, 129.3, 129.3, 126.6, 126.4, 125.2, 125.2, 116.3, 116.0, 97.3, 97.2, 83.3, 80.3, 80.2, 74.1, 73.7, 67.1, 63.4, 61.0, 49.7, 49.5. HRMS (ESI) calcd for C17H24FO7Se+ [M]+ 439.0666 found 439.0672.
- (1S,2R,3S,4S)-3,4-Dihydroxy-1-((2S)-2-hydroxy-2-((4S,5R)-5-hydroxy-2-(2-iodophenyl)-1,3-dioxan-4-yl)ethyl)-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20o). 20o was obtained from 14o and 16 with a yield of 52%. Colorless solid. = –19.7 (c = 0.165, MeOH). = (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.87–7.84 (m, 1H), 7.73 (m, J = 7.7, 2.1 Hz, 1H), 7.43–7.38 (m, 1H), 7.11 (m, J = 7.7, 5.1, 2.5 Hz, 1H), 5.66 (s, 1H), 4.73 (s, 1H), 4.47–4.46 (m, 1H), 4.36 (q, J = 4.1 Hz, 1H), 4.23–4.19 (m, 2H), 4.11–4.06 (m, 1H), 3.99–3.94 (m, 3H), 3.90 (d, J = 8.1 Hz, 1H), 3.86–3.82 (m, 2H), 3.75 (d, J = 2.5 Hz, 2H). 13C NMR (75 MHz, methanol-d4) δ 140.9, 140.4, 131.9, 129.2, 105.6, 98.0, 83.4, 80.4, 80.2, 74.3, 73.8, 67.1, 63.3, 61.5, 61.0, 50.0. HRMS (ESI) calcd for C17H24IO7Se+ [M]+ 546.9726 found 546.9736.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-(2-Cyanophenyl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20p). 20p was obtained from 14p and 16 with a yield of 50%. Colorless solid. = –35.2 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.86 (d, J = 7.8 Hz, 1H), 7.79–7.68 (m, 2H), 7.56 (m, J = 8.4, 4.2 Hz, 1H), 5.91 (s, 1H), 4.74 (s, 1H), 4.48 (s, 1H), 4.35 (d, J = 20.7 Hz, 2H), 4.27–4.24 (m, 2H), 4.03 (m, J = 8.3, 5.8, 3.8 Hz, 2H), 3.97 (d, J = 2.8 Hz, 1H), 3.94–3.85 (m, 3H), 3.79–3.70 (m, 2H). 13C NMR (75 MHz, methanol-d4) δ 142.2, 134.2, 130.8, 128.2, 118.9, 111.8, 100.1, 83.0, 80.5, 80.0, 74.1, 73.8, 66.9, 63.3, 61.0. HRMS (ESI) calcd for C18H24NO7Se+ [M]+ 446.0713 found 446.0726.
- (1S,2R,3S,4S)-3,4-dihydroxy-1-((2S)-2-hydroxy-2-((4S,5R)-5-hydroxy-2-(naphthalen-1-yl)-1,3-dioxan-4-yl)ethyl)-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20q). 20q was obtained from 14q and 16 with a yield of 45%. Colorless solid. = –80.3 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 8.34 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 7.1 Hz, 1H), 7.55–7.47 (m, 3H), 6.22 (d, J = 2.0 Hz, 1H), 4.65 (s, 1H), 4.41 (s, 2H), 4.29 (s, 2H), 4.13 (d, J = 8.1 Hz, 2H), 3.96–3.93 (m, 2H), 3.88 (dd, J = 10.3, 3.9 Hz, 3H), 3.72–3.62 (m, 1H), 3.55 (d, J = 11.9 Hz, 1H). 13C NMR (75 MHz, methanol-d4) δ 135.2, 131.9, 130.7, 129.5, 127.3, 126.8, 126.0, 125.7, 125.6, 101.8, 83.4, 80.5, 74.0, 73.7, 67.5, 63.8, 61.0. HRMS (ESI) calcd for C21H27O7Se+ [M]+ 471.0917 found 471.0930.
