Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (473)

Search Parameters:
Keywords = rice height

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9516 KiB  
Article
Proteus sp. Strain JHY1 Synergizes with Exogenous Dopamine to Enhance Rice Growth Performance Under Salt Stress
by Jing Ji, Baoying Ma, Runzhong Wang and Tiange Li
Microorganisms 2025, 13(8), 1820; https://doi.org/10.3390/microorganisms13081820 - 4 Aug 2025
Abstract
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous [...] Read more.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous dopamine (DA) significantly enhanced the production of indole-3-acetic acid and ammonia by strain JHY1. Pot experiments revealed that both DA and JHY1 treatments effectively alleviated the adverse effects of 225 mM NaCl on rice, promoting biomass, plant height, and root length. More importantly, the combined application of DA-JHY1 showed a significant synergistic effect in mitigating salt stress. The treatment increased the chlorophyll content, net photosynthetic rate, osmotic regulators (proline, soluble sugars, and protein), and reduced lipid peroxidation. The treatment also increased soil nutrients (ammoniacal nitrogen and available phosphorus), enhanced soil enzyme activities (sucrase and alkaline phosphatase), stabilized the ion balance (K+/Na+), and modulated the soil rhizosphere microbial community by increasing beneficial bacteria, such as Actinobacteria and Firmicutes. This study provides the first evidence that the synergistic effect of DA and PGPR contributes to enhanced salt tolerance in rice, offering a novel strategy for alleviating the adverse effects of salt stress on plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 - 1 Aug 2025
Viewed by 144
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

14 pages, 2802 KiB  
Article
Interactions of Fe, Mn, Zn, and Cd in Soil–Rice Systems: Implications for Reducing Cd Accumulation in Rice
by Yan Zhang, Su Jiang, Han Wang, Linfei Yu, Chunfu Li, Liqun Ding and Guosheng Shao
Toxics 2025, 13(8), 633; https://doi.org/10.3390/toxics13080633 - 28 Jul 2025
Viewed by 422
Abstract
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with [...] Read more.
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with high (MY46) or low (ZS97B) Cd accumulation capacities grown in acidic and alkaline soils. Results demonstrated that Cd stress significantly inhibited plant growth, reducing plant height, shoot biomass, and grain yield in both soil types. Cd accumulation increased in roots, shoots, and grains, while Fe, Mn, and Zn concentrations decreased markedly. Molecular analysis revealed upregulation of metal transporter genes (OsIRT1, OsNRAMP1, OsNRAMP5) and the vacuolar sequestration gene (OsHMA3) in roots under Cd exposure. The translocation factor (TF) values of Mn and Zn from root to shoot were reduced in acidic soils, whereas Mn and Zn TFs exhibited an increasing trend in alkaline soils despite Cd exposure. Furthermore, correlation analyses indicated Mn and Zn play crucial roles in suppressing Cd accumulation in both acidic and alkaline soils. These findings provide critical insights for developing soil-specific strategies to reduce Cd accumulation in rice through micronutrient management. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

15 pages, 1081 KiB  
Article
More Similar than Different: The Cold Resistance and Yield Responses of the Yangmai23 Wheat Variety to Different Sowing Dates and Early Spring Low Temperatures
by Yangyang Zhu, Yun Gao, Yueping Zhou, Zeyang Zhang, Jingxian Wu, Siqi Yang, Min Zhu, Jinfeng Ding, Xinkai Zhu, Chunyan Li and Wenshan Guo
Agronomy 2025, 15(8), 1773; https://doi.org/10.3390/agronomy15081773 - 23 Jul 2025
Viewed by 221
Abstract
Late sowing and spring low temperatures have a great impact on the growth and maturation of wheat in the rice–wheat rotation region. In order to analyze the impacts of cold stress in February in early spring on yield formation and agronomic traits of [...] Read more.
Late sowing and spring low temperatures have a great impact on the growth and maturation of wheat in the rice–wheat rotation region. In order to analyze the impacts of cold stress in February in early spring on yield formation and agronomic traits of wheat on different sowing dates, a controlled pot experiment was performed using the widely promoted and applied spring-type wheat variety Yangmai23 (YM23). The yield of wheat treated with late sowing date II (SDII, 21 November) and overly late sowing date III (SDIII, 9 December) were both lower than that of wheat sown on the suitable date I (SDI, 1 November). The yield of late-sown wheat decreased by 40.82% for SDII and by 66.77% for SDIII, compared with SDI, and these three treatments of wheat all grew under the natural conditions as the control treatments. The plant height, stem diameter of the internode below the ear, flag leaf length and area, and total awn length of the spike, as well as the spike length of late-sown wheat, were all significantly lower than those of wheat in SDI treatment. Early spring low temperatures exacerbated the decline in yield of wheat sown on different dates, to some extent. Despite showing higher net photosynthetic rate, stomatal conductance, and transpiration rate in flag leaves of the SDIII treatment under low-temperature stress than those of the other treatments at anthesis, overly late sowing led to minimal leaf area, shorter plant height, fewer tillers, and smaller ears, ultimately resulting in the lowest yield. Our study suggested that additional focus and some regulation techniques are needed to be studied further to mitigate the combined negative impacts of late sowing and low-temperature stress in early spring on wheat production. Full article
(This article belongs to the Collection Crop Physiology and Stress)
Show Figures

Figure 1

31 pages, 4937 KiB  
Article
Proximal LiDAR Sensing for Monitoring of Vegetative Growth in Rice at Different Growing Stages
by Md Rejaul Karim, Md Nasim Reza, Shahriar Ahmed, Kyu-Ho Lee, Joonjea Sung and Sun-Ok Chung
Agriculture 2025, 15(15), 1579; https://doi.org/10.3390/agriculture15151579 - 23 Jul 2025
Viewed by 270
Abstract
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, [...] Read more.
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, non-destructive 3D canopy characterization, yet applications in rice cultivation across different growth stages remain underexplored, while LiDAR has shown success in other crops such as vineyards. This study addresses that gap by using LiDAR for geometric characterization of rice plants at early, middle, and late growth stages. The objective of this study was to characterize rice plant geometry such as plant height, canopy volume, row distance, and plant spacing using the proximal LiDAR sensing technique at three different growth stages. A commercial LiDAR sensor (model: VPL−16, Velodyne Lidar, San Jose, CA, USA) mounted on a wheeled aluminum frame for data collection, preprocessing, visualization, and geometric feature characterization using a commercial software solution, Python (version 3.11.5), and a custom algorithm. Manual measurements compared with the LiDAR 3D point cloud data measurements, demonstrating high precision in estimating plant geometric characteristics. LiDAR-estimated plant height, canopy volume, row distance, and spacing were 0.5 ± 0.1 m, 0.7 ± 0.05 m3, 0.3 ± 0.00 m, and 0.2 ± 0.001 m at the early stage; 0.93 ± 0.13 m, 1.30 ± 0.12 m3, 0.32 ± 0.01 m, and 0.19 ± 0.01 m at the middle stage; and 0.99 ± 0.06 m, 1.25 ± 0.13 m3, 0.38 ± 0.03 m, and 0.10 ± 0.01 m at the late growth stage. These measurements closely matched manual observations across three stages. RMSE values ranged from 0.01 to 0.06 m and r2 values ranged from 0.86 to 0.98 across parameters, confirming the high accuracy and reliability of proximal LiDAR sensing under field conditions. Although precision was achieved across growth stages, complex canopy structures under field conditions posed segmentation challenges. Further advances in point cloud filtering and classification are required to reliably capture such variability. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 4639 KiB  
Article
High Stubble Height Enhances Ratoon Rice Yield by Optimizing Light–Temperature Resource Utilization and Photothermal Quotient
by Yin Zhang, Tian Sheng, Liyan Shang, Beiyou Zhang, Long Jin, Fangfang Hou, Matthew Tom Harrison, Liying Huang, Zhaoqiang Jin, Xiaohai Tian, Ke Liu, Shijie Shi, Yunbo Zhang and Dayong Li
Plants 2025, 14(14), 2222; https://doi.org/10.3390/plants14142222 - 18 Jul 2025
Viewed by 277
Abstract
Ratoon rice is a sustainable planting model, and its yield is closely linked to the light and temperature use efficiency. The photothermal quotient (PQ), a key parameter for evaluating the light and temperature use efficiency, significantly influences ratoon rice yield. However, research on [...] Read more.
Ratoon rice is a sustainable planting model, and its yield is closely linked to the light and temperature use efficiency. The photothermal quotient (PQ), a key parameter for evaluating the light and temperature use efficiency, significantly influences ratoon rice yield. However, research on how different stubble heights affect PQ and the utilization efficiency of light and temperature resources remains limited. Here, we conducted a two-year field experiment to investigate the radiation use efficiency (RUE), effective accumulated temperature use efficiency (TUE), PQ, interception percentage (IP), intercepted photosynthetically active radiation (IPAR), and total dry weight (TDW) of six ratoon rice varieties under two stubble height treatments (HS: high stubble, LS: low stubble) during the ratoon season. This study aimed to analyze how different stubble heights impact ratoon rice yield by evaluating light and temperature resource utilization efficiency and investigates the relationship between PQ and ratoon rice yield. The results showed that the HS treatment significantly increased ratoon season yield compared to LS treatment, with average yield increases of 21.2% and 28.1% in 2022 and 2023, respectively. This yield enhancement was attributed to improved TDW under HS treatment, driven by increased IP, IPAR, RUE, and TUE. Notably, PQ was significantly lower under HS than under LS treatment. This reduction was primarily attributed to the decreased duration available for light and heat accumulation, consequently lowering PQ. Correlation analysis revealed a significant positive association between main season yield and PQ, while ratoon season yield exhibited a negative correlation with PQ. In conclusion, the HS treatment increased IP and IPAR, enhanced TUE and RUE, and reduced PQ, collectively contributing to higher ratoon season yields. Importantly, our findings indicate that PQ can more effectively predict yield changes in the ratoon season under HS treatment, providing a theoretical basis for optimizing light and temperature resource utilization in ratoon rice. Full article
Show Figures

Figure 1

16 pages, 1945 KiB  
Article
Debaryomyces hansenii Enhances Growth, Nutrient Uptake, and Yield in Rice Plants (Oryza sativa L.) Cultivated in Calcareous Soil
by Jorge Núñez-Cano, Francisco J. Ruiz-Castilla, José Ramos, Francisco J. Romera and Carlos Lucena
Agronomy 2025, 15(7), 1696; https://doi.org/10.3390/agronomy15071696 - 14 Jul 2025
Viewed by 478
Abstract
Calcareous soils, characterized by high pH and calcium carbonate content, often limit the availability of essential nutrients for crops such as rice (Oryza sativa L.), reducing yield and nutritional quality. In this study, we evaluated the effect of the halotolerant yeast Debaryomyces [...] Read more.
Calcareous soils, characterized by high pH and calcium carbonate content, often limit the availability of essential nutrients for crops such as rice (Oryza sativa L.), reducing yield and nutritional quality. In this study, we evaluated the effect of the halotolerant yeast Debaryomyces hansenii on the growth, nutrient uptake, and phosphorus acquisition mechanisms of rice plants cultivated in calcareous soil under controlled greenhouse conditions. Plants inoculated with D. hansenii, particularly via root immersion, exhibited significantly higher SPAD chlorophyll index, plant height, and grain yield compared to controls. A modest increase (~4%) in dry matter content was also observed under sterilized soil conditions. Foliar concentrations of Fe, Zn, and Mn significantly increased in plants inoculated with D. hansenii via root immersion in non-sterilized calcareous soil, indicating improved micronutrient acquisition under these specific conditions. Although leaf phosphorus levels were not significantly increased, D. hansenii stimulated acid phosphatase activity, as visually observed through BCIP staining, and upregulated genes involved in phosphorus acquisition under both P-sufficient and P-deficient conditions. At the molecular level, D. hansenii upregulated the expression of acid phosphatase genes (OsPAP3, OsPAP9) and a phosphate transporter gene (OsPTH1;6), confirming its influence on P-related physiological responses. These findings demonstrate that D. hansenii functions as a plant growth-promoting yeast (PGPY) and may serve as a promising biofertilizer for improving rice productivity and nutrient efficiency in calcareous soils, contributing to sustainable agricultural practices in calcareous soils and other nutrient-limiting environments. Full article
Show Figures

Figure 1

18 pages, 4535 KiB  
Article
Selenium Alleviates Low-Temperature Stress in Rice by Regulating Metabolic Networks and Functional Genes
by Naixin Liu, Qingtao Yu, Baicui Chen, Chengxin Li, Fanshan Bu, Jingrui Li, Xianlong Peng and Yuncai Lu
Agriculture 2025, 15(14), 1489; https://doi.org/10.3390/agriculture15141489 - 11 Jul 2025
Viewed by 290
Abstract
Low temperature is a major abiotic stress affecting rice productivity. Selenium (Se) treatment has been shown to enhance plant resilience to cold stress. In this study, low concentrations of selenium (ColdSe1) alleviated the adverse effects of cold stress on rice seedlings, improving fresh [...] Read more.
Low temperature is a major abiotic stress affecting rice productivity. Selenium (Se) treatment has been shown to enhance plant resilience to cold stress. In this study, low concentrations of selenium (ColdSe1) alleviated the adverse effects of cold stress on rice seedlings, improving fresh weight, plant height, and chlorophyll content by 36.9%, 24.3%, and 8.4%, respectively, while reducing malondialdehyde (MDA) content by 29.1%. Se treatment also increased the activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), by 25.2%, 42.7%, and 33.3%, respectively, and upregulated flavonoids, soluble sugars, cysteine (Cys), glutathione (GSH), and oxidized glutathione (GSSG). Transcriptome analysis revealed that ColdSe1 treatment upregulated genes associated with amino and nucleotide sugar metabolism, glutathione metabolism, and fructose and mannose metabolism. It also alleviated cold stress by modulating the MAPK signaling pathway, phytohormone signaling, and photosynthesis-related pathways, enriching genes and transcription factors linked to antioxidant metabolism and photosynthesis. Metabolomic analyses showed that ColdSe1 positively influenced amino acid glucose metabolism, glycerolipid metabolism, hormonal pathways, and alanine/glutamate pathways under cold stress, while also upregulating metabolites associated with plant secondary metabolites (e.g., flavonoids, phenolic compounds) and antioxidant metabolism (e.g., α-linolenic acid metabolism). In contrast, high selenium concentrations (ColdSe2) disrupted phenylpropanoid biosynthesis, α-linolenic acid metabolism, and ABC transporter function, exacerbating cold-stress injury. This study highlights the critical role of Se in mitigating cold stress in rice, offering a theoretical basis for its application as an agricultural stress reliever. Full article
(This article belongs to the Special Issue Genetic Research and Breeding to Improve Stress Resistance in Rice)
Show Figures

Figure 1

13 pages, 3586 KiB  
Article
Effects of Different Types of Pot-Mat Trays on the Growth of Densely Sown Seedlings and Root Morphology of Machine-Transplanted Rice
by Yuhang Shang, Peng Zhang, Xinling Ma, Xiang Wu, Yulin Chen, Huizhe Chen, Yuping Zhang, Jing Xiang, Yaliang Wang, Zhigang Wang, Yiwen Xu, Xuzhu Zhang and Yikai Zhang
Agronomy 2025, 15(7), 1616; https://doi.org/10.3390/agronomy15071616 - 2 Jul 2025
Viewed by 314
Abstract
Weak seedlings and poor growth uniformity affect the mechanical transplanting of densely sown rice seedlings. To address these issues, seedlings of the conventional japonica rice “Zhehexiang 2” were grown in a traditional flat tray (control), pot-mat tray (26 × 52 bowls; BT(26)), and [...] Read more.
Weak seedlings and poor growth uniformity affect the mechanical transplanting of densely sown rice seedlings. To address these issues, seedlings of the conventional japonica rice “Zhehexiang 2” were grown in a traditional flat tray (control), pot-mat tray (26 × 52 bowls; BT(26)), and pot-mat tray (30 × 58 bowls; BT(30)) to compare the effects of different specifications of pot-mat trays (BTs) on the growth and quality of mechanical transplanting of densely sown rice seedlings with 250 g/tray. The BT-raised seedlings showed improved seedling quality, with increases in the shoot and root dry weights by 7.44% and 20.11%, respectively, compared to the flat tray. Under the dense sowing rate, the plant height uniformity of the BT(26) and BT(30) treatments was significantly increased by 6.95% and 3.43%, and the root entwining force of the seedlings was 14.28% and 10.21% higher, respectively, compared with those of the control. The missing hill rate for BT-raised seedlings after mechanical transplanting was significantly reduced by 53.15%. The loss of roots during mechanical transplanting was reduced. Compared with the control, the root length, root surface area, and root number were increased, and a greater number of large roots were retained, which promoted the early development of seedlings after mechanical transplanting. The proportion of holes with two to five seedlings was higher after mechanical transplanting. The pot-mat tray divided the root growth area of seedlings, promoted the growth of the seedlings, and reduced the root loss and missing hill rate under the high sowing rate. Thus, the quality of mechanical transplanting of densely sown seedlings was improved. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

18 pages, 8672 KiB  
Article
Under Blue Light Treatment, OsCSN2 Regulates the Phenotype of Rice Seedlings Through the GA Signaling Pathway
by Xinhai Yu, Tongtong Jiao, Changfeng Liu, Hexin Zhang, Yanxi Liu, Chunyu Zhang, Ming Wu and Liquan Guo
Plants 2025, 14(13), 2015; https://doi.org/10.3390/plants14132015 - 1 Jul 2025
Viewed by 347
Abstract
Blue light is a significant environmental cue influencing plant photomorphogenesis and regulating plant growth and development. The COP9 signaling complex (CSN), a multi-subunit protein complex, plays a pivotal role in regulating photomorphogenesis, with CSN2 being identified as a key subunit essential for the [...] Read more.
Blue light is a significant environmental cue influencing plant photomorphogenesis and regulating plant growth and development. The COP9 signaling complex (CSN), a multi-subunit protein complex, plays a pivotal role in regulating photomorphogenesis, with CSN2 being identified as a key subunit essential for the assembly and function of the CSN. This study investigated the role of OsCSN2 in rice under blue-light conditions. Utilizing OsCSN2 knockout (KO) mutant plants and transgenic overexpression (OE) lines for wild-type (WT) and mutated versions of OsCSN2, we observed significant suppression of the overall seedling phenotype under blue light, indicating that OsCSN2 acts as a negative regulator of blue light-mediated morphogenesis. Further analysis revealed that exogenous application of gibberellin (GA3) and the GA synthesis inhibitor paclobutrazol (PAC) modulated seedling elongation in response to blue light, particularly affecting plant height, coleoptile, and first incomplete leaf length without altering root growth. This suggests that OsCSN2 mediates the inhibitory effects of blue light on aboveground development through the gibberellin signaling pathway. On day 9, the analyses of endogenous GA3 levels combined with Western blotting (WB) and quantitative real-time PCR (qRT-PCR) revealed that OsCSN2 senses blue light signals through cryptochrome 2 (CRY2), influences the expression of COP1 and BBX14, and highlights its role in the photoreceptive signaling pathway. This regulation ultimately influences the degradation of SLR1 within the GA signaling pathway, affecting rice seedling growth and development. Our findings also highlight the differential roles of OsCSN1 and OsCSN2 within the CSN in modulating rice seedling photomorphogenesis, thereby providing new insights into the intricate regulatory mechanisms governing plant responses to blue light. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 3922 KiB  
Article
Improvement of Morkhor 60-3 Upland Rice Variety for Blast and Bacterial Blight Resistance Using Marker–Assisted Backcross Selection
by Sawinee Panmaha, Chaiwat Netpakdee, Tanawat Wongsa, Sompong Chankaew, Tidarat Monkham and Jirawat Sanitchon
Agronomy 2025, 15(7), 1600; https://doi.org/10.3390/agronomy15071600 - 30 Jun 2025
Viewed by 370
Abstract
Morkhor 60-3 is an upland rice variety primarily cultivated in northeastern Thailand. This glutinous rice is valued for its adaptability and rich aroma but remains susceptible to significant diseases, particularly blast and bacterial blight. Using resistant varieties represents the most cost-effective approach to [...] Read more.
Morkhor 60-3 is an upland rice variety primarily cultivated in northeastern Thailand. This glutinous rice is valued for its adaptability and rich aroma but remains susceptible to significant diseases, particularly blast and bacterial blight. Using resistant varieties represents the most cost-effective approach to address this limitation. This study incorporated the QTLs/genetic markers qBl1, qBl2, and xa5 from Morkhor 60-1 through marker-assisted backcrossing. From the BC1F3 population, ten lines were selected based on their parentage and evaluated for blast resistance using a spray inoculation method with 12 isolates of Pyricularia oryzae, and for bacterial blight (BB) resistance using a leaf-clipping method with nine isolates of Xanthomonas oryzae pv. oryzae. Broad-spectrum resistance (BSR) was also assessed in the lines for both diseases. Subsequently, BC1F4 lines were evaluated for field performance, including agronomic traits and aroma. Results identified three superior lines, BC1F4 22-7-140-4, BC1F4 22-7-322-5, and BC1F4 22-7-311-9, that demonstrated resistance to both BB and blast pathogens with average BSR values of 0.61 and 1.00, 0.66 and 1.00, and 0.55 and 0.87, respectively. These lines also exhibited enhanced performance in flowering date, plant height, panicle number per plant, grain number per plant, and grain weight. These findings demonstrate the effectiveness of marker-assisted selection (MAS) for gene pyramiding in rice improvement. Full article
(This article belongs to the Special Issue Advances in Crop Molecular Breeding and Genetics—2nd Edition)
Show Figures

Figure 1

14 pages, 5621 KiB  
Article
Biocontrol Potential of Bacillus stercoris Strain DXQ-1 Against Rice Blast Fungus Guy11
by Qian Xu, Zhengli Shan, Zhihao Yang, Haoyu Ma, Lijuan Zou, Ming Dong and Tuo Qi
Microorganisms 2025, 13(7), 1538; https://doi.org/10.3390/microorganisms13071538 - 30 Jun 2025
Viewed by 301
Abstract
Fungal diseases severely threaten global agriculture, while conventional chemical fungicides face increasing restrictions due to environmental and safety concerns. In this study, we isolated a soil-derived Bacillus stercoris strain, DXQ-1, exhibiting strong antagonistic activity against plant pathogenic fungi, notably Magnaporthe oryzae, the [...] Read more.
Fungal diseases severely threaten global agriculture, while conventional chemical fungicides face increasing restrictions due to environmental and safety concerns. In this study, we isolated a soil-derived Bacillus stercoris strain, DXQ-1, exhibiting strong antagonistic activity against plant pathogenic fungi, notably Magnaporthe oryzae, the causal agent of rice blast. Scanning electron microscopy revealed that DXQ-1 disrupts fungal hyphae and inhibits conidial germination, with a 24 h crude broth treatment reducing germination to 83.33% and completely blocking appressoria formation. LC-MS-based metabolomic analysis identified key antifungal components, including lipids (35.83%), organic acid derivatives (22.15%), and small bioactive molecules (e.g., Leu-Pro, LPE 15:0). After optimizing fermentation conditions (LB medium, pH 7.0, 28 °C, 48 h), the broth showed >90% inhibition against M. oryzae and Nigrospora oryzae and retained high thermal (68 °C, 1 h) and UV (4 h) stability. Field trials demonstrated effective disease control and significant promotion of rice growth, increasing plant height (17.7%), fresh weight (53.3%), and dry weight (33.3%). These findings highlight DXQ-1 as a promising biocontrol agent, offering a sustainable and effective alternative for managing fungal diseases in crops. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 1050 KiB  
Article
Prediction of Rice Plant Height Using Linear Regression Model by Pyramiding Plant Height-Related Alleles
by Yongxiang Huang, Zhihao Xie, Daming Chen, Haomin Chen, Yuxiang Zeng and Shuangfeng Dai
Int. J. Mol. Sci. 2025, 26(13), 6249; https://doi.org/10.3390/ijms26136249 - 28 Jun 2025
Viewed by 304
Abstract
Although numerous rice plant height-related genes have been cloned and functionally characterized in recent years, a gap between the identified genes and their utilization in breeding still exists. Here, we developed a linear regression model by pyramiding plant height-related alleles to predict rice [...] Read more.
Although numerous rice plant height-related genes have been cloned and functionally characterized in recent years, a gap between the identified genes and their utilization in breeding still exists. Here, we developed a linear regression model by pyramiding plant height-related alleles to predict rice plant height and confirmed that it can be used in rice breeding. In our study, we firstly identified 22 plant height-associated molecular markers from 218 markers in an association mapping population which consisted of 273 rice varieties. Linear regression analysis revealed a positive correlation between rice plant height and the number of plant height-increasing alleles derived from these 22 molecular markers. Subsequently, linear regression models were developed using 2–10 loci based on the genotype and phenotype data of the association mapping population. The predictive accuracy of the model was tested using a recombinant inbred line (RIL) population consisting of 219 lines, and it revealed the trend that predictive accuracy increased with more loci in a certain range of less than five loci. If the prediction model was built based on 5–10 loci, it yielded an average absolute error from 11.05 to 11.96 cm, which was smaller than absolute error induced by environmental factors (5.72 cm to 12.79 cm). The reliable prediction of rice plant height by this model highlights its value as a practical tool for optimizing rice breeding strategies. Additionally, the linear regression model developed in this study not only can facilitate plant height manipulation but also will inspire other design breeding techniques in other crops or other traits. Full article
Show Figures

Figure 1

15 pages, 2312 KiB  
Article
The G311E Mutant Gene of MATE Family Protein DTX6 Confers Diquat and Paraquat Resistance in Rice Without Yield or Nutritional Penalties
by Gaoan Chen, Jiaying Han, Ziyan Sun, Mingming Zhao, Zihan Zhang, Shuo An, Muyu Shi, Jinxiao Yang and Xiaochun Ge
Int. J. Mol. Sci. 2025, 26(13), 6204; https://doi.org/10.3390/ijms26136204 - 27 Jun 2025
Viewed by 313
Abstract
Weeds present a pervasive challenge in agricultural fields. The integration of herbicide-resistant crops with chemical weed management offers an effective solution for sustainable weed control while reducing labor inputs, particularly in large-scale intensive farming systems. Consequently, the development of herbicide-resistant cultivars has emerged [...] Read more.
Weeds present a pervasive challenge in agricultural fields. The integration of herbicide-resistant crops with chemical weed management offers an effective solution for sustainable weed control while reducing labor inputs, particularly in large-scale intensive farming systems. Consequently, the development of herbicide-resistant cultivars has emerged as an urgent priority. In this study, we found that the G311E mutant gene of Arabidopsis MATE (multidrug and toxic compound extrusion) family transporter DTX6, designated DTX6m, confers robust resistance to bipyridyl herbicides paraquat and diquat in rice. DTX6m-overexpression lines exhibited marked resistance to these two herbicides, tolerating diquat concentrations up to 5 g/L, which is five-fold higher than the recommended field application dosage. Agronomic assessments demonstrated that grain yields of DTX6m-overexpressing plants were statistically equivalent to those of wild-type plants. Moreover, the plants displayed beneficial phenotypic changes, such as accelerated flowering and a slight reduction in height. Seed morphometric analysis indicated that in comparison with the wild-type control, DTX6m-transgenic lines exhibited altered grain dimensions while maintaining consistent 1000-grain weight. Nutritional assays further demonstrated that DTX6m increased the levels of free amino acids in seeds, while normal protein and starch contents were retained. Collectively, these results establish that DTX6m effectively boosts rice resistance to paraquat and diquat, validating DTX6m as a candidate gene for engineering plant herbicide resistance and also implying a potential role for DTX6m in amino acid homeostasis in plants. Full article
(This article belongs to the Special Issue Advanced Plant Molecular Responses to Abiotic Stresses)
Show Figures

Figure 1

19 pages, 2402 KiB  
Article
Straw and Green Manure Return Can Improve Soil Fertility and Rice Yield in Long-Term Cultivation Paddy Fields with High Initial Organic Matter Content
by Hailin Zhang, Long Chen, Yongsheng Wang, Mengyi Xu, Weiwen Qiu, Wei Liu, Tingyu Wang, Shenglong Li, Yuanhang Fei, Muxing Liu, Hanjiang Nie, Qi Li, Xin Ni and Jun Yi
Plants 2025, 14(13), 1967; https://doi.org/10.3390/plants14131967 - 27 Jun 2025
Viewed by 488
Abstract
Returning straw and green manure to the field is a vital agronomic practice for improving crop yields and ensuring food security. However, the existing research primarily focuses on drylands and low-fertility paddy fields. A systematic discussion of the yield-increasing mechanisms and soil response [...] Read more.
Returning straw and green manure to the field is a vital agronomic practice for improving crop yields and ensuring food security. However, the existing research primarily focuses on drylands and low-fertility paddy fields. A systematic discussion of the yield-increasing mechanisms and soil response patterns of medium- and long-term organic fertilization in subtropical, high-organic-matter paddy fields is lacking. This study conducted a six-year field experiment (2019–2024) in a typical high-fertility rice production area, where the initial organic matter content of the 0–20 cm topsoil layer was 44.56 g kg−1. Four treatments were established: PK (no nitrogen, only phosphorus and potassium fertilizer), NPK (conventional nitrogen, phosphorus, and potassium fertilizer), NPKM (NPK + full-amount winter milk vetch return), and NPKS (NPK + full-amount rice straw return). We collected 0–20 cm topsoil samples during key rice growth stages to monitor the dynamic changes in nitrate and ammonium nitrogen. The rice SPAD, LAI, plant height, and tiller number were also measured during the growth period. After the six-year rice harvest, we determined the properties of the topsoil, including its organic matter, pH, total nitrogen, phosphorus, potassium, available phosphorus and potassium, and alkali hydrolyzable nitrogen. The results showed that, compared to NPK, the organic matter content of the topsoil (0–20 cm) increased by 6.36% and 5.16% (annual average increase of 1.06% and 0.86%, lower than in low-fertility areas) in the NPKS and NPKM treatments, respectively; the total nitrogen, phosphorus, and potassium content increased by 16.59%, 8.81%, and 10.37% (NPKS) and 6.70%, 5.12%, and 11.62% (NPKM), respectively; the available phosphorus content increased by 21.87% and 8.42%, respectively; the available potassium content increased by 47.38% and 11.56%, respectively; and the alkali hydrolyzable nitrogen content increased by 3.24% and 2.34%, respectively. However, the pH decreased by 0.07 in the NPKS treatment while it increased by 0.17 in the NPKM treatment, respectively, compared to the PK treatment. NPKS and NPKM improved key rice growth indicators such as the SPAD, LAI, plant height, and tillering. In particular, the tillering of the NPKS treatment showed a sustained advantage at maturity, increasing by up to 13.64% compared to NPK, which also led to an increase in the effective panicle number. Compared to NPK, NPKS and NPKM increased the average yield by 9.52% and 8.83% over the six years, respectively, with NPKM having the highest yield in the first three years (2019–2021) and NPKS having the highest yield from the fourth year (2022–2024) onwards. These results confirm that inputting organic materials such as straw and green manure can improve soil fertility and rice productivity, even in rice systems with high organic matter levels. Future research should prioritize the long-term monitoring of carbon and nitrogen cycle dynamics and greenhouse gas emissions to comprehensively assess these practices’ sustainability. Full article
Show Figures

Figure 1

Back to TopTop