Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,911)

Search Parameters:
Keywords = resource circularity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 183 KB  
Proceeding Paper
Multifunctional Farms in Greece: Opportunities, Challenges, and Prospects for Sustainability
by Evangelos Pavlis and Dimitra Skoufa
Proceedings 2026, 134(1), 42; https://doi.org/10.3390/proceedings2026134042 - 13 Jan 2026
Abstract
This study explores the opportunities, challenges, and sustainability prospects of multifunctional farms in Greece that have been officially certified by the state. Through qualitative field research involving semi-structured questionnaires with farm operators, the study examines general operational aspects, environmental practices, social engagement, cultural [...] Read more.
This study explores the opportunities, challenges, and sustainability prospects of multifunctional farms in Greece that have been officially certified by the state. Through qualitative field research involving semi-structured questionnaires with farm operators, the study examines general operational aspects, environmental practices, social engagement, cultural activities, digital presence, and perspectives on institutional frameworks and development potentials. Results indicate that multifunctional farms contribute to environmental sustainability, local identity, and rural–urban linkages through organic farming, circular resource use, educational programs, and cultural activities. At the same time, structural challenges—including bureaucratic hurdles, complex licensing, limited institutional support, and low digital capacity—restrict their potential. Participants emphasized the need for tailored regulations, networking, guidance, and marketing support. While the sample is small, reflecting a low response rate, the study provides rich, context-specific insights into multifunctional farm practices and highlights the necessity for flexible policies, digital capacity-building, and community-oriented strategies to enhance the socio-economic and environmental impact of these farms. Full article
47 pages, 4215 KB  
Review
The Adoption of Digital Technologies in Circular Supply Chains: From Theoretical Developments to Practical Applications
by Mojdeh Morshedi, Vincent Hargaden, Nikolaos Papakostas and Pezhman Ghadimi
Logistics 2026, 10(1), 18; https://doi.org/10.3390/logistics10010018 - 12 Jan 2026
Abstract
Background: Digital technologies are increasingly integrated into circular supply chains (CSCs) to enhance resource efficiency and extend product lifecycles. However, the practical adoption of intelligent circular supply chains (iCSCs) remains underexplored. Methods: This study provides a comprehensive review of how digital technologies enable [...] Read more.
Background: Digital technologies are increasingly integrated into circular supply chains (CSCs) to enhance resource efficiency and extend product lifecycles. However, the practical adoption of intelligent circular supply chains (iCSCs) remains underexplored. Methods: This study provides a comprehensive review of how digital technologies enable circular practices across industries. It systematically reviews 95 peer-reviewed articles from WoS and Scopus, identifying 107 real-world iCSC cases. The cases are categorized by (1) digital enablers including AI, Big Data, Blockchain, IoT, Digital Twin, Additive Manufacturing, Cloud Platforms, and Cyber-Physical Systems; (2) alignment with Circular Economy (CE); (3) sector-specific circular practices; and (4) mapping implementations to the EU Circular Economy Action Plan (CEAP). This study develops a conceptual model illustrating how digital technologies support data-driven decision-making, automation, and circular transitions. Results: The analysis shows IoT, Blockchain, and AI as the most frequently applied technologies, facilitating collaboration, traceability, sustainability, and cost efficiency. “Reduce” and “Recycle” dominate among CE strategies, while circular transition pathways such as sustainable design, waste prevention, and digital platforms link policy to practice. Conclusions: By integrating systematic evidence with a holistic framework, this work provides actionable insights, identifies key implementation gaps, and lays a foundation for advancing iCSCs in research and practice. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