- (1S,2R,3S,4S)-1-((2S)-2-((4S,5R)-2-([1,1′-biphenyl]-2-yl)-5-hydroxy-1,3-dioxan-4-yl)-2-hydroxyethyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-1H-selenophen-1-ium chloride (20r). 20r was obtained from 14r and 16 with a yield of 49%. Colorless solid. = –51.2 (c = 0.165, MeOH). 1H NMR (300 MHz, methanol-d4) δ 7.86 (dd, J = 6.7, 3.1 Hz, 1H), 7.36 (q, J = 7.8, 7.3 Hz, 7H), 7.23–7.20 (m, 1H), 5.46 (s, 1H), 4.67 (d, J = 15.3 Hz, 1H), 4.42 (s, 1H), 4.25 (s, 1H), 4.12–4.05 (m, 3H), 3.93–3.84 (m, 3H), 3.65 (d, J = 16.4 Hz, 4H), 3.59–3.54 (m, 1H). 13C NMR (75 MHz, methanol-d4) δ 142.4, 141.7, 136.4, 130.8, 130.4, 130.0, 129.4, 128.5, 128.4, 128.2, 101.0, 83.6, 80.4, 80.2, 74.0, 73.6, 67.2, 63.4, 61.0, 49.7. HRMS (ESI) calcd for C23H29O7Se+ [M]+ 497.1073 found 497.1091.
3.3. In Vitro α-Glucosidase Inhibition Assay
3.4. Cytotoxicity Evaluation of Compounds (20b, 20e and 21b) on Normal HELF Cell Lines
3.5. Molecular Docking
3.6. Inhibition-Kinetic Studies
3.7. Hypoglycemic Effect in Normal ICR Mice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J.; Atlas, I.D. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Bellary, S. The changing character of diabetes complications. Lancet Diabetes Endocrinol. 2022, 10, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Trapp, S.; Stanford, S.C. New developments in the prospects for GLP-1 therapy. Br. J. Pharmacol. 2022, 179, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Min, S.H.; Yoon, J.H.; Hahn, S.; Cho, Y.M. Efficacy and safety of combination therapy with an α-glucosidase inhibitor and a dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes mellitus: A systematic review with meta-analysis. J. Diabetes Investig. 2018, 9, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Tahrani, A.A. SGLT-2 inhibitors as second-line therapy in type 2 diabetes. Lancet Diabetes Endocrinol. 2014, 2, 678–679. [Google Scholar] [CrossRef]
- Pia, I.L. SGLT2 inhibitors: The story continues to unfold. Eur. Heart J. 2021, 42, 4902–4904. [Google Scholar]
- Levetan, C. Oral antidiabetic agents in type 2 diabetes. Curr. Med. Res. Opin. 2007, 23, 945–952. [Google Scholar] [CrossRef]
- Lebovitz, H.; Bonhomme, Y. Historical Development of Oral Antidiabetic Agents: The Era of Fortuitous Discovery. Front. Diabetes 2020, 29, 115–133. [Google Scholar]
- Hakamata, W.; Kurihara, M.; Okuda, H.; Nishio, T.; Oku, T. Design and screening strategies for α-glucosidase inhibitors based on enzymological information. Curr. Top. Med. Chem. 2009, 9, 3–12. [Google Scholar] [CrossRef]
- Komindr, S.; Ingsriswang, S.; Lerdvuthisopon, N.; Boontawee, A. Effect of long-term intake of Asian food with different glycemic indices on diabetic control and protein conservation in type 2 diabetic patients. J. Med. Assoc. Thail. 2001, 84, 85–97. [Google Scholar]
- Godbout, A.; Chiasson, J.L. Who should benefit from the use of α-glucosidase inhibitors? Curr. Diabetes. Rep. 2007, 7, 333–339. [Google Scholar] [CrossRef]
- Warfield, K.L.; Alonzi, D.S.; Hill, J.C.; Caputo, A.T.; Roversi, P.; Kiappes, J.L.; Sheets, N.; Duchars, M.; Dwek, R.A.; Biggins, J.; et al. Targeting Endoplasmic Reticulum α-Glucosidase I with a Single-Dose Iminosugar Treatment Protects against Lethal Influenza and Dengue Virus Infections. J. Med. Chem. 2020, 63, 4205–4214. [Google Scholar] [CrossRef]
- Varrot, A.; Tarling, C.A.; Macdonald, J.M.; Stick, R.V.; Zechel, D.L.; Withers, S.G.; Davies, G.J. Direct Observation of the Protonation State of an Imino Sugar Glycosidase Inhibitor upon Binding. J. Am. Chem. Soc. 2003, 125, 7496–7497. [Google Scholar] [CrossRef] [PubMed]
- Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 2020, 145, 111738. [Google Scholar] [CrossRef]
- Li, R.F.; Yang, J.X.; Liu, J.; Ai, G.M.; Zhang, H.Y.; Xu, L.Y.; Chen, S.B.; Zhang, H.X.; Li, X.L.; Cao, Z.R.; et al. Positional Isomeric Effects on the Optical Properties, Multivalent Glycosidase Inhibition Effect, and Hypoglycemic Effect of Perylene Bisimide-deoxynojirimycin Conjugates. J. Med. Chem. 2021, 64, 5863–5873. [Google Scholar] [CrossRef] [PubMed]
- Pawar, N.J.; Parihar, V.S.; Khan, A.; Joshi, R.; Dhavale, D.D. Quaternary Indolizidine and Indolizidone Iminosugars as Potential Immunostimulating and Glycosidase Inhibitory Agents: Synthesis, Conformational Analysis, Biological Activity, and Molecular Docking Study. J. Med. Chem. 2015, 58, 7820–7832. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Hayashi, E.; Miyauchi, S.; Adachi, I.; Imahori, T.; Natori, Y.; Yoshimura, Y.; Nash, R.J.; Shimaoka, H.; Nakagom, I.; et al. α-1-C-Butyl-1,4-dideoxy-1,4-imino-l-arabinitol as a Second-Generation Iminosugar-Based Oral α-Glucosidase Inhibitor for Improving Postprandial Hyperglycemia. J. Med. Chem. 2012, 55, 10347–10362. [Google Scholar] [CrossRef]
- Shen, Q.; Shao, J.; Peng, Q.; Zhang, W.; Ma, L.; Chan, A.C.; Gu, L. Hydroxycoumarin Derivatives: Novel and Potent α-Glucosidase Inhibitors. J. Med. Chem. 2010, 53, 8252–8259. [Google Scholar] [CrossRef]
- Howard, E.; Cousido-Siah, A.; Lepage, M.L.; Schneider, J.P.; Bodlenner, A.; Mitschler, A.; Meli, A.; Izzo, I.; Alvarez, H.A.; Podjarny, A.; et al. Structural basis of outstanding multivalent effects in jack bean α-mannosidase inhibition. Angew. Chem. Int. Ed. 2018, 57, 8002–8006. [Google Scholar] [CrossRef]
- Niaz, H.; Kashtoh, H.; Khan, J.A.; Khan, A.; Alam, M.T.; Khan, K.M.; Perveen, S.; Choudhary, M.I. Synthesis of diethyl 4-substituted-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates as a new series of inhibitors against yeast α-glucosidase. Eur. J. Med. Chem. 2015, 95, 199–209. [Google Scholar] [CrossRef]
- Hati, S.; Madurkar, S.M.; Bathula, C.; Thulluri, C.; Agarwal, R.; Siddiqui, F.A.; Dangi, P.; Adepally, U.; Singh, A.; Singh, S.; et al. Design, synthesis and biological evaluation of small molecules as potent glucosidase inhibitors. Eur. J. Med. Chem. 2015, 100, 188–196. [Google Scholar] [CrossRef]
- Jabeen, F.; Oliferenko, P.V.; Oliferenko, A.A.; Pillai, G.G.; Ansari, F.L.; Hall, C.D.; Katritzky, A.R. Dual inhibition of the α-glucosidase and butyrylcholinesterase studied by molecular field topology analysis. Eur. J. Med. Chem. 2014, 80, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Rattanangkool, E.; Kittikhunnatham, P.; Damsud, T.; Wacharasindhu, S.; Phuwapraisirisan, P. Quercitylcinnamates, a new series of antidiabetic bioconjugates possessing α-glucosidase inhibition and antioxidant. Eur. J. Med. Chem. 2013, 66, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Mellet, C.O.; Nierengarten, J.F.; Fernández, J.M.G. Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: A paradigm shift driven by carbon-based glyconanomaterials. J. Mater. Chem. B 2017, 5, 6428–6436. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Morikawa, T.; Matsuda, H.; Tanabe, G.; Muraoka, O. Absolute stereostructure of potent α-glucosidase inhibitor, salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. Bioorg. Med. Chem. 2002, 10, 1547–1554. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.; Yamahara, J.; Tanabe, G.; Muraoka, O. Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lanka and India. Tetrahedron Lett. 1997, 38, 8367–8370. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Xu, F.; Nakamura, S.; Wang, T.; Matsuda, H.; Tanabe, G.; Muraoka, O. Salaprinol and ponkoranol with thiosugar sulfonium sulfate structure from Salacia prinoides and α-glucosidase inhibitory activity of ponkoranol and kotalanol disulfate. Heterocycles 2008, 75, 1397–1405. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Murakami, T.; Yashiro, K.; Matsuda, H. Kotalanol, a potent α-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic Ayurvedic medicine Salacia reticulata. Chem. Pharm. Bull. 1998, 46, 1339–1340. [Google Scholar] [CrossRef]
- Lu, L.; Li, X.Y.; Yang, Y.; Xie, W.J. Recent progress in the construction of natural de-O-sulfonated sulfonium sugaers with antidiabetic activities. Chem. Eur. J. 2019, 25, 13458–13471. [Google Scholar] [CrossRef]
- Ozaki, S.; Oe, H.; Kitamura, S. α-Glucosidase inhibitor from Kothala-himbutu (Salacia reticulata WIGHT). J. Nat. Prod. 2008, 71, 981–984. [Google Scholar] [CrossRef]
- Oe, H.; Ozaki, S. Hypoglycemic effect of 13-membered ring thiocyclitol, a novel α-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata). Biosci. Biotechnol. Biochem. 2008, 72, 1962–1964. [Google Scholar] [CrossRef]
- Muraoka, O.; Xie, W.J.; Tanabe, G.; Amer, M.F.A.; Minematsu, T.; Yoshikawa, M. On the structure of the bioactive constituent from ayurvedic medicine Salacia reticulata: Revision of the literature. Tetrahedron Lett. 2008, 49, 7315–7317. [Google Scholar] [CrossRef]
- Yuasa, H.; Takada, J.; Hashimoto, H. Synthesis of salacinol. Tetrahedron Lett. 2000, 41, 6615–6618. [Google Scholar] [CrossRef]
- Ghavami, A.; Johnston, B.D.; Pinto, B.M. A new class of glycosidase inhibitor: Synthesis of salacinol and its stereoisomers. J. Org. Chem. 2001, 66, 2312–2317. [Google Scholar] [CrossRef]
- Johnston, B.D.; Ghavami, A.; Jensen, M.T.; Svensson, B.; Pinto, B.M. Synthesis of selenium analogues of the naturally occurring glycosidase inhibitor salacinol and their evaluation as glycosidase inhibitors. J. Am. Chem. Soc. 2002, 124, 8245–8250. [Google Scholar] [CrossRef] [PubMed]
- Ghavami, A.; Sadalapure, K.S.; Johnston, B.D.; Lobera, M.; Snider, B.B.; Pinto, B.M. Improved syntheses of the naturally occurring glycosidase inhibitor salacinol. Synlett 2003, 34, 1259–1262. [Google Scholar] [CrossRef]
- Johnston, B.D.; Jensen, H.H.; Pinto, B.M. Synthesis of sulfonium sulfate analogues of disaccharides and their conversion to chain-extended homologues of salacinol: New glycosidase inhibitors. J. Org. Chem. 2006, 71, 1111–1118. [Google Scholar] [CrossRef]
- Tanabe, G.; Xie, W.; Ogawa, A.; Cao, C.; Minematsu, T.; Yoshikawa, M.; Muraoka, O. Facile synthesis of de-O-sulfated salacinols: Revision of the structure of neosalacinol, a potent α-glucosidase inhibitor. Bioorg. Med. Chem. Lett. 2009, 19, 2195–2198. [Google Scholar] [CrossRef]
- Jayakanthan, K.; Mohan, S.; Pinto, B.M. Structure proof and synthesis of kotalanol and de-O-sulfonated kotalanol, glycosidase inhibitors isolated from an herbal remedy for the treatment of type-2 diabetes. J. Am. Chem. Soc. 2009, 131, 5621–5626. [Google Scholar] [CrossRef]
- Eskandari, R.; Jayakanthan, K.; Kuntz, D.A.; Rose, D.R.; Pinto, B.M. Synthesis of a biologically active isomer of kotalanol, a naturally occurring glucosidase inhibitor. Bioorg. Med. Chem. 2010, 18, 2829–2835. [Google Scholar] [CrossRef]
- Eskandari, R.; Kuntz, D.A.; Rose, D.R.; Pinto, B.M. Potent glucosidase inhibitors: De-O-sulfonated ponkoranol and its stereo isomer. Org. Lett. 2010, 12, 1632–1635. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, Y.; He, W.; Wang, Z.; Li, W.; Lin, A.; Xu, J.; Tanabe, G.; Muraoka, O.; Wu, X.; et al. Practical Route to Neokotalanol and Its Natural Analogues: Sulfonium Sugars with Antidiabetic Activities. Angew. Chem. Int. Ed. 2019, 58, 6400–6404. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, G.; Ueda, S.; Kurimoto, K.; Sonoda, N.; Marumoto, S.; Ishikawa, F.; Xie, W.; Muraoka, O. Facile Synthesis of Neokotalanol, a Potent α-glycosidase Inhibitor Isolated from the Ayurvedic Traditional Medicine “Salacia”. ACS Omega 2019, 4, 7533–7542. [Google Scholar] [CrossRef]
- Lee, B.H.; Eskandari, R.; Jones, K.; Reddy, K.R.; Quezada Calvillo, R.; Nichols, B.L.; Rose, D.R.; Hamaker, B.R.; Pinto, B.M. Modulation of starch digestion for slow glucose release through “toggling” of activities of mucosal α-glucosidases. J. Biol. Chem. 2012, 287, 31929–31938. [Google Scholar] [CrossRef]
- Liu, H.; Nasi, R.; Jayakanthan, K.; Sim, L.; Heipel, H.; Rose, D.R.; Pinto, B.M. New synthetic routes to chain-extended selenium, sulfur, and nitrogen analogues of the naturally occurring glucosidase inhibitor salacinol and their inhibitory activities against recombinant human maltase glucoamylase. J. Org. Chem. 2007, 72, 6562–6572. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Sim, L.; Rose, D.R.; Pinto, B.M. Synthesis of S-alkylated sulfonium-ions and their glucosidase inhibitory activities against recombinant human maltase glucoamylase. Carbohydr. Res. 2007, 342, 901–912. [Google Scholar] [CrossRef]
- Eskandari, R.; Jones, K.; Rose, D.R.; Pinto, B.M. The effect of heteroatom substitution of sulfur for selenium in glucosidase inhibitors on intestinal α-glucosidase activities. Chem. Commun. 2011, 47, 9134–9136. [Google Scholar] [CrossRef]
- Tanabe, G.; Otani, T.; Cong, W.; Minematsu, T.; Ninomiya, K.; Yoshikawa, M.; Muraoka, O. Biological evaluation of 3′-O alkylated analogs of salacinol, the role of hydrophobic alkyl group at 3′-position in the side chain on the α-glucosidase inhibitory activity. Bioorg. Med. Chem. Lett. 2011, 21, 3159–3162. [Google Scholar] [CrossRef]
- Eskandari, R.; Jones, K.; Reddy, K.R.; Jayakanthan, K.; Chaudet, M.; Rose, D.R.; Pinto, B.M. Probing the intestinal α-glucosidase enzyme specificities of starch-digesting maltase glucoamylase and sucrase-isomaltase: Synthesis and inhibitory properties of 3′- and 5′-maltose-extended de-O-sulfonated ponkoranol. Chem.-Eur. J. 2015, 17, 14817–14825. [Google Scholar] [CrossRef]
- Liu, D.; He, W.; Wang, Z.; Liu, L.; Wang, C.; Zhang, C.; Wang, C.; Wang, Y.; Tanabe, G.; Muraoka, O.; et al. Design, synthesis and biological evaluation of 3′-benzylated analogs of 3′-epi-neoponkoranol as potent α-glucosidase inhibitors. Eur. J. Med. Chem. 2016, 110, 224–236. [Google Scholar] [CrossRef]
- Tanabe, G.; Nakamura, S.; Tsutsui, N.; Balakishan, G.; Xie, W.; Tsuchiya, S.; Akaki, J.; Morikawa, T.; Ninomiya, K.; Nakanishi, I.; et al. In silico design, synthesis and evaluation of 3′-O-benzylated analogs of salacinol, a potent α-glucosidase inhibitor isolated from an Ayurvedic traditional medicine “Salacia”. Chem. Commun. 2012, 48, 8646–8648. [Google Scholar] [CrossRef]
- Lu, L.; Chen, J.Y.; Tao, W.X.; Wang, Z.M.; Liu, D.; Zhou, J.H.; Wu, X.M.; Sun, H.P.; Li, W.; Tanabe, G.; et al. Design and Synthesis of Sulfonium Derivatives: A Novel Class of α-Glucosidase Inhibitors with Potent In Vivo Antihyperglycemic Activities. J. Med. Chem. 2023, 66, 3484–3498. [Google Scholar] [CrossRef] [PubMed]
- Sim, L.; Jayakanthan, K.; Mohan, S.; Nasi, R.; Johnston, B.D.; Pinto, B.M.; Rose, D.R. New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: Structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata. Biochemistry 2010, 49, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Takahira, K.; Tanabe, G.; Muraoka, O.; Nakanishi, I. Homology modeling of human alpha-glucosidase catalytic domains and SAR study of salacinol derivatives. Open. J. Med. Chem. 2012, 2, 50–60. [Google Scholar] [CrossRef]
- Yang, Y.; Tong, J.; Xie, X.S.; Cao, H.; Fu, Y.; Luo, Y.; Liu, S.; Chen, W.; Yang, N. Design, synthesis, and biological evaluation of novel chrysin derivatives as poly(ADP-ribose) polymerase 1 (PARP1) inhibitors for the treatment of breast cancer. Chin. J. Nat. Med. 2024, 22, 455–465. [Google Scholar] [CrossRef]
- Tian, H.C.; Zhang, L. Total synthesis of lissodendoric acid A by [4 + 2] cycloaddition of transient cyclic allene. Chin. J. Nat. Med. 2023, 21, 161–162. [Google Scholar] [CrossRef]
- Haller, H. The clinical importance of postprandial glucose. Diabetes Res. Clin. Pract. 1998, 40, S43–S49. [Google Scholar] [CrossRef]
- Rizzo, M.R.; Marfella, R.; Barbieri, M.; Boccardi, V.; Vestini, F.; Lettieri, B.; Canonico, S.; Paolisso, G. Relationships between daily acute glucose fluctuations and cognitive performance among aged type 2 diabetic patients. Diabetes Care 2010, 33, 2169–2174. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, X.Y.; Miao, Y.; Zhu, J.H.; Yan, H.; Wang, B.Y.; Jin, J.; Hu, T.J.; Jia, W.P. The relationship between glucose excursion and cognitive function in aged type 2 diabetes patients. Biomed. Environ. Sci. 2012, 25, 1–7. [Google Scholar]
Entry | Compounds | Maltase | Sucrase |
---|---|---|---|
1 | voglibose | 1.45/1.5 [a] | 0.35/0.3 [a] |
2 | acarbose | 3.5/3.2 [a] | 2.2/2.5 [a] |
3 | neoponkoranol (7) | 7.3 ± 1.5/6.9 [a] | 2.8 ± 0.5/2.3 [a] |
4 | 19a | 0.5 ± 0.08 | 1.6 ± 0.43 |
5 | 19b | 2.0 ± 0.08 | 1.2 ± 0.23 |
6 | 19c | 0.55 ± 0.05 | 0.8 ± 0.12 |
7 | 19d | 1.0 ± 0.05 | 0.7 ± 0.13 |
8 | 19e | 5.6 ± 0.29 | 6.6 ± 0.45 |
9 | 19f | 5.0 ± 0.39 | 4.6 ± 0.09 |
10 | 19g | 4.9 ± 0.25 | 5.5 ± 0.62 |
11 | 19h | 0.85 ± 0.28 | 1.4 ± 0.33 |
12 | 19i | 8.9 ± 0.53 | 10.0 ± 1.8 |
13 | 19j | 0.75 ± 0.08 | 1.5 ± 0.21 |
14 | 19k | 1.9 ± 0.08 | 1.1 ± 0.02 |
15 | 19l | 9.7 ± 0.74 | 7.9 ± 1.6 |
16 | 19m | 4.1 ± 0.08 | 3.5 ± 0.06 |
17 | 19n | 0.42/0.4 [33] | 0.55/0.84 [33] |
18 | 19o | 3.1 ± 0.66 | 3.3 ± 0.28 |
19 | 19p | 0.88 ± 0.04 | 0.9 ± 0.05 |
20 | 19q | 4.6 ± 0.37 | 5.8 ± 0.41 |
21 | 19r | 10.5 ± 1.1 | 3.3 ± 0.22 |
Entry | Compound | Maltase | Sucrase |
---|---|---|---|
1 | voglibose | 1.45/1.5 [a] | 0.35/0.3 [a] |
2 | acarbose | 3.5/3.2 [a] | 2.2/2.5 [a] |
3 | neoponkoranol (7) | 7.3 ± 1.5/6.9 [a] | 2.8 ± 0.5/2.3 [a] |
4 | 20a | 0.33 ± 0.15 | 0.19 ± 0.02 |
5 | 20b | 0.26 ± 0.08 | 0.22 ± 0.06 |
6 | 20c | 0.14 ± 0.05 | 0.05 ± 0.02 |
7 | 20d | 0.62 ± 0.07 | 0.87 ± 0.23 |
8 | 20e | 0.45 ± 0.08 | 0.41 ± 0.11 |
9 | 20f | 0.47 ± 0.11 | 0.33 ± 0.04 |
10 | 20g | 0.71 ± 0.21 | 0.22 ± 0.05 |
11 | 20h | 3.67 ± 0.89 | 1.96 ± 0.25 |
12 | 20i | 1.01 ± 0.32 | 0.41 ± 0.11 |
13 | 20j | 0.33 ± 0.08 | 0.09 ± 0.03 |
14 | 20k | 0.53 ± 0.22 | 0.12 ± 0.05 |
15 | 20l | 0.69 ± 0.05 | 0.21 ± 0.02 |
16 | 20m | 0.07 ± 0.03 | 0.20 ± 0.05 |
17 | 20n | 3.75 ± 0.58 | 0.20 ± 0.06 |
18 | 20o | 0.36 ± 0.07 | 0.30 ± 0.11 |
19 | 20p | 0.82 ± 0.21 | 0.37 ± 0.05 |
20 | 20q | 0.92 ± 0.23 | 0.68 ± 0.14 |
21 | 20r | 2.00 ± 0.52 | 0.72 ± 0.17 |
Ki (μg/mL) | ||
---|---|---|
Compounds | Maltase (Km = 3.0 mM) | Sucrase (Km = 23.56 mM) |
20a | 0.94 | 0.49 |
20c | 0.67 | 0.20 |
10 | 0.42 | 0.29 |
acarbose | 1.98 | 0.67 |
Compounds | Declined Rate of Blood Glucose Levels (%) | |||
---|---|---|---|---|
15 min | 30 min | 60 min | AUC | |
acarbose-20.0 mpk | 45.7% | 48.4% | 44.3% | 40.5% |
Neoponkoranol-10.0 mpk | 42.8% | 49.5% | 43.5% | 39.4% |
20c-10.0 mpk | 48.6% | 52.8% | 48.1% | 46.4% |
10-10.0 mpk | 48.0% | 54.6% | 52.5% | 46.6% |
Declined Rate of Blood Glucose Levels (%) | ||||
---|---|---|---|---|
Compounds | 15 min | 30 min | 60 min | AUC |
acarbose-20.0 mpk | 45.7% | 48.4% | 44.3% | 40.5% |
neoponkoranol-1.0 mpk | 33.5% | 36.4% | 27.1% | 27.1% |
20c-1.0 mpk | 40.0% | 40.3% | 38.2% | 34.00% |
10-1.0 mpk | 41.8% | 43.00% | 39.1% | 35.2% |
Compounds | Declined Rate of Blood Glucose Levels (%) | |||
---|---|---|---|---|
15 min | 30 min | 60 min | AUC | |
voglibose-1.0 mpk | 49.2% | 53.7% | 40.1% | 39.8% |
neoponkoranol-1.0 mpk | 42.3% | 33.9% | 19.4% | 21.5% |
20c-1.0 mpk | 45.8% | 47.4% | 43.5% | 40.2% |
10-1.0 mpk | 52.8% | 55.0% | 47.2% | 43.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Yi, J.; Yang, J.; Tanabe, G.; Muraoka, O.; Xie, W. Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors. Molecules 2025, 30, 2856. https://doi.org/10.3390/molecules30132856
He X, Yi J, Yang J, Tanabe G, Muraoka O, Xie W. Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors. Molecules. 2025; 30(13):2856. https://doi.org/10.3390/molecules30132856
Chicago/Turabian StyleHe, Xiaosong, Jiahao Yi, Jianchen Yang, Genzoh Tanabe, Osamu Muraoka, and Weijia Xie. 2025. "Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors" Molecules 30, no. 13: 2856. https://doi.org/10.3390/molecules30132856
APA StyleHe, X., Yi, J., Yang, J., Tanabe, G., Muraoka, O., & Xie, W. (2025). Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors. Molecules, 30(13), 2856. https://doi.org/10.3390/molecules30132856