Integrated Microalgal–Aquaponic Systems for Enhanced Water Treatment and Food Security: A Critical Review of Recent Advances in Process Integration and Resource Recovery
Abstract
1. Introduction
2. Contextual Background: Food Security and Agricultural Constraints
2.1. Global Food Security Challenges
2.2. Limitations of Traditional Agriculture
2.3. Agricultural Runoff and Water Pollution
2.4. Rationale for Integrated Microalgal–Aquaponic Systems
3. Aquaponic Systems: Promise and Limitations
3.1. Overview of Aquaponics
3.2. Nutrient Management and Systemic Constraints in Aquaponics
3.3. Opportunities and Limitations of Microalgal Integration in Aquaponic Frameworks
4. Microalgae: Versatile Solution for Sustainable Food and Water Systems
4.1. Concept and System Architecture
4.2. Microalgal Species Selection
4.3. Photobioreactor (PBR) Designs and Integration Approaches
4.4. Cultivation Strategies for Optimized System Performance
4.5. Nutrient Recycling and Water Resource Recovery
5. Scaling-Up Challenges, Policy Considerations, and Future Research Directions
5.1. The Critical Gap Between Laboratory Potential and Field Reality
5.2. Economic Viability and Market Analysis
| System Type | CAPEX Level | OPEX Profile | Economic Suitability/MBSP | References |
|---|---|---|---|---|
| Open Raceway Ponds | Very Low | Low | Lowest MBSP (~$494/ton); suitable for low-value bulk biomass and wastewater integration | [73,113,120] |
| Plastic-Bag PBRs | Low | Moderate (bag replacement) | MBSP ~$639/ton; ideal for moderate-value products; contamination control improved | [73,113] |
| Tubular PBRs (Horizontal/Helical) | Moderate–High | High (mixing/cooling) | MBSP ~$708–1737/ton; viable for mid-tier products; high energy demand | [113,115] |
| Flat-Panel/Vertical PBRs | High | Moderate–High | MBSP ~$1793/ton; suited for high-value products (pigments, nutraceuticals) | [73,113] |
| Semi-Continuous Operation in IAMS | Moderate | Low–Moderate | MBSP ~$1035–1200/ton; best alignment with nutrient flux from aquaponics | [120,121] |
5.3. Technological Challenges in Scaling and Stability
5.4. Regulatory and Policy Frameworks
5.5. Environmental Impact and Alignment with Sustainable Development Goals
5.6. Research Gaps, Uncertainties, Design Priorities and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, X.; Engel, B.A.; Qian, H.; Hua, E.; Sun, S.; Wang, Y. Will reaching the maximum achievable yield potential meet future global food demand? J. Clean. Prod. 2021, 294, 126285. [Google Scholar] [CrossRef]
- Dodangodage, C.A.; Kasturiarachchi, J.; Perera, T.; Rajapakshe, D.; Halwatura, R. Valorization of Canteen Wastewater Through Optimized Spirulina platensis Cultivation for Enhanced Carotenoid Production and Nutrient Removal. 2025. Available online: https://www.preprints.org/manuscript/202511.0752 (accessed on 11 November 2025).
- Molotoks, A.; Smith, P.; Dawson, T.P. Impacts of land use, population, and climate change on global food security. Food Energy Secur. 2021, 10, e261. [Google Scholar] [CrossRef]
- Wudil, A.H.; Usman, M.; Rosak-Szyrocka, J.; Pilař, L.; Boye, M. Reversing Years for Global Food Security: A Review of the Food Security Situation in Sub-Saharan Africa (SSA). Int. J. Environ. Res. Public Health 2022, 19, 14836. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, M.; Tsang, D.C.W.; Geng, N.; Lu, D.; Zhu, L.; Igalavithana, A.D.; Dissanayake, P.D.; Rinklebe, J.; Yang, X.; et al. Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: Current practices and future prospects. Appl. Biol. Chem. 2020, 63, 8. [Google Scholar] [CrossRef]
- Renganathan, P.; Puente, E.O.R.; Sukhanova, N.V.; Gaysina, L.A. Hydroponics with Microalgae and Cyanobacteria: Emerging Trends and Opportunities in Modern Agriculture. BioTech 2024, 13, 27. [Google Scholar] [CrossRef]
- Suhl, J.; Dannehl, D.; Kloas, W.; Baganz, D.; Jobs, S.; Scheibe, G.; Schmidt, U. Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric. Water Manag. 2016, 178, 335–344. [Google Scholar] [CrossRef]
- Aslanidou, M.; Elvanidi, A.; Mourantian, A.; Levizou, E.; Mente, E.; Katsoulas, N. Nutrients Use Efficiency in Coupled and Decoupled Aquaponic Systems. Horticulturae 2023, 9, 1077. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of sustainable and commercial aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Mujtaba, G.; Rizwan, M.; Kim, G.; Lee, K. Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris. Chem. Eng. J. 2018, 343, 155–162. [Google Scholar] [CrossRef]
- Kube, M.; Jefferson, B.; Fan, L.; Roddick, F. The impact of wastewater characteristics, algal species selection and immobilisation on simultaneous nitrogen and phosphorus removal. Algal Res. 2018, 31, 478–488. [Google Scholar] [CrossRef]
- Ibrahim, L.A.; Shaghaleh, H.; El-Kassar, G.M.; Abu-Hashim, M.; Elsadek, E.A.; Alhaj Hamoud, Y. Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water 2023, 15, 4310. [Google Scholar] [CrossRef]
- Wong, C.F.; Saif, U.M.; Chow, K.L.; Wong, J.T.F.; Chen, X.W.; Liang, Y.; Cheng, Z.; Tsang, Y.F.; Wong, M.H.; Man, Y.B. Applications of charcoal, activated charcoal, and biochar in aquaculture―A review. Sci. Total Environ. 2024, 929, 172574. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.L.; Sun, S.; Li, T.Z.; Yan, Y.J.; Wang, Z.K. Application research and progress of microalgae as a novel protein resource in the future. Crit. Rev. Food Sci. Nutr. 2025, 65, 5790–5813. [Google Scholar]
- Barta, D.G.; Coman, V.; Vodnar, D.C. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. Algal Res. 2021, 58, 102410. [Google Scholar] [CrossRef]
- Del Mondo, A.; Smerilli, A.; Sané, E.; Sansone, C.; Brunet, C. Challenging microalgal vitamins for human health. Microb. Cell Factories 2020, 19, 201. [Google Scholar] [CrossRef]
- Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresour. Technol. 2019, 275, 247–257. [Google Scholar] [CrossRef]
- Dodangodage, C.A.; Premarathne, H.; Kasturiarachchi, J.C.; Perera, T.A.; Rajapakshe, D.; Halwatura, R.U. Algae-Based Protective Coatings for Sustainable Infrastructure: A Novel Framework Linking Material Chemistry, Techno-Economics, and Environmental Functionality. Phycology 2025, 5, 84. [Google Scholar] [CrossRef]
- Fimbres-Acedo, Y.E.; Servín-Villegas, R.; Garza-Torres, R.; Endo, M.; Fitzsimmons, K.M.; Emerenciano, M.G.C.; Magallón-Servín, P.; López-Vela, M.; Magallón-Barajas, F.J. Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae. Aquac. Res. 2020, 51, 4340–4360. [Google Scholar]
- Onyeaka, H.; Miri, T.; Obileke, K.C.; Hart, A.; Anumudu, C.; Al-Sharify, Z.T. Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Sci. Technol. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Roy, A.; Moradkhani, H.; Mekonnen, M.; Moftakhari, H.; Magliocca, N. Towards strategic interventions for global food security in 2050. Sci. Total Environ. 2024, 954, 176811. [Google Scholar] [CrossRef]
- Beyer, R.M.; Hua, F.; Martin, P.A.; Manica, A.; Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 2022, 3, 49. [Google Scholar] [CrossRef]
- Verma, A.K.; Chandrakant, M.H.; John, V.C.; Peter, R.M.; John, I.E. Aquaponics as an integrated agri-aquaculture system (IAAS): Emerging trends and future prospects. Technol. Forecast. Soc. Change 2023, 194, 122709. [Google Scholar] [CrossRef]
- Ende, S.; Henjes, J.; Spiller, M.; Elshobary, M.; Hanelt, D.; Abomohra, A. Recent advances in recirculating aquaculture systems and role of microalgae to close system loop. Bioresour. Technol. 2024, 407, 131107. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.A.; Connor, D.J. Issues for cropping and agricultural science in the next 20 years. Field Crops Res. 2018, 222, 121–142. [Google Scholar] [CrossRef]
- Rose, D.; Heller, M.C.; Roberto, C.A. Position of the Society for Nutrition Education and Behavior: The Importance of Including Environmental Sustainability in Dietary Guidance. J. Nutr. Educ. Behav. 2019, 51, 3–15. [Google Scholar] [CrossRef]
- Bununu, Y.A.; Bello, A.; Ahmed, A. Land cover, land use, climate change and food security. Sustain. Earth Rev. 2023, 6, 16. [Google Scholar] [CrossRef]
- Mok, W.K.; Tan, Y.X.; Chen, W.N. Technology innovations for food security in Singapore: A case study of future food systems for an increasingly natural resource-scarce world. Trends Food Sci. Technol. 2020, 102, 155–168. [Google Scholar] [CrossRef]
- Saleem, A.; Anwar, S.; Nawaz, T.; Fahad, S.; Saud, S.; Ur Rahman, T.; Khan, M.N.R.; Nawaz, T. Securing a sustainable future: The climate change threat to agriculture, food security, and sustainable development goals. J. Umm Al-Qura Univ. Appl. Sci. 2025, 11, 595–611. [Google Scholar] [CrossRef]
- Barrett, C.B. Overcoming global food security challenges through science and solidarity. Am. J. Agric. Econ. 2021, 103, 422–447. [Google Scholar]
- Rosa, L.; Chiarelli, D.D.; Tu, C.; Rulli, M.C.; D’odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 2019, 14, 114001. [Google Scholar] [CrossRef]
- Liu, X.Y.; Hong, Y. Microalgae-Based Wastewater Treatment and Recovery with Biomass and Value-Added Products: A Brief Review. In Current Pollution Reports; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2021; Volume 7, pp. 227–245. [Google Scholar] [CrossRef]
- Tom, A.P.; Jayakumar, J.S.; Biju, M.; Somarajan, J.; Ibrahim, M.A. Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus 2021, 4, 100022. [Google Scholar] [CrossRef]
- Smith, M.D.; Sikka, A.; Taguta, C.; Dirwai, T.L.; Mabhaudhi, T. Embracing complexities in agricultural water management through nexus planning. Irrig. Drain. 2024, 73, 1695–1716. [Google Scholar] [CrossRef] [PubMed]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Parihar, C.M.; Datta, A.; Mandal, B.; Nayak, H.S.; Maity, P.; Rana, D.S.; Chaudhari, S.K.; et al. Carbon sequestration potential, challenges, and strategies towards climate action in smallholder agricultural systems of South Asia. Crop Environ. 2022, 1, 86–101. [Google Scholar] [CrossRef]
- Kumar, V.S.; Sarkar, D.J.; Das, B.K.; Samanta, S.; Tripathi, G.; Das Sarkar, S.; Nag, S.K. Utilizing microalgae biofilm for reducing arsenic toxicity on fish grown in contaminated waters: An innovative solution for safer and cleaner aquaculture in arsenic endemic areas. Aquaculture 2025, 599, 742121. [Google Scholar] [CrossRef]
- Bailey, A.; Meyer, L.; Pettingell, N.; Macie, M.; Korstad, J. Agricultural practices contributing to aquatic dead zones. In Ecological and Practical Applications for Sustainable Agriculture; Springer: Singapore, 2020; pp. 373–393. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Amoah, I.D.; Stenström, T.A.; Verbyla, M.E.; Mihelcic, J.R. Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Front. Public Health 2018, 6, 337. [Google Scholar] [CrossRef]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Castillo Sánchez, V.M.; Álvarez-Salgado, X.A.; Camarero, J.J.; Campo Á, A.D.; García-Palacios, P.; Gómez Peris, A.; Yúfera, M. Challenge 5: Impact of Global Change on Managed Ecosystems. White Paper 7: Global Change Impacts. 2021. Available online: https://hdl.handle.net/10261/272613 (accessed on 1 December 2021).
- Sukla, L.B.; Pradhan, D.; Subbaiