Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (447)

Search Parameters:
Keywords = sandy soil area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1477 KiB  
Article
Co-Inoculation Between Bacteria and Algae from Biological Soil Crusts and Their Effects on the Growth of Poa annua and Sandy Soils Quality
by Lin Peng, Xuqiang Xie, Man Chen, Fengjie Qiao, Xingyu Liu, Yutong Zhao, Xiawei Peng and Fangchun Liu
Microorganisms 2025, 13(8), 1778; https://doi.org/10.3390/microorganisms13081778 - 30 Jul 2025
Viewed by 219
Abstract
Microorganisms (bacteria and algae) are important components of biological soil crusts, which exhibit crucial functions in promoting plant growth, maintaining soil structure, and improving soil nutrient content. To determine the effects of combined inoculation on the growth of Poa annua and sandy soils, [...] Read more.
Microorganisms (bacteria and algae) are important components of biological soil crusts, which exhibit crucial functions in promoting plant growth, maintaining soil structure, and improving soil nutrient content. To determine the effects of combined inoculation on the growth of Poa annua and sandy soils, four species of bacteria and algae were isolated and identified from biological soil crusts (during different developmental stages in a karst rocky desertification area). The soil quality was evaluated based on a soil quality index (SQI), growth indicators of Poa annua, soil physicochemical properties, and a stability analysis of aggregates. With the application of nutrient-poor sandy soils as the substrate, different treatment inoculation solutions were inoculated onto Poa annua. The results revealed that bacteria–algal co-inoculation reduces soil acidity, enhances soil nutrient content and aggregate stability, improves soil quality, and protects plant growth. Notably, compared with the single application of bacterial solution and algal solution, the combined application of bacteria–algal solution significantly improves the sandy soil quality. Full article
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 356
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

15 pages, 4363 KiB  
Article
Effect of Soft Rock Material Addition on Surface Charge Properties and Internal Force of Aeolian Sandy Soil Particles in the Maowusu Desert
by Zhe Liu, Yang Zhang, Yingying Sun, Yuliang Zhang, Na Wang, Feinan Hu, Yuhu Luo and Tingting Meng
Resources 2025, 14(7), 116; https://doi.org/10.3390/resources14070116 - 21 Jul 2025
Viewed by 273
Abstract
The Maowusu Desert is still suffering from serious ecological and environmental security issues such as wind erosion and desertification, influenced by both natural and human factors. The amendment of aeolian sandy soil with soft rock material presents an effective erosion control strategy, leveraging [...] Read more.
The Maowusu Desert is still suffering from serious ecological and environmental security issues such as wind erosion and desertification, influenced by both natural and human factors. The amendment of aeolian sandy soil with soft rock material presents an effective erosion control strategy, leveraging the complementary structural and compositional properties of both materials to enhance soil stability and rehabilitate degraded environments. However, there are few studies that investigate the effect of soil surface electrochemical properties and particle interaction forces on the structural stability of compound soils with soft rock and sandy soil. This decade-long field study quantified the electrochemical properties and interparticle forces and their synergistic effects on structural stability across five soft rock-to-aeolian sandy soil blend volume ratios (0:1, 1:5, 1:2, 1:1, 1:0) within the 0–30 cm soil profile. The results showed that the soil organic matter (SOM), specific surface area (SSA), and cation exchange capacity (CEC) significantly increased with the incorporation of soft rock material. For five different proportions, with the addition of soft rock and the extension of planting years, the content of SOM increased from 5.65 g·kg−1 to 11.36 g·kg−1, the CEC varied from 4.68 cmol kg−1 to 17.91 cmol kg−1, while the σ0 importantly decreased from 1.8 to 0.47 c m−2 (p < 0.05). For the interaction force at 2.4 nm between soil particles, the absolute value of van der Waals attractive force increased from 0.10 atm to 0.38 atm, and the net force decreased from 0.09 atm to −0.30 atm after the incorporation ratios of soft rock from 0:1 to 1:1. There was a significant negative correlation between the resultant net force between the particles of compound soil and the SSA and CEC. These results indicate that the addition of soft rock material positively improves the surface electrochemical properties and internal forces between aeolian sandy soil particles, further enhancing its structural stability. This study establishes a foundational theoretical framework for advancing our mechanistic understanding of aeolian sand stabilization and ecosystem rehabilitation in the Mu Us Desert. Full article
Show Figures

Figure 1

18 pages, 2710 KiB  
Article
Enriching Urban Life with AI and Uncovering Creative Solutions: Enhancing Livability in Saudi Cities
by Mohammed A. Albadrani
Sustainability 2025, 17(14), 6603; https://doi.org/10.3390/su17146603 - 19 Jul 2025
Viewed by 460
Abstract
This paper examines how artificial intelligence (AI) can be strategically deployed to enhance urban planning and environmental livability in Riyadh by generating data-driven, people-centric design interventions. Unlike previous studies that concentrate primarily on visualization, this research proposes an integrative appraisal framework that combines [...] Read more.
This paper examines how artificial intelligence (AI) can be strategically deployed to enhance urban planning and environmental livability in Riyadh by generating data-driven, people-centric design interventions. Unlike previous studies that concentrate primarily on visualization, this research proposes an integrative appraisal framework that combines AI-generated design with site-specific environmental data and native vegetation typologies. This study was conducted across key jurisdictional areas including the Northern Ring Road, King Abdullah Road, Al Rabwa, Al-Malaz, Al-Suwaidi, Al-Batha, and King Fahd Road. Using AI tools, urban scenarios were developed to incorporate expanded pedestrian pathways (up to 3.5 m), dedicated bicycle lanes (up to 3.0 m), and ecologically adaptive green buffer zones featuring native drought-resistant species such as Date Palm, Acacia, and Sidr. The quantitative analysis of post-intervention outcomes revealed surface temperature reductions of 3.2–4.5 °C and significant improvements in urban esthetics, walkability, and perceived safety—measured on a five-point Likert scale with 80–100% increases in user satisfaction. Species selection was validated for ecological adaptability, minimal maintenance needs, and compatibility with Riyadh’s sandy soils. This study directly supports the Kingdom of Saudi Arabia’s Vision 2030 by demonstrating how emerging technologies like AI can drive smart, sustainable urban transformation. It aligns with Vision 2030’s urban development goals under the Quality-of-Life Program and environmental sustainability pillar, promoting healthier, more connected cities with elevated livability standards. The research not only delivers practical design recommendations for planners seeking to embed sustainability and digital innovation in Saudi urbanism but also addresses real-world constraints such as budgetary limitations and infrastructure integration. Full article
(This article belongs to the Special Issue Smart Cities for Sustainable Development)
Show Figures

Figure 1

16 pages, 992 KiB  
Article
Relative Growth Rate and Specific Absorption Rate of Nutrients in Lactuca sativa L. Under Secondary Paper Sludge Application and Soil Contamination with Lead
by Elena Ikkonen and Marija Yurkevich
Agriculture 2025, 15(14), 1541; https://doi.org/10.3390/agriculture15141541 - 17 Jul 2025
Viewed by 230
Abstract
Cost-effective methods for improving soil fertility and mitigating the negative impact of heavy metal contamination in agricultural soils are currently under investigation. This study aimed to evaluate the impact of soil lead (Pb) contamination and the application of secondary pulp and paper mill [...] Read more.
Cost-effective methods for improving soil fertility and mitigating the negative impact of heavy metal contamination in agricultural soils are currently under investigation. This study aimed to evaluate the impact of soil lead (Pb) contamination and the application of secondary pulp and paper mill sludge on the relative growth rate (RGR) and its determinants, as well as the specific absorption rate (SAR) of nutrients of Lactuca sativa L. For the 46-day pot experiment, which was carried out in 2022 under controlled conditions at the Karelian Research Centre of RAS, sandy loam soil was used, to which Pb was added at rates of 0, 50, and 250 mg Pb(NO3)2 kg−1. Secondary sludge was applied with each watering at concentrations of 0%, 20%, and 40%. RGR values varied significantly, primarily due to changes in net assimilation rate (NAR) rather than specific leaf area. Positive relationships were found between RGR and NAR, and RGR and SAR of nitrogen and phosphorus, but not potassium. Sludge applications can stimulate NAR at early stages of plant growth. For plants grown on soil with the highest Pb concentration studied, secondary sludge reduced root lead content by an average of 35%. Soil contamination with lead increased nutrient SAR by 79 and 39% when applied as 20 and 40% sludge, respectively, while 40% sludge increased nitrogen SAR by 51% but did not change phosphorus and potassium SAR. A sludge-mediated reduction in root Pb content and an increase in NAR suggest that secondary paper sludge may contribute to the remediation of Pb-contaminated soils and reduce the toxicity of heavy metals to plants. The results may help in finding new ways to manage soil fertility, especially for contaminated soils. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

20 pages, 4860 KiB  
Article
Effects of Micro-Topography on Soil Nutrients and Plant Diversity of Artificial Shrub Forest in the Mu Us Sandy Land
by Kai Zhao, Long Hai, Fucang Qin, Lei Liu, Guangyu Hong, Zihao Li, Long Li, Yongjie Yue, Xiaoyu Dong, Rong He and Dongming Shi
Plants 2025, 14(14), 2163; https://doi.org/10.3390/plants14142163 - 14 Jul 2025
Viewed by 317
Abstract
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and [...] Read more.
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and vegetation degradation, demanding precise vegetation configuration for ecological rehabilitation. This study analyzed soil nutrients, plant diversity, and their correlations under various micro-topographic conditions across different types of artificial shrub plantations in the Mu Us Sandy Land. Employing one-way and two-way ANOVA, we compared the significant differences in soil nutrients and plant diversity indices among different micro-topographic conditions and shrub species. Additionally, redundancy analysis (RDA) was conducted to explore the direct and indirect relationships between micro-topography, shrub species, soil nutrients, and plant diversity. The results show the following: 1. The interdune depressions have the highest plant diversity and optimal soil nutrients, with relatively suitable pH values; the windward slopes and slope tops, due to severe wind erosion, have poor soil nutrients, high pH values, and the lowest plant diversity. Both micro-topography and vegetation can significantly affect soil nutrients and plant diversity (p < 0.05), and vegetation has a greater impact on soil nutrients. 2. The correlation between surface soil nutrients and plant diversity is the strongest, and the correlation weakens with increasing soil depth; under different micro-topographic conditions, the influence of soil nutrients on plant diversity varies. 3. In sandy land ecological restoration, a “vegetation type + terrain matching” strategy should be implemented, combining the characteristics of micro-topography and the ecological functions of shrubs for precise configuration, such as planting Corethrodendron fruticosum on windward slopes and slope tops to rapidly replenish nutrients, promoting Salix psammophila and mixed plantation in interdune depressions and leeward slopes to accumulate organic matter, and prioritizing Amorpha fruticosa in areas requiring soil pH adjustment. This study provides a scientific basis and management insights for the ecological restoration and vegetation configuration of the Mu Us Sandy Land. Full article
(This article belongs to the Topic Plant-Soil Interactions, 2nd Volume)
Show Figures

Figure 1

28 pages, 6690 KiB  
Article
Numerical Models for Predicting Water Flow Characteristics and Optimising a Subsurface Self-Regulating, Low-Energy, Clay-Based Irrigation (SLECI) System in Sandy Loam Soil
by Wisdom Eyram Kwame Agbesi, Livingstone Kobina Sam-Amoah, Ransford Opoku Darko, Francis Kumi and George Boafo
Water 2025, 17(14), 2058; https://doi.org/10.3390/w17142058 - 10 Jul 2025
Viewed by 341
Abstract
The Subsurface self-regulating, Low-Energy, Clay-based Irrigation (SLECI) system is a recently developed irrigation method. The SLECI system supplies water directly to the crop root zone by utilising the potential difference established between its permeable interior and exterior radial walls. In this study, we [...] Read more.
The Subsurface self-regulating, Low-Energy, Clay-based Irrigation (SLECI) system is a recently developed irrigation method. The SLECI system supplies water directly to the crop root zone by utilising the potential difference established between its permeable interior and exterior radial walls. In this study, we investigated the effect of the SLECI emitter’s operating pressure head and burial depth on the water flow characteristics in sandy loam soil. The results show that the developed COMSOL-2D model accurately predicted water flow characteristic under SLECI. The operating pressure head significantly influenced the water flow characteristics. As the operating pressure head increased, emitter discharge increased, and the wetted soil area was extended. The burial depth had a minimal effect on the emitter discharge but notably affected the advancement and time at which wetting fronts reached the soil surface and bottom boundaries. Operating the SLECI emitter at a higher operating pressure head and shallower burial depth could degrade irrigation water application and water use efficiencies. Based on a multi-objective optimisation algorithm, we recommend that the SLECI emitter be operated at a 125 cm pressure head and buried at 40 cm for crops with a root zone depth of 100 cm. Our study is expected to provide a greater understanding of the SLECI system and offer some recommendations and guidelines for its efficient deployment in sandy loam for enhanced water use efficiency in crop production. Full article
Show Figures

Figure 1

13 pages, 2034 KiB  
Article
A Comparative Study of the Pullout Strength of Geostraps and Geogrids in Reinforced Soil
by Kshitij Gaur, Ashutosh Trivedi and Sanjay Kumar Shukla
Appl. Sci. 2025, 15(14), 7715; https://doi.org/10.3390/app15147715 - 9 Jul 2025
Viewed by 283
Abstract
The sustainable development of geotechnical infrastructure necessitates using durable, efficient, and environmentally resilient reinforcement materials. This study investigates the pullout performance of geostraps to assess their potential as a sustainable alternative to conventional geosynthetics. This study focuses on the pullout performance of geostraps, [...] Read more.
The sustainable development of geotechnical infrastructure necessitates using durable, efficient, and environmentally resilient reinforcement materials. This study investigates the pullout performance of geostraps to assess their potential as a sustainable alternative to conventional geosynthetics. This study focuses on the pullout performance of geostraps, flexible, polymeric reinforcement materials. There has not been a thorough study of their pullout resistance, which directly affects the stability and durability of reinforced soil structures. Pullout tests were conducted on sandy soil in a controlled environment. The experimental findings from the pullout test were then validated in a numerical model. The model was used to determine the pullout resistance of different grades of geostraps for comparative analysis. This helped to identify the possible application areas based on the pullout capacity of various grades. The results obtained for the geostraps were then compared with those in the established literature on geogrids. Initially, the pullout resistance of the M65 geostrap was up to 20% higher than that of a biaxial geogrid. This makes it a suitable option for reinforced earth applications. However, the maximum pullout resistance of geogrids was up to 8% higher than that of geostraps when subjected to a surcharge of 17 kN m−2 in poorly graded sand. This study highlights the potential of geostraps as reinforcement materials, particularly in challenging environments where conventional geosynthetics may underperform. Future research may explore their behaviour with different soil types and other controlled environmental factors to establish their broader applicability and design charts. Full article
Show Figures

Figure 1

24 pages, 4045 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Soil Wind Erosion in Inner Mongolia, China
by Yong Mei, Batunacun, Chunxing Hai, An Chang, Yueming Chang, Yaxin Wang and Yunfeng Hu
Remote Sens. 2025, 17(14), 2365; https://doi.org/10.3390/rs17142365 - 9 Jul 2025
Viewed by 377
Abstract
Wind erosion poses a major threat to ecosystem stability and land productivity in arid and semi-arid regions. Accurate identification of its spatiotemporal dynamics and underlying driving mechanisms is a critical prerequisite for effective risk forecasting and targeted erosion control. This study applied the [...] Read more.
Wind erosion poses a major threat to ecosystem stability and land productivity in arid and semi-arid regions. Accurate identification of its spatiotemporal dynamics and underlying driving mechanisms is a critical prerequisite for effective risk forecasting and targeted erosion control. This study applied the Revised Wind Erosion Equation (RWEQ) model to assess the spatial distribution, interannual variation, and seasonal dynamics of the Soil Wind Erosion Modulus (SWEM) across Inner Mongolia from 1990 to 2022. The GeoDetector model was further employed to quantify dominant drivers, key interactions, and high-risk zones via factor, interaction, and risk detection. The results showed that the average SWEM across the study period was 35.65 t·ha−1·yr−1 and showed a decreasing trend over time. However, localised increases were observed in the Horqin and Hulun Buir sandy lands and central grasslands. Wind erosion was most intense in spring (17.64 t·ha−1·yr−1) and weakest in summer (5.57 t·ha−1·yr−1). Gale days, NDVI, precipitation, and wind speed were identified as dominant drivers. Interaction detection revealed non-linear synergies between gale days and temperature (q = 0.40) and wind speed and temperature (q = 0.36), alongside a two-factor interaction between NDVI and precipitation (q = 0.19). Risk detection indicated that areas with gale days > 58, wind speed > 3.01 m/s, NDVI < 0.2, precipitation of 30.17–135.59 mm, and temperatures of 3.01–4.23 °C are highly erosion-prone. Management should prioritise these sensitive and intensifying areas by implementing site-specific strategies to enhance ecosystem resilience. Full article
Show Figures

Figure 1

20 pages, 5062 KiB  
Article
Groundwater Characteristics and Quality in the Coastal Zone of Lomé, Togo
by Koko Zébéto Houédakor, Djiwonou Koffi Adjalo, Benoît Danvide, Henri Sourou Totin Vodounon and Ernest Amoussou
Water 2025, 17(12), 1813; https://doi.org/10.3390/w17121813 - 17 Jun 2025
Viewed by 470
Abstract
The unprecedented development of coastal cities in West Africa is marked by anarchic urbanization accompanied by ineffective environmental management, leading to water pollution. This study is conducted in the southern districts of Lomé, Togo, an area built on sandbars where inappropriate attitudes, behaviors, [...] Read more.
The unprecedented development of coastal cities in West Africa is marked by anarchic urbanization accompanied by ineffective environmental management, leading to water pollution. This study is conducted in the southern districts of Lomé, Togo, an area built on sandbars where inappropriate attitudes, behaviors, and inadequate hygiene and sanitation practices prevail. The objective of this study is to characterize the quality of groundwater in the study area. Bacteriological and physicochemical analyses were carried out on 11 wells in 10 districts in the southern districts during the four seasons of the year. The analysis shows that the groundwater is polluted in all seasons. Nitrate concentrations exceed 50 mg/L in 65% of the samples, while chloride levels surpassed 250 mg/L in 18% of the cases. Regardless of the season, the dominant facies is sodium chloride and potassium chloride. In all districts, the analysis of microbiological parameters including total germs (30 °C, 100/mL), total coliforms (30 °C, 0/mL), Escherichia coli (44 °C, 2/250 mL), fecal streptococci (0/100 mL), and anaerobic sulfite reducers (44 °C, 2/20 mL) reveals values exceeding the European Union standards (2007). Groundwater contamination is facilitated by the sandy nature of the soil, which increases its vulnerability to various pollutants. Togo continues to experience cholera outbreaks, aggravated by poor sanitation infrastructure and limited vaccination coverage. Public health efforts are directed toward improving sanitation and raising awareness about waterborne and non-communicable diseases. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 4115 KiB  
Article
Status Identification and Restoration Zoning of Ecological Space in Maowusu Sandy Land Based on Temporal and Spatial Characteristics of Land Use
by Tiejun Zhang, Peng Xiao, Zhenqi Yang and Jianying Guo
Agronomy 2025, 15(6), 1445; https://doi.org/10.3390/agronomy15061445 - 13 Jun 2025
Viewed by 380
Abstract
Maowusu sandy land is characterized by a fragile ecological environment and extreme sensitivity to external disturbances such as climate change and human activities. Identifying and zoning ecological spaces in this region are crucial for maintaining eco-environmental safety and promoting sustainable regional development. With [...] Read more.
Maowusu sandy land is characterized by a fragile ecological environment and extreme sensitivity to external disturbances such as climate change and human activities. Identifying and zoning ecological spaces in this region are crucial for maintaining eco-environmental safety and promoting sustainable regional development. With Maowusu sandy land as the study object, the temporal and spatial characteristics of land use and the driving forces were explored via spatial analysis technology—the geographic information system. Then, a 2D relation judgment matrix was constructed by evaluating the importance of ecosystem service functions and ecological sensitivity. Next, restoration zoning of natural ecological space was performed, and relevant restoration suggestions were put forward accordingly. Results show that the land use in Maowusu sandy land has significantly changed in the past 30 years, with construction land and forest continuously expanding, cropland and grassland being squeezed, and some areas of unutilized land being transformed into other land use types. Ecosystem service functions tend to weaken from southwest to northeast, whereas the ecologically sensitive zones are mainly distributed in the middle of Maowusu sandy land. The high-importance and high-sensitivity zones of natural ecological space account for 3.60% of the total area of natural ecological space, mainly distributed near Ejin Horo Banner. A comprehensive restoration project of soil and water conservation should be conducted in this zone to alleviate soil erosion and maintain the management and restoration of ecological protection red lines. Moderately important sensitive zones account for the largest proportion (80.42%) of the total area of natural ecological space, being widely distributed. In such zones, water resources should be taken as constraints, with emphasis on ecological protection and improvement measures. Low-importance and low-sensitivity zones account for the smallest proportion, in which ecosystem protection, near-natural restoration, and moderate development and utilization should be carried out. This study aims to provide a scientific basis for reasonably protecting natural ecological resources and promoting the healthy and ordered development of natural ecosystems. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

13 pages, 2357 KiB  
Article
Effect of Coal Gangue Powder Addition on Hydraulic Properties of Aeolian Sandy Soil and Plant Growth
by Xiaoyun Ding, Ruimin He, Zhenguo Xing, Haoyan Wei, Jiping Niu, Shi Chen and Min Li
Horticulturae 2025, 11(6), 634; https://doi.org/10.3390/horticulturae11060634 - 5 Jun 2025
Viewed by 448
Abstract
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) [...] Read more.
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) was added to aeolian sandy soil. We compared the soil hydraulic properties and plant growth of original aeolian sandy soil (CK) and different CGP application rates (10% and 20%). The results indicated that the application of CGP transformed the soil texture from sandy to loamy, significantly reduced soil bulk density and saturated hydraulic conductivity (Ks) values, altered the soil water characteristic curve, enhanced soil water-holding capacity, and increased plant-available water. Compared with the CK group, the emergence rate of alfalfa seeds increased from approximately 50% to over 70% after CGP application. During the growth process, CGP application significantly elevated the net photosynthetic rate, transpiration rate, and stomatal conductance of alfalfa leaves. Rapid fluorescence kinetics monitoring of leaves demonstrated that alfalfa treated with CGP had a higher efficiency in light energy utilization. However, the photosynthetic capacity of leaves did not improve as the CGP application rate increased from 10% to 20%, suggesting that excessive CGP addition did not continuously benefit plant gas exchange. In conclusion, CGP application can improve the soil hydraulic properties of aeolian sandy soil and support plant growth and development, which is conducive to reducing the accumulated amount of coal gangue, alleviating plant water stress, and promoting ecological restoration in arid mining areas. We recommend a 10% addition of coal gangue powder as the optimal amount for similar soils. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

23 pages, 3044 KiB  
Review
The Sustainable Management of Nitrogen Fertilizers for Environmental Impact Mitigation by Biochar Applications to Soils: A Review from the Past Decade
by Yudai Kohira, Desalew Fentie, Mekuanint Lewoyehu, Tassapak Wutisirirattanachai, Ashenafei Gezahegn, Milkiyas Ahmed, Shinichi Akizuki, Solomon Addisu and Shinjiro Sato
Environments 2025, 12(6), 182; https://doi.org/10.3390/environments12060182 - 30 May 2025
Cited by 1 | Viewed by 662
Abstract
This review assesses biochar’s potential to mitigate nitrogen (N) losses when co-applied with N fertilizers, emphasizing mechanisms linked to its measurable physicochemical properties. The mitigation of ammonia (NH3) volatilization shows variable effects from its cation exchange capacity (−21.7% to 20.4%) and [...] Read more.
This review assesses biochar’s potential to mitigate nitrogen (N) losses when co-applied with N fertilizers, emphasizing mechanisms linked to its measurable physicochemical properties. The mitigation of ammonia (NH3) volatilization shows variable effects from its cation exchange capacity (−21.7% to 20.4%) and specific surface area (SSA; −23.8% to 39.1%). However, the biochar pH (influencing mitigation from −45.0% to −9.0%) and application rate are key factors, with clayey soils exhibiting the greatest mitigation (−52.2%), potentially due to their high bulk density. High SSA biochar, often from high pyrolysis temperatures, reduces nitrate-N (NO3-N) leaching (up to −26.6%) by improving the soil’s water-holding capacity. A co-application with organic fertilizers shows a pronounced mitigation (up to −39.0%) due to a slower N release coupled with biochar adsorption. A high SSA also plays an important role in mitigating nitrous oxide (N2O) emissions (up to −25.9%). A higher biochar C/N ratio promotes microbial N immobilization, contributing to N2O reductions (+1.5% to −34.2%). Mitigation is greater in sandy/loamy soils (−18.7% to −7.9%) than in clayey soils, where emissions might increase (+18.0%). Overall, biochar applications demonstrate significant potential to mitigate N losses and improve N use efficiency, thereby supporting sustainable agriculture; however, its effectiveness is optimized when biochar properties (e.g., high SSA and appropriate C/N ratio) and application strategies are tailored to specific soil types and N sources. Full article
Show Figures

Graphical abstract

26 pages, 7751 KiB  
Article
Twenty-Year Variability in Water Use Efficiency over the Farming–Pastoral Ecotone of Northern China: Driving Force and Resilience to Drought
by Xiaonan Guo, Meng Wu, Zhijun Shen, Guofei Shang, Qingtao Ma, Hongyu Li, Lei He and Zhao-Liang Li
Agriculture 2025, 15(11), 1164; https://doi.org/10.3390/agriculture15111164 - 28 May 2025
Viewed by 460
Abstract
Water use efficiency (WUE), as an important metric for ecosystem resilience, has been identified to play a significant role in the coupling of carbon and water cycles. The farming–pastoral ecotone of Northern China (FPENC), which is highly susceptible to drought due to water [...] Read more.
Water use efficiency (WUE), as an important metric for ecosystem resilience, has been identified to play a significant role in the coupling of carbon and water cycles. The farming–pastoral ecotone of Northern China (FPENC), which is highly susceptible to drought due to water scarcity, has long been recognized as an ecologically fragile zone. The ecological restoration projects in China have mitigated land degradation and maintain the sustainability of dryland. However, the process of greening in drylands has the potential to impact water availability. A comprehensive analysis of the WUE in the FPENC can help to understand the carbon absorption and water consumption. Using gross primary production (GPP) and evapotranspiration (ET) data from a MODerate resolution Imaging Spectroradiometer (MODIS), alongside biophysical variables data and land cover information, the spatio-temporal variations in WUE from 2003 to 2022 were examined. Additionally, its driving force and the ecosystem resilience were also revealed. Results indicated that the annual mean of WUE fluctuated between 0.52 and 2.60 gC kgH2O−1, showing a non-significant decreasing trend across the FPENC. Notably, the annual averaged WUE underwent a significant decline before 2012 (p < 0.05), and then showed a slight increased trend (p = 0.14) during the year afterward (i.e., 2013–2022). In terms of climatic controls, temperature (Temp) and soil volumetric water content (VSWC) dominantly affected WUE from 2003 to 2012; VPD (vapor pressure deficit), VSWC, and Temp showed comprehensive controls from 2013 to 2022. The findings suggest that a wetter atmosphere and increased soil moisture contribute to the decline in WUE. In total, 59.2% of FPENC was shown to be non-resilient, as grassland occupy the majority of the area, located in Mu Us Sandy land and Horqin Sand Land. These results underscore the importance of climatic factors in the regulation WUE over FPENC and highlight the necessity for focused research on WUE responses to climate change, particularly extreme events like droughts, in the future. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

14 pages, 2577 KiB  
Article
Effects of Fiber Length and Content on the Enhancement of Spray-Applied Substrate in Soil Spray Seeding
by Yifei Qu, Pengfei Wang, Wenhao Zhao, Long Wang, Yifan Liu, Gang Yang and Guilong Song
Appl. Sci. 2025, 15(11), 6075; https://doi.org/10.3390/app15116075 - 28 May 2025
Viewed by 276
Abstract
(1) Background: Soil stability is essential for hydroseeding applications, particularly in erosion-prone areas. This study examines the effects of coir fiber reinforcement on soil properties and optimizes fiber length and content for improved performance. (2) Methods: Triaxial tests, soil physical measurements, and cracking [...] Read more.
(1) Background: Soil stability is essential for hydroseeding applications, particularly in erosion-prone areas. This study examines the effects of coir fiber reinforcement on soil properties and optimizes fiber length and content for improved performance. (2) Methods: Triaxial tests, soil physical measurements, and cracking experiments were conducted on sandy and silty soils using five fiber lengths (1–5 cm) and three fiber contents (0.2–0.6%). Principal component analysis (PCA) and Response Surface Methodology (RSM) were applied for optimization. (3) Results: The results show that coir fiber increases soil cohesion, shear strength, porosity, and permeability while reducing bulk density. The best reinforcement occurred at a 3–4 cm fiber length and 0.4–0.6% content, enhancing both the shear strength and crack resistance. Correlation analysis indicated a positive relationship between porosity and shear strength and a negative correlation between crack ratio and shear strength, confirming fiber reinforcement benefits. RSM analysis identified 3.051 cm + 4.07% as optimal for sandy soil and 3.376 cm + 0.456% for silty soil. (4) Conclusions: The optimal coir fiber combination significantly improves soil stability, providing theoretical support for optimizing spray substrates. Full article
Show Figures

Figure 1

Back to TopTop