35 pages, 802 KB  
Review
Integrated Microalgal–Aquaponic Systems for Enhanced Water Treatment and Food Security: A Critical Review of Recent Advances in Process Integration and Resource Recovery
by Charith Akalanka Dodangodage, Jagath C. Kasturiarachchi, Induwara Arsith Wijesekara, Thilini A. Perera, Dilan Rajapakshe and Rangika Halwatura
Phycology 2026, 6(1), 14; https://doi.org/10.3390/phycology6010014 - 12 Jan 2026
Abstract
The convergence of food insecurity, water scarcity, and environmental degradation has intensified the global search for sustainable agricultural models. Integrated Microalgal–Aquaponic Systems (IAMS) have emerged as a novel multi-trophic platform that unites aquaculture, hydroponics, and microalgal cultivation into a closed-loop framework for resource-efficient [...] Read more.
The convergence of food insecurity, water scarcity, and environmental degradation has intensified the global search for sustainable agricultural models. Integrated Microalgal–Aquaponic Systems (IAMS) have emerged as a novel multi-trophic platform that unites aquaculture, hydroponics, and microalgal cultivation into a closed-loop framework for resource-efficient food production and water recovery. This critical review synthesizes empirical findings and engineering advancements published between 2008 and 2024, evaluating IAMS performance relative to traditional agriculture and recirculating aquaculture systems (RAS). Reported under controlled laboratory and pilot-scale conditions, IAMS have achieved nitrogen and phosphorus recovery efficiencies exceeding 95% while potentially reducing water consumption by up to 90% compared to conventional farming. The integration of microalgal photobioreactors enhances nutrient retention, may contribute to internal carbon capture, and enables the generation of diversified co-products, including biofertilizers and protein-rich aquafeeds. Nevertheless, significant barriers to commercial scalability persist, including the biological complexity of maintaining multi-trophic synchrony, high initial capital expenditure (CAPEX), and regulatory ambiguity regarding the safety of waste-derived algal biomass. Technical challenges such as photobioreactor upscaling, biofouling control, and energy optimization are critically discussed. Finally, the review evaluates the alignment of IAMS with UN Sustainable Development Goals 2, 6, and 13, and outlines future research priorities in techno-economic modeling, automation, and policy development to facilitate the transition of IAMS from pilot-scale innovations to viable industrial solutions. Full article
Show Figures

Graphical abstract

25 pages, 1403 KB  
Review
Green Innovation for Solid Post-Distillation Residues Valorization: Narrative Review of Circular Bio-Economy Solutions
by Milica Aćimović, Anita Leovac Maćerak, Branimir Pavlić, Vladimir Sikora, Tijana Zeremski, Tamara Erceg and Djordje Djatkov
Processes 2026, 14(2), 244; https://doi.org/10.3390/pr14020244 - 9 Jan 2026
Viewed by 139
Abstract
The production of essential oils generates substantial quantities of solid post-distillation residues, a largely unutilized waste stream rich in bioactive compounds (e.g., phenolics, flavonoids) as well as polysaccharides. Managing this organic waste presents both environmental and economic challenges. This review critically examines environmentally [...] Read more.
The production of essential oils generates substantial quantities of solid post-distillation residues, a largely unutilized waste stream rich in bioactive compounds (e.g., phenolics, flavonoids) as well as polysaccharides. Managing this organic waste presents both environmental and economic challenges. This review critically examines environmentally friendly green innovations and resource-efficient technologies within circular bio-economy strategies for valorizing these residues, focusing on four primary conversion pathways: physico-mechanical, thermochemical, biological, and chemical methods. We highlight their potential for practical applications, including the extraction of active compounds for food, cosmetic, and pharmaceutical industries, utilization in agriculture, incorporation into construction materials and wastewater treatment. Despite these opportunities, wider industrial adoption remains limited by high processing costs and the lack of scalable, cost-effective technologies. Key research gaps included the need for methods applicable at the farm level, optimization of the residue-specific conversion process, and life-cycle assessments to evaluate environmental and economic impacts. Addressing these gaps is crucial to fully exploit the economic and ecological potential of post-distillation solid residues and integrate them into sustainable circular bio-economy practices through various processes. Full article
(This article belongs to the Special Issue Analysis and Processes of Bioactive Components in Natural Products)
Show Figures

Figure 1

20 pages, 907 KB  
Article
Sustainable Valorization of Framiré Sawdust: Extraction of Secondary Metabolites and Conversion of Residues into Fuel Briquettes
by Maimou Nganko, Narcis Barsan, Paul Magloire Ekoun Koffi, Andrei Zaharia, Kouassi Esaie Kouadio Appiah, Echua Elisabeth Jasmine Bilé, Emilian Mosnegutu, Valex Nzouengo Djeukui, Florin-Marian Nedeff, Prosper Gbaha, Diana Mirila, Kouassi Benjamin Yao, Claudia Tomozei and Valentin Nedeff
Appl. Sci. 2026, 16(2), 716; https://doi.org/10.3390/app16020716 - 9 Jan 2026
Viewed by 114
Abstract
Faced with the depletion of fossil resources and the need to promote a circular economy, lignocellulosic biomass represents a solution for energy transition and bioeconomy. However, wood sawdust, which contains bioactive compounds (secondary metabolites), is often burned in the open by many sawmills. [...] Read more.
Faced with the depletion of fossil resources and the need to promote a circular economy, lignocellulosic biomass represents a solution for energy transition and bioeconomy. However, wood sawdust, which contains bioactive compounds (secondary metabolites), is often burned in the open by many sawmills. This study aims to valorize Framiré wood sawdust by extracting its secondary metabolites through maceration and infusion, then converting the depleted residue into combustible briquettes. The yellowness index of the extracts ranged from 73.490 ± 0.021 (maceration) to 81.720 ± 0.014 (infusion). The total phenolic content varied from 0.097 ± 0.001 to 0.63 ± 0.049 gGAE/100 g dry matter for maceration and infusion, respectively. The extraction of bioactive compounds did not significantly affect the energy or mechanical properties of the fuels. Their higher heating value ranged from 26,153 ± 92 to 26,201 ± 90 kJ/kg for fuels with and without secondary metabolites, respectively. The Shock Resistance Index ranged from 139.33 ± 7.51% (without metabolites) to 153.00 ± 5.20% (with metabolites). A significant difference was observed in the specific consumption of the fuels, decreasing from 1.400 ± 0.100 to 0.861 ± 0.001 kg/L for fuels without and with secondary metabolites, respectively. These results open promising prospects, particularly for the use of Framiré extracts to develop flame-retardant products for wood and its derivatives. Full article
33 pages, 415 KB  
Review
Cheese Whey Valorization via Microbial Fermentation (Lactic Acid Bacteria, Yeasts/Fungi, and Microalgae), Postbiotic Production, and Whey-Based Encapsulation Strategies
by Tlalli Uribe-Velázquez, Cesar E. Najar-Almanzor, Francisco R. Osuna-Orozco, Félix Arto-Paz, Cristian Valdés, Luis Eduardo Garcia-Amezquita, Danay Carrillo-Nieves and Tomás García-Cayuela
Fermentation 2026, 12(1), 42; https://doi.org/10.3390/fermentation12010042 - 9 Jan 2026
Viewed by 204
Abstract
Cheese whey, the major by-product of the dairy industry, poses an environmental challenge due to its high organic load but simultaneously represents a nutrient-dense matrix suitable for biotechnological valorization. This review synthesizes recent advances positioning whey as (i) a fermentation substrate for lactic [...] Read more.
Cheese whey, the major by-product of the dairy industry, poses an environmental challenge due to its high organic load but simultaneously represents a nutrient-dense matrix suitable for biotechnological valorization. This review synthesizes recent advances positioning whey as (i) a fermentation substrate for lactic acid bacteria, yeasts/fungi, and microalgae, enabling the production of functional biomass, organic acids, bioethanol, exopolysaccharides, enzymes, and wastewater bioremediation; (ii) a platform for postbiotic generation, supporting cell-free preparations with functional activities; and (iii) a food-grade encapsulating material, particularly through whey proteins (β-lactoglobulin, α-lactalbumin), which can form emulsions, gels, and films that protect biotics and bioactive compounds during processing, storage, and gastrointestinal transit. We analyze key operational variables (whey type and pretreatment, supplementation strategies, batch and continuous cultivation modes), encapsulation routes (spray drying, freeze-drying, and hybrid protein–polysaccharide systems), and performance trade-offs relevant to industrial scale-up. Finally, we outline future directions, including precision fermentation, mixed-culture processes with in situ lactase activity, microfluidics-enabled encapsulation, and life-cycle assessment, to integrate product yields with environmental performance. Collectively, these strategies reframe whey from a high-impact waste into a circular bioeconomy resource for the food, nutraceutical, and environmental sectors. Full article
25 pages, 5056 KB  
Article
Recycled Pavement Materials and Urban Microclimate: Albedo and Thermal Capacity Effects on Heat Island Mitigation
by Dimitra Tsirigoti and Konstantinos Gkyrtis
Solar 2026, 6(1), 5; https://doi.org/10.3390/solar6010005 - 9 Jan 2026
Viewed by 79
Abstract
In Mediterranean cities, high solar radiation combined with limited shading and vegetation intensifies the urban heat island (UHI) phenomenon. As the road network often covers a large portion of the cities’ surfaces and is mostly constructed using asphalt pavements, it can significantly affect [...] Read more.
In Mediterranean cities, high solar radiation combined with limited shading and vegetation intensifies the urban heat island (UHI) phenomenon. As the road network often covers a large portion of the cities’ surfaces and is mostly constructed using asphalt pavements, it can significantly affect the urban microclimate, leading to low thermal comfort and increased energy consumption. Recycled and waste materials are increasingly used in the construction of pavements in accordance with the principle of sustainability for minimizing waste and energy to produce new materials based on a circular economy. The scope of this study is to evaluate the effect of recycled or waste materials used in road pavements on the urban microclimate. The surface and ambient temperature of urban pavements constructed with conventional asphalt and recycled/waste-based mixtures are assessed through simulation. Two study areas comprising large street junctions near metro stations in the city of Thessaloniki, in Greece, are examined under three scenarios: a conventional hot mix asphalt, an asphalt mixture containing steel slag, and a high-albedo mixture. The results of the research suggest that the use of steel slag could reduce the air temperature by 0.9 °C at 15:00, east European summer time (EEST), while the high-albedo scenario could reduce the ambient temperature by 1.6 °C at 16:00. The research results are useful for promoting the use of recycled materials, not only as a means of sustainably using resources but also for the improvement of thermal comfort in urban areas, the mitigation of the UHI effect, and the reduction of heat stress for human health. Full article
(This article belongs to the Topic Sustainable Built Environment, 2nd Volume)
Show Figures

Figure 1

20 pages, 1204 KB  
Systematic Review
A Circular Bioeconomy Framework for Biodegradable Waste: Strategies and Opportunities
by Salomeh Chegini, Abdul Razak Mohamed Sikkander, Mehran Masoudi, Homeira Ekhtari, Elham Mojaver and Hirad Jafari
Bioresour. Bioprod. 2026, 2(1), 2; https://doi.org/10.3390/bioresourbioprod2010002 - 9 Jan 2026
Viewed by 103
Abstract
Biodegradable waste is commonly treated as a problem to be managed, but it can be a valuable resource when considered within a circular bioeconomy perspective. This article develops a practical and systems-based frame work for integrating biodegradable waste, ranging from municipal food scraps [...] Read more.
Biodegradable waste is commonly treated as a problem to be managed, but it can be a valuable resource when considered within a circular bioeconomy perspective. This article develops a practical and systems-based frame work for integrating biodegradable waste, ranging from municipal food scraps to wastewater biosolids, into valuable resources. It explores real-world strategies for transforming waste into value-added products, including composting, anaerobic digestion, biochemical conversion, and the creation of bio-based materials. The review also highlights key drivers and barriers, including technical, regulatory, and social factors, which shape the feasibility and impact of circular solutions. A visual model illustrates the full cycle, from identifying waste streams to reintegrating recovered resources. The paper also highlights case studies from Toronto, Milan and Brazil as examples of successful implementation. Overall, this paper emphasizes a pragmatic yet regenerative shift toward organic resource recovery aligned with sustainability and decarbonization goals. Full article
Show Figures

Figure 1

25 pages, 1145 KB  
Article
From Linear to Circular: Barriers to Sustainable Transition in the Saudi Banking Sector
by Aroop Mukherjee and Luisa Pinto
Sustainability 2026, 18(2), 673; https://doi.org/10.3390/su18020673 - 8 Jan 2026
Viewed by 151
Abstract
This study investigates the barriers in adopting the Circular Economy (CE) in Saudi Banking under Vision 2030 and using the Resource-Based View and stakeholder theory. This study examined how customer engagement, process innovation, and dynamic capabilities limit the implementation of CE. A quantitative, [...] Read more.
This study investigates the barriers in adopting the Circular Economy (CE) in Saudi Banking under Vision 2030 and using the Resource-Based View and stakeholder theory. This study examined how customer engagement, process innovation, and dynamic capabilities limit the implementation of CE. A quantitative, cross-sectional survey collected 418 responses from bank employees in Riyadh and was collected from January to March 2024. A 29-item Likert scale was analyzed with SmartPLS 4; measurement quality was strong, and confirmatory factor analysis confirmed construct validity. Results highlight the main barriers as customer resistance regulatory constraints and lack of adequate employee training. The construct is highly interconnected (r = 0.758), showing that improvements in customer engagement and process innovation strengthen dynamic capabilities. The study provides practical guidance for banks and policymakers on designing circular finance products, targeted training, and supportive regulations to accelerate the CE transition and achieve measurable sustainability outcomes in financial sectors, aligning with SDG 3, good health and well-being, and SDG 7, affordable and clean energy. Full article
(This article belongs to the Special Issue Business Circular Economy and Sustainability)
Show Figures

Figure 1

15 pages, 1356 KB  
Article
Syngas Production and Heavy Metals Distribution During the Gasification of Biomass from Phytoremediation Poplar Prunings: A Case Study
by Enrico Paris, Debora Mignogna, Cristina Di Fiore, Pasquale Avino, Domenico Borello, Luigi Iannitti, Monica Carnevale and Francesco Gallucci
Appl. Sci. 2026, 16(2), 682; https://doi.org/10.3390/app16020682 - 8 Jan 2026
Viewed by 91
Abstract
The present study investigates the potential of poplar (Populus spp.) biomass from phytoremediation plantations as a feedstock for downdraft fixed bed gasification. The biomass was characterized in terms of moisture, ash content, elemental composition (C, H, N, O), and calorific values (HHV [...] Read more.
The present study investigates the potential of poplar (Populus spp.) biomass from phytoremediation plantations as a feedstock for downdraft fixed bed gasification. The biomass was characterized in terms of moisture, ash content, elemental composition (C, H, N, O), and calorific values (HHV and LHV), confirming its suitability for thermochemical conversion. Gasification tests yielded a volumetric syngas production of 1.79 Nm3 kg−1 biomass with an average composition of H2 14.58 vol%, CO 16.68 vol%, and CH4 4.74 vol%, demonstrating energy content appropriate for both thermal and chemical applications. Alkali and alkaline earth metals (AAEM), particularly Ca (273 mg kg−1) and Mg (731 mg kg−1), naturally present enhanced tar reforming and promoted reactive gas formation, whereas heavy metals such as Cd (0.27 mg kg−1), Pb (0.02 mg kg−1), and Bi (0.01 mg kg−1) were detected only in trace amounts, posing minimal environmental risk. The results indicate that poplar pruning residues from phytoremediation sites can be a renewable and sustainable energy resource, transforming a waste stream into a process input. In this perspective, the integration of soil remediation with syngas production constitutes a tangible model of circular economy, based on the efficient use of resources through the synergy between environmental remediation and the valorization and sustainable management of marginal biomass—i.e., pruning residues—generating environmental, energetic, and economic benefits along the entire value chain. Full article
Show Figures

Figure 1

26 pages, 8805 KB  
Article
Comprehensive End-of-Life-Battery Composition Analysis from Module to Electrode Level to Assist More Efficient Recycling
by Steffen Fischer, Jannik Guido Born, Martin Wolke, Timo Hölter, Klaus Dröder, Stephan Scholl, Harald Zetzener and Arno Kwade
Recycling 2026, 11(1), 11; https://doi.org/10.3390/recycling11010011 - 8 Jan 2026
Viewed by 152
Abstract
With rising efforts to enable a circularity of valuable resources of lithium-ion batteries, a growing number of recycling companies in Europe are expanding their capacities and developing new recycling technologies. The European Union (EU) has set a benchmark for battery recycling by publishing [...] Read more.
With rising efforts to enable a circularity of valuable resources of lithium-ion batteries, a growing number of recycling companies in Europe are expanding their capacities and developing new recycling technologies. The European Union (EU) has set a benchmark for battery recycling by publishing recycling targets. These targets require precise mass determination of the individual battery components, making disassembly of the battery mandatory for characterization. The paper puts forth a semi-automated disassembly procedure for determining the composition of the components at the module and cell levels across a range of designs. Our analysis incorporates the introduction of TGA as a novel, direct method for determining the cathode active material with an accuracy above 99%. This approach is intended to define the recycling input for all extant recycling routes by providing quantitative experimental results with statistical significance. The results indicate a black mass proportion of 61.6% at the module level and 53–74% at the cell level. Additionally, there are significant differences in value creation, ranging from 0.80 to 1.81 USD kg−1 black mass, depending on the cell chemistry. The procedure can be used for EoL and scrap material, and enables greater transparency and comparability in battery recycling, opening up new perspectives for the resource-efficient and targeted use of various recycling technologies. Full article
Show Figures

Graphical abstract

24 pages, 3118 KB  
Article
Mapping Stakeholder Perspectives for Sustainability Transitions: The Case of Lithium-Ion Battery Recycling
by Bettina Rutrecht, Susanne Rosskogler, Astrid Arnberger, Roland Pomberger and Thomas Nigl
Sustainability 2026, 18(2), 654; https://doi.org/10.3390/su18020654 - 8 Jan 2026
Viewed by 141
Abstract
Lithium-ion battery (LIB) recycling has become a key area where sustainability goals and circular economy ambitions meet practical challenges. While research often focuses on regulatory or technological solutions, real progress depends on stakeholder action and alignment. This paper combines a literature review and [...] Read more.
Lithium-ion battery (LIB) recycling has become a key area where sustainability goals and circular economy ambitions meet practical challenges. While research often focuses on regulatory or technological solutions, real progress depends on stakeholder action and alignment. This paper combines a literature review and a stakeholder survey (n = 26) to map risks, opportunities, barriers, and interventions, formulating a roadmap for sustainable LIB recycling from the stakeholder perspective. The literature identified 27 opportunities, 21 risks, 32 barriers, and 23 enablers across strategic, operational, institutional, cultural, and technical domains. The study confirms that an implementation gap persists between ambition and practice. Stakeholders know the opportunities, but structural barriers, limited resources, and insufficient attention to cultural enablers dampen progress. The barrier–intervention mapping and the derived roadmap show that interventions must be sequenced strategically: securing resources first, then building data infrastructures and strengthening know-how to finally reduce complexity. The findings show that sustainability progress depends less on technical capability than on sound resource management, reliable data, and institutional support offering a transferable framework to close implementation gaps, as presented in this study, and supports future research on how stakeholder alignment can accelerate sustainable transitions across industries. Full article
Show Figures

Figure 1

22 pages, 2668 KB  
Article
Sustainable Sourcing of l-Rhamnose-Rich Polysaccharides from Natural Biomass Diversity: Extraction, Primary Structural Elucidation, and Antioxidant Activity
by Moussa Amroudine, Thomas Flahaut, Christine Gardarin, Gwendoline Christophe, Pascal Dubessay, Alina-Violeta Ursu, Laurent Chaisemartin, Jean-Yves Berthon, Slim Abdelkafi, Philippe Michaud and Guillaume Pierre
Polysaccharides 2026, 7(1), 4; https://doi.org/10.3390/polysaccharides7010004 - 6 Jan 2026
Viewed by 172
Abstract
This study explores a multi-resource approach for extracting and characterizing l-rhamnose-rich polysaccharides from nine natural biomasses, including green macroalgae (Ulva spp.), sumac species (Rhus spp.), and agro-industrial by-products such as sea buckthorn and sesame cakes. Hot-water and alkaline extractions were [...] Read more.
This study explores a multi-resource approach for extracting and characterizing l-rhamnose-rich polysaccharides from nine natural biomasses, including green macroalgae (Ulva spp.), sumac species (Rhus spp.), and agro-industrial by-products such as sea buckthorn and sesame cakes. Hot-water and alkaline extractions were performed by biomass type, and the resulting fractions were analyzed using biochemical assays, monosaccharide profiling (HPAEC/PAD and GC/MS-EI), FTIR, and antioxidant activity tests. Extraction yields ranged from <1% in sea buckthorn residues to 15.48% in Ulva spp., which showed the highest recovery. l-rhamnose enrichment varied across biomasses: the highest proportions were found in Ulva extracts and Rhus semialata galls (PRS), reaching up to 44% of total sugars by HPAEC/PAD and 58% by GC/MS-EI. Antioxidant activities also differed markedly. In DPPH assays, the most active extracts were those from sea buckthorn berry cake (PTBA), Rhus coriaria seeds (PRC), and commercial sea buckthorn powder (PPA), with IC50 values of 32, 43, and 42 µg/mL, respectively. Hydroxyl-radical inhibition was also substantial, reaching 83.0% for PTBA, 79.4% for PRC, and 79.9% for Ulva lactuca at 1 g/L, compared with 97.5% for ascorbic acid. These results highlight specific biomasses as promising dual sources of l-rhamnose and natural antioxidants for valorization within a circular bioeconomy. Full article
Show Figures

Graphical abstract

25 pages, 2436 KB  
Article
Industrial Waste Heat Utilization Potential in China: Measurement and Impacts on Carbon Peaking and Carbon Neutrality Pathways
by Shuang Xu, Haitao Chen, Yueting Ding, Jingyun Li and Zewei Zhong
Energies 2026, 19(2), 292; https://doi.org/10.3390/en19020292 - 6 Jan 2026
Viewed by 196
Abstract
As the goal of carbon peak and carbon neutrality becomes a global consensus, the circular economy is gradually evolving from an environmental concept to a core lever for national strategy and industrial transformation. To achieve green and low-carbon development, China is accelerating the [...] Read more.
As the goal of carbon peak and carbon neutrality becomes a global consensus, the circular economy is gradually evolving from an environmental concept to a core lever for national strategy and industrial transformation. To achieve green and low-carbon development, China is accelerating the construction of a circular economy system, particularly in the fields of resource recycling and utilization. Industrial waste heat, a strategically critical supplementary energy resource, performs a pivotal role in advancing the circular economy. Based on an energy technology coupling model, this study assesses the waste heat utilization potential in China and quantitatively measures its impact on energy conservation and carbon reduction. The results show that: (1) The potential of industrial waste heat in China is characterized by an inverted U-shaped trajectory. Over the near-to-medium term, the steel and power industries remain the primary contributors to waste heat utilization potential. (2) Low-grade waste heat represents the majority of utilization potential in China’s industrial sector, mainly from power generation, fuel processing, and steel manufacturing. The model results indicate that the proportion of low temperature waste heat will increase from approximately 66% in 2025 to 83% in 2060. (3) Waste heat utilization significantly influences the energy transition pathway. The findings of this study demonstrate that energy-intensive industries have the potential to reduce primary energy consumption by more than 13%. Moreover, making full use of waste heat could accelerate China’s carbon peaking target to 2028, and reduce peak carbon emissions by an estimated 5.1%. Full article
Show Figures

Figure 1

19 pages, 580 KB  
Article
A Dual Strategy for Innovative Extraction and Nutritional Efficacy of Black Soldier Fly Larvae Oil
by İlknur Meriç Turgut and Levent Doğankaya
Appl. Sci. 2026, 16(2), 568; https://doi.org/10.3390/app16020568 - 6 Jan 2026
Viewed by 166
Abstract
Amid the intensifying global mandate for sustainable aquafeed strategies, this study investigates the functional efficacy and biochemical implications of black soldier fly larvae oil (BLO), extracted via recently approved patent method depending on cold-aqueous process, as a substitute for conventional fish oil (FO) [...] Read more.
Amid the intensifying global mandate for sustainable aquafeed strategies, this study investigates the functional efficacy and biochemical implications of black soldier fly larvae oil (BLO), extracted via recently approved patent method depending on cold-aqueous process, as a substitute for conventional fish oil (FO) in zebrafish (Danio rerio) diets. The refined extraction technique, representing an advancement over traditional aqueous methodologies, was engineered to selectively preserve bioactive lipid fractions while minimizing environmental footprint and processing residues. Over a 28-day feeding period, adult zebrafish were allocated into triplicate groups and fed diets comprising 0%, 50%, and 100% substitution of FO with BLO and growth, lipid composition, and dietary fatty acid profiles of both diets and flesh were rigorously evaluated. Zebrafish fed the BLO100 diet exhibited the most pronounced somatic growth (2.47 ± 0.01 g), significantly elevated specific growth rates (3.88 ± 0.82% day−1), and the most efficient feed conversion, without compromising survival. Flesh lipid analysis revealed a substantial enrichment in saturated fatty acids—most notably lauric acid (C12:0)—corresponding to increasing dietary BLO levels. Although dietary EPA and DHA levels were reduced, DHA concentrations in fish tissues remained comparable to those of the control group, indicating a compensatory capacity mediated by endogenous elongation and desaturation pathways. These findings substantiate the dual potential of BLO as both a nutritionally viable lipid source and a vector for enhancing aquafeed sustainability. The cold-aqueous extraction method demonstrated here underscores a pivotal advancement in green lipid processing, aligning oil quality with ecological stewardship. This integrative approach not only reinforces BLO’s candidacy as a strategic fish oil substitute but also delineates a pathway toward scalable, species-adapted feed innovation. Future investigations should prioritize the modulation of fatty acid profiles through dietary and extraction optimization to fully realize the translational potential of insect-derived lipids in aquaculture. Full article
(This article belongs to the Special Issue Animal Nutrition: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop