More Similar than Different: The Cold Resistance and Yield Responses of the Yangmai23 Wheat Variety to Different Sowing Dates and Early Spring Low Temperatures
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Determination Items and Methods
2.2.1. Yield and Yield Components
2.2.2. Plant Traits of Wheat
2.2.3. Ear Traits of Wheat
2.2.4. Leaf Traits of Wheat
2.2.5. Leaf Photosynthetic Parameter
2.3. Data Analysis Methods
3. Results and Analysis
3.1. Yield Changes of Wheat Sown on Different Dates Under Spring Low-Temperature Stress
3.2. Agronomic Trait Changes of Wheat Sown on Different Dates Under Spring Low-Temperature Stress
3.3. Leaf Photosynthetic Changes of Wheat Sown on Different Dates Under Spring Low-Temperature Stress
3.4. Correlation Analysis in Leaf Parameters and Plant Traits as Well as Yield Parameters
4. Discussion
4.1. Similarities and Differences in Agronomic Traits of Wheat Sown on Different Dates Under Low-Temperature Stress
4.2. Similarities and Differences in Leaf Photosynthesis and Yield Formation of Wheat Sown on Different Dates Under Low-Temperature Stress
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kucharik, C.J.; Ramiadantsoa, T.; Zhang, J.; Ives, A.R. Spatiotemporal trends in crop yields, yield variability, and yield gaps across the USA. Crop Sci. 2020, 60, 2085–2101. [Google Scholar] [CrossRef]
- Bian, J.L.; Ren, G.L.; Xu, F.F.; Zhang, H.C.; Wei, H.Y. Comparison of grain yield and quality of different types of japonica rice cultivars in the northern Jiangsu plain, China. J. Integr. Agric. 2021, 20, 2065–2076. [Google Scholar] [CrossRef]
- Nai, J.; Zhang, H.C.; Lu, J.F. Regional pattern changes of rice production in thirty years and its influencing factors in Jiangsu Province. Sci. Agric. Sin. 2012, 45, 3446–3452. (In Chinese) [Google Scholar]
- Tanio, M.; Tateishi, K.; Fukami, K.; Sasaki, Y.; Watanabe, T. Pseudostem length as an indicator of the start of internode elongation in spring and winter wheat cultivars. Jpn. J. Farm. Work. Res. 2016, 51, 1–9. [Google Scholar] [CrossRef]
- Tian, Z.W.; Yin, Y.Y.; Li, B.W.; Zhong, K.T.; Liu, X.X.; Jiang, D.; Cao, W.X.; Dai, T.B. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice-wheat rotation. J. Integr. Agric. 2025, 24, 2558–2574. [Google Scholar] [CrossRef]
- Chen, X.; Lin, T.; Lin, F.F.; Zhang, Y.; Su, H.; Hu, Y.M.; Song, Y.H.; Wei, F.Z.; Li, J.C. Research progress on damage mechanism and prevention and measures of late spring coldness of wheat in Huanghuai Region. J. Triticeae Crops 2020, 40, 243–250. (In Chinese) [Google Scholar]
- Rapacz, M.; Jurczyk, B.; Bani, I.; Wόjcik-Jagla, M. Phenotyping the effects of simulated spring frost on the yield of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). J. Agron. Crop Sci. 2025, 211, e70054. [Google Scholar] [CrossRef]
- Lin, F.F.; Li, C.; Xu, B.; Chen, J.; Chen, A.H.; Hassan, M.A.; Liu, B.B.; Xu, H.; Chen, X.; Sun, J.Q.; et al. Late spring cold reduces grain number at various spike positions by regulating spike growth and assimilate distribution in winter wheat. Crop J. 2023, 11, 1272–1278. [Google Scholar] [CrossRef]
- Liu, L.L.; Xia, Y.M.; Liu, B.; Chang, C.Y.; Xiao, L.J.; Shen, J.; Tang, L.; Cao, W.X.; Zhu, Y. Individual and combined effects of jointing and booting low-temperature stress on wheat yield. Eur. J. Agron. 2020, 113, 125989. [Google Scholar] [CrossRef]
- Venzhik, Y.V.; Moshkov, I.E. The role of ultrastructural organization of cells in adaptation of winter wheat to low temperature. Russ. J. Plant Physiol. 2023, 70, 100. [Google Scholar] [CrossRef]
- Rose, T.J.; Raymond, C.A.; Bloomfield, C.; King, G.J. Perturbation of nutrient source-sink relationships by post-anthesis stresses results in differential accumulation of nutrients in wheat grain. J. Plant Nutr. Soil Sci. 2015, 178, 89–98. [Google Scholar] [CrossRef]
- Venzhik, Y.V.; Talanova, V.V.; Titov, A.F.; Kholoptseva, E.S. Similarities and differences in wheat plant responses to low temperature and cadmium. Biol. Bull. 2015, 42, 508–514. [Google Scholar] [CrossRef]
- Gao, Q.L.; Xue, X.; Liang, Y.J.; Wu, Y.; Ru, Z.G. Studies on regulating sowing time of wheat under the warm winter conditions. J. Triticeae Crops 2002, 22, 46–50. (In Chinese) [Google Scholar]
- Marcińska, I.; Biesaga-Koscielniak, J.; Dubert, F.; Kozdόj, J. Effect of length and developmental stage of spike on the induction and differentiation efficiency of callus tissue in winter wheat.: Evidence for generative development of regenerated plants. Acta Physiol. Plant. 1999, 21, 355–363. [Google Scholar] [CrossRef]
- Follmann, D.N.; Vendrame, M.; Rosa, G.B.; Santors, E.D.; Pereira, A.C. Agronomic performance associated with the incidence of frost on wheat cultivars in Brazil. Bulg. J. Agric. Sci. 2024, 30, 323–332. [Google Scholar]
- Guo, C.; Tao, R.R.; Zhu, M.; Zhou, M.X.; Zhao, C.C. An enhanced method for studying wheat stomata physiology. J. Plant Growth Regul. 2024, 43, 4886–4893. [Google Scholar] [CrossRef]
- Mehri, N.; Fotovat, R.; Saba, J.; Jabbari, F. Variation of stomata dimensions and densities in tolerant and susceptible wheat cultivars under drought stress. J. Food Agric. Environ. 2009, 7, 167–170. [Google Scholar]
- Xue, W.; Otieno, D.; Ko, J.; Werner, C.; Tenhunen, J. Conditional variations in temperature response of photosynthesis, mesophyll and stomatal control of water use in rice and winter wheat. Field Crops Res. 2016, 199, 77–88. [Google Scholar] [CrossRef]
- Sangha, J.S.; Wang, W.W.; Knox, R.; Ruan, Y.F.; Cuthbert, R.D.; Isidro-Sánchez, J.; Li, L.; He, Y.; Depauw, R.; Singh, A.; et al. Phenotypic plasticity of bread wheat contributes to yield reliability under heat and drought stress. PLoS ONE 2025, 20, e0312122. [Google Scholar] [CrossRef] [PubMed]
- Snider, J.L.; Choinski, J.S.; Wise, R.R. Juvenile Rhus glabra leaves have higher temperatures and lower gas exchange rates than mature leaves when compared in the field during periods of high irradiance. J. Plant Physiol. 2009, 166, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.J.; Chow, W.S.; Liu, Y.J.; Shi, L.; Jiang, C.D. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb. Plant Sci. 2014, 229, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Xiang, C.; Farooq, M.; Muhammad, N.; Yan, Z.; Hui, X.; Ke, Y.Y.; Bruno, A.K.; Zhang, L.L.; Li, J.C. Cold stress in wheat: Plant acclimation responses and management strategies. Front. Plant Sci. 2021, 12, 676884. [Google Scholar] [CrossRef] [PubMed]
- Li, X.N.; Cai, J.; Liu, F.L.; Dai, T.B.; Cao, W.X.; Jiang, D. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiol. Biochem. 2014, 82, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Venzhik, Y.V.; Talanova, V.V.; Ignatenko, A.A.; Repkina, N.S.; Kholoptseva, E.S.; Titov, A.F. Features of wheat adaptation to frost under low-temperature exposure of different intensity. Russ. J. Plant Physiol. 2022, 69, 105. [Google Scholar] [CrossRef]
- Taskin, B.G.; Özbek, Ö.; San, S.K.; Eser, V.; Nachit, M.M.; Kaya, Z. Variation in cold tolerance in F6 durum wheat [Triticum turgidum (L.) Tell. convar. durum (Desf.) Mackey] RILs and the relationships of cold tolerance with some quality parameters and genetic markers. J. Agric. Sci. 2020, 158, 47–56. [Google Scholar]
- Liu, L.L.; Ji, H.T.; An, J.P.; Shi, K.J.; Ma, J.F.; Liu, B.; Tang, L.; Cao, W.X.; Zhu, Y. Response of biomass accumulation in wheat to low-temperature stress at jointing and booting stages. Environ. Exp. Bot. 2019, 157, 46–57. [Google Scholar] [CrossRef]
- Zhang, X.H.; Liu, R.H.; Li, Z.; Cheng, L. Effects of low temperature stress on photosynthetic characteristics of winter wheat in different jointing processes. J. Seed Ind. Guide 2019, 7, 6–12. (In Chinese) [Google Scholar]
- Liu, L.L.; Ji, H.T.; Liu, B.; Ma, J.F.; Xiao, L.J.; Tang, L.; Cao, W.X.; Zhu, Y. Effects of jointing and booting low temperature treatments on photosynthetic and chlorophyll flourscence characteristic in wheat leaf. Sci. Agric. Sin. 2018, 51, 4434–4448. (In Chinese) [Google Scholar]
- Zhang, W.J.; Huang, Z.L.; Wang, Q.; Guan, Y.N. Effects of low temperature on leaf anatomy and photosynthetic performance in different genotypes of wheat following a rice crop. Int. J. Agric. Biol. 2015, 17, 1165–1171. [Google Scholar] [CrossRef]
- Miller, K.; Hall, D.; Kramer, D.; Olson, E.; Merewitz, E. Photosynthetic health of winter wheat following overwintering stresses in controlled conditions. Grass Res. 2024, 4, e0024. [Google Scholar] [CrossRef]
- Li, C.Y.; Yang, J.; Zhu, M.; Ding, J.F.; Zhu, X.K.; Zhou, G.S.; Guo, W.S. Urea amendment alleviated morphological and physiological damages and yield loss of winter wheat subjected to low temperature stress at jointing stage. Plant Growth Regul. 2022, 98, 589–598. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.Z.; Chen, X.; Li, J.C. Effects of low-temperature stress during the anther differentiation period on winter wheat photosynthetic performance and spike-setting characteristics. Plants 2022, 11, 389. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.D.; Chen, Q.H.; Agathokleous, E.; Zhang, J.Q.; Yang, Z.Q.; Takin, M. Effects of low-temperature stress during anthesis stage on dry matter accumulation and yield of winter wheat. Agronomy 2025, 15, 761. [Google Scholar] [CrossRef]
- Basheir, S.M.O.; Hong, Y.; Lv, C.; Xu, H.W.; Zhu, J.; Guo, B.J.; Wang, F.F.; Xu, R.G. Identification of wheat germplasm resistance to late sowing. Agronomy 2023, 13, 1010. [Google Scholar] [CrossRef]
- Baloch, M.S.; Shah, I.T.H.; Nadim, M.A.; Khan, M.I.; Khakwani, A.A. Effect of seeding density and planting time on growth and yield attributes of wheat. J. Anim. Plant Sci. 2010, 20, 239–242. [Google Scholar]
- Wang, W.L.; Wang, X.; Huang, M.; Cal, J.; Zhou, Q.; Dai, T.B.; Jiang, D. Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid. J. Plant Growth Regul. 2021, 40, 811–823. [Google Scholar] [CrossRef]
- Cheng, C.; Wu, L.; Yu, W.D.; Yang, F.Y.; Feng, L.P. Dynamic evaluation of winter wheat’s freezing resistance under different low-tempearture periods and durations. Sci. Rep. 2025, 15, 8488. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Hussain, M.; Khan, M.I.; Ali, Z.; Zulkiffal, M.; Anwar, J.; Sabir, W.; Zeeshan, M. Source-sink relationship between photosynthetic organs and grain yield attributes during grain filling stage in spring wheat (Triticum aestivum). Int. J. Agric. Biol. 2010, 12, 509–515. [Google Scholar]
- Bijanzadeh, E.; Emam, Y. Effect of source-sink manipulation on yield components and photosynthetic characteristic of wheat cultivars (Triticum aestivum and T.durum L.). J. Appl. Sci. 2010, 10, 564–569. [Google Scholar] [CrossRef]
- Chun, J.F.; Wang, J.L.; Wang, J.C.; Wang, Z.; Zhao, L.H.; Yan, Y.H.; Li, J.Y.; Xu, H.Z.Y.; Sun, C.M.; Liu, T. Investigating the impact of sowing date on wheat leaf morphology through image analysis. Agriculture 2025, 15, 770. [Google Scholar] [CrossRef]
- Xiao, L.J.; Asseng, S.; Wang, X.T.; Xia, J.X.; Zhang, P.; Liu, L.L.; Tang, L.; Cao, W.X.; Zhu, Y.; Liu, B. Simulating the effects of low-temperature stress on wheat biomass growth and yield. Agric. For. Meteorol. 2022, 326, 109191. [Google Scholar] [CrossRef]
- Subedi, K.D.; Gregory, P.J.; Summerfield, R.J.; Gooding, M.J. Pattern of grain set in boron-deficient and cold-stressed wheat (Triticum aestivum L.). J. Agric. Sci. 2000, 134, 25–31. [Google Scholar] [CrossRef]
- Chaubey, R.K.; Bhutia, D.D.; Navathe, S.; Mishra, V.K.; Singh, A.K.; Chand, R. Interrelationships among different grain characteristics of wheat grown under optimum and late sowing date conditions in the Eastern Indo-Gangetic plains of India. Cereal Res. Commun. 2021, 49, 449–455. [Google Scholar] [CrossRef]
- Wang, S.G.; Wang, Z.L.; Wang, P.; Wang, H.W.; Huang, W.; Wu, Y.G.; Yin, Y.P. Freeze resistance analysis of different wheat cultivars based on the relationships between physiological indices and grain yield. Chin. J. Appl. Ecol. 2011, 22, 1477–1484. (In Chinese) [Google Scholar]
- Sattar, A.; Cheema, M.A.; Abbas, T.; Sher, A.; Ijaz, M.; Wahid, M.A.; Hussain, M. Physiological response of late sown wheat to exogenous application of silicon. Cereal Res. Commun. 2017, 45, 202–213. [Google Scholar] [CrossRef]
- Zhang, F.H.; Lu, K.; Gu, Y.Y.; Zhang, L.; Li, W.Y.; Li, Z. Effects of low-temperature stress and brassinolide application on the photosynthesis and leaf structure of tung tree seedling. Front. Plant Sci. 2020, 31, 1767. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, Y.; Zeng, C.W.; Zhang, J.S.; Shi, S.B.; Xue, L.H.; Jia, Y.H.; Li, J.J.; Liang, X.D. Effects of sowing time on yield and quality of winter and spring wheat varieties. Sustainability 2025, 17, 2479. [Google Scholar] [CrossRef]
- Gupta, N.K.; Shukla, D.S.; Pande, P.C. Interaction of yield determining parameters in late sown wheat genotypes. Indian J. Plant Physiol. 2002, 7, 264–269. [Google Scholar]
- Farooq, M.; Basra, S.M.A.; Rehman, H.; Saleem, B.A. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J. Agron. Crop Sci. 2008, 194, 55–60. [Google Scholar] [CrossRef]
- Shah, T.; Latif, S.; Khan, H.; Munsif, F.; Nie, L.X. Ascorbic acid priming enhances seed germination and seedling growth of winter wheat under low temperature due to late sowing in Pakistan. Agronomy 2019, 9, 757. [Google Scholar] [CrossRef]
Treatment Duration (h) | Sowing Date | Spike Number Per Pot | Grain Number Per Spike | 1000-Grain Weight (g) | Theoretical Yield Per Pot (g) | Actual Yield Per Pot (g) | Yield Change Compared with the Same Sown Date Control (%) | Yield Change Compared with Control I (%) | Yield Loss Change Due to Low Temperature Only, Compared with Control I (%) |
---|---|---|---|---|---|---|---|---|---|
24 | I | 15.67 d | 42.97 d | 41.74 c | 28.10 d | 27.38 c | −69.60 | −69.60 | −69.60 |
II | 14.28 de | 38.17 e | 40.34 cd | 21.98 e | 18.82 d | −64.70 | −79.11 | −38.29 | |
III | 13.33 e | 26.55 g | 36.49 ef | 12.91 fg | 12.17 ef | −59.36 | −86.49 | −19.72 | |
48 | I | 13.50 de | 38.51 e | 38.25 de | 19.88 e | 18.07 d | −79.94 | −79.94 | −79.94 |
III | 10.98 fg | 26.44 g | 35.75 ef | 10.38 g | 10.03 fg | −66.51 | −88.87 | −45.88 | |
III | 10.98 fg | 26.44 g | 35.75 ef | 10.38 g | 10.03 fg | −66.51 | −88.87 | −22.10 | |
72 | I | 9.76 gh | 36.70 e | 38.24 de | 13.70 f | 13.58 e | −84.93 | −84.93 | −84.93 |
III | 8.89 gh | 30.14 f | 37.75 de | 10.12 g | 9.43 fg | −82.31 | −89.53 | −48.71 | |
III | 8.00 h | 24.09 h | 35.81 ef | 6.90 h | 7.74 g | −74.14 | −91.41 | −24.64 | |
Control | I | 34.00 a | 59.03 a | 59.41 a | 119.23 a | 90.06 a | – | – | – |
II | 23.00 b | 59.41 b | 46.32 b | 63.29 b | 53.30 b | – | −40.82 | – | |
III | 18.50 c | 54.05 c | 41.16 c | 41.16 c | 29.93 c | – | −66.77 | – |
Treatment Duration (h) | Sowing Date | Leaf Length (cm) | Leaf Width (cm) | Leaf Area (cm2) | Grain Length (mm) | Grain Width (mm) | Grain Length/Width Ratio |
---|---|---|---|---|---|---|---|
24 | I | 13.7 d | 1.0 c | 10.5 d | 7.41 a | 3.66 ab | 2.02 |
II | 12.9 de | 1.0 c | 9.0 de | 6.98 e | 3.53 ab | 1.98 | |
III | 12.5 de | 1.0 c | 8.8 de | 6.97 cde | 3.54 ab | 1.97 | |
48 | I | 12.9 de | 1.1 c | 9.9 de | 7.38 abc | 3.71 ab | 1.99 |
II | 11.9 e | 1.0 bc | 8.3 de | 7.04 de | 3.64 b | 1.93 | |
III | 10.1 f | 1.1 c | 7.8 e | 7.00 cde | 3.60 ab | 1.94 | |
72 | I | 12.6 de | 1.0 c | 8.8 de | 7.35 abcd | 3.74 ab | 1.97 |
II | 11.8 e | 1.2 bc | 9.9 de | 7.09 e | 3.70 ab | 1.92 | |
III | 9.9 f | 1.2 bc | 8.3 de | 6.98 de | 3.65 ab | 1.91 | |
Control | I | 30.9 a | 1.9 a | 41.1 a | 7.42 a | 3.84 a | 1.93 |
II | 26.1 b | 1.8 ab | 32.9 b | 7.37 ab | 3.76 ab | 1.96 | |
III | 18.5 c | 1.4 c | 18.1 c | 7.07 bcde | 3.48 b | 2.03 |
Treatment Duration (h) | Sowing Date | Fertile Spikelets Per Ear | Degenerated Spikelets Per Ear | Total Spikelets Per Ear | Number of Grain Per Ear | Average Fertile Grains Per Spikelet | Percentage of Spikelet Degeneration (%) |
---|---|---|---|---|---|---|---|
24 | I | 14.22 cd | 1.35 a | 15.57 cd | 42.97 cd | 3.02 a | 8.67 |
II | 13.82 cd | 1.44 a | 15.26 cd | 38.17 de | 2.76 a | 9.44 | |
III | 13.04 cd | 1.27 a | 14.31 cd | 26.55 fg | 2.04 a | 8.87 | |
48 | I | 14.02 cd | 1.36 a | 15.38 cd | 38.51 de | 2.75 a | 8.84 |
II | 13.36 cd | 1.47 a | 14.83 cd | 31.10 f | 2.33 a | 9.91 | |
III | 12.96 cd | 1.31 a | 14.27 cd | 26.44 fg | 2.04 a | 9.18 | |
72 | I | 13.74 cd | 1.36 a | 15.10 cd | 36.70 e | 2.67 a | 9.01 |
II | 11.85 d | 1.46 a | 13.31 d | 30.14 f | 2.54 a | 10.97 | |
III | 11.23 d | 1.32 a | 12.55 d | 24.09 g | 2.15 a | 10.52 | |
Control | I | 21.18 a | 1.24 a | 22.42 a | 59.03 a | 2.79 a | 5.53 |
II | 17.96 b | 1.39 a | 19.35 b | 53.41 b | 2.97 a | 7.18 | |
III | 15.34 c | 1.34 a | 16.68 bc | 47.00 c | 3.06 a | 8.03 |
Treatment Duration (h) | Sowing Date | Plant Height (cm) | Diameter of Internode Below the Spike (mm) | Spike Length (cm) | Total Awn Length Per Spike (cm) |
---|---|---|---|---|---|
24 | I | 55.23 bc | 2.27 ab | 8.10 c | 56.17 b |
II | 55.70 b | 2.17 b | 8.20 c | 46.45 d | |
III | 52.60 bc | 2.12 b | 7.60 c | 45.11 d | |
48 | I | 54.75 bc | 2.22 b | 8.20 c | 56.11 b |
II | 54.20 bc | 2.19 b | 8.00 c | 45.89 d | |
III | 52.30 bc | 2.14 b | 7.50 c | 44.78 d | |
72 | I | 53.70 bc | 2.35 ab | 7.90 c | 56.00 b |
II | 53.10 bc | 2.15 b | 8.00 c | 45.24 d | |
III | 51.90 c | 2.07 b | 7.20 c | 44.21 d | |
Control | I | 69.50 a | 3.44 a | 14.10 a | 66.41 a |
II | 55.30 bc | 2.94 ab | 11.30 b | 58.41 b | |
III | 53.50 bc | 2.57 ab | 10.80 b | 50.07 c |
Treatment Duration(h) | Sowing Date | The First Fully Expanded Leaf from the Top on the Day of Low-Temperature Treatment Ending | Flag Leaf on the Day of Flowering | ||||||
---|---|---|---|---|---|---|---|---|---|
Pn | Gs | Ci | Tr | Pn | Gs | Ci | Tr | ||
[µmol (CO2) m−2s−1] | [mol (H2O) m−2s−1] | [µmol·mol−1] | [mmol (H2O) m−2s−1] | [µmol (CO2) m−2s−1] | [mol (H2O) m−2s−1] | [µmol·mol−1] | [mmol (H2O) m−2s−1] | ||
24 | I | 11.34 ab | 0.166 bc | 198.83 e | 3.86 a | 16.70 bc | 0.225 ef | 271.77 cd | 4.09 cd |
II | 11.25 abc | 0.164 c | 197.85 e | 2.94 ab | 16.96 bc | 0.241 e | 267.68 de | 4.83 abcd | |
III | 10.28 bcd | 0.157 c | 184.72 f | 2.89 ab | 17.43 bc | 0.297 cd | 262.63 ef | 5.22 abcd | |
48 | I | 9.79 bcd | 0.148 cd | 218.31 c | 3.69 a | 16.09 c | 0.208 ef | 275.68 c | 3.93 d |
II | 9.82 bcd | 0.124 de | 208.54 d | 2.58 ab | 16.87 bc | 0.237 e | 271.11 cd | 4.49 bcd | |
III | 7.19 d | 0.116 e | 208.22 d | 2.02 b | 16.90 bc | 0.259 de | 268.04 de | 4.65 bcd | |
72 | I | 9.56 bcd | 0.104 ef | 246.81 a | 2.92 ab | 15.99 c | 0.180 f | 312.10 a | 3.81 d |
II | 7.92 cd | 0.086 f | 232.38 b | 2.67 ab | 16.26 c | 0.215 ef | 304.12 b | 3.99 d | |
III | 7.53 d | 0.082 f | 218.8 c | 2.13 b | 16.73 bc | 0.219 ef | 276.04 c | 4.06 cd | |
Control | I | 13.99 a | 0.200 a | 176.33 g | 4.00 a | 22.21 a | 0.475 a | 215.72 h | 6.17 a |
II | 12.01 ab | 0.192 ab | 170.01 h | 2.99 ab | 20.26 a | 0.414 b | 239.58 g | 5.62 ab | |
III | 11.28 abc | 0.170 bc | 167.75 h | 2.97 ab | 19.60 ab | 0.330 c | 259.55 f | 5.51 abc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Gao, Y.; Zhou, Y.; Zhang, Z.; Wu, J.; Yang, S.; Zhu, M.; Ding, J.; Zhu, X.; Li, C.; et al. More Similar than Different: The Cold Resistance and Yield Responses of the Yangmai23 Wheat Variety to Different Sowing Dates and Early Spring Low Temperatures. Agronomy 2025, 15, 1773. https://doi.org/10.3390/agronomy15081773
Zhu Y, Gao Y, Zhou Y, Zhang Z, Wu J, Yang S, Zhu M, Ding J, Zhu X, Li C, et al. More Similar than Different: The Cold Resistance and Yield Responses of the Yangmai23 Wheat Variety to Different Sowing Dates and Early Spring Low Temperatures. Agronomy. 2025; 15(8):1773. https://doi.org/10.3390/agronomy15081773
Chicago/Turabian StyleZhu, Yangyang, Yun Gao, Yueping Zhou, Zeyang Zhang, Jingxian Wu, Siqi Yang, Min Zhu, Jinfeng Ding, Xinkai Zhu, Chunyan Li, and et al. 2025. "More Similar than Different: The Cold Resistance and Yield Responses of the Yangmai23 Wheat Variety to Different Sowing Dates and Early Spring Low Temperatures" Agronomy 15, no. 8: 1773. https://doi.org/10.3390/agronomy15081773
APA StyleZhu, Y., Gao, Y., Zhou, Y., Zhang, Z., Wu, J., Yang, S., Zhu, M., Ding, J., Zhu, X., Li, C., & Guo, W. (2025). More Similar than Different: The Cold Resistance and Yield Responses of the Yangmai23 Wheat Variety to Different Sowing Dates and Early Spring Low Temperatures. Agronomy, 15(8), 1773. https://doi.org/10.3390/agronomy15081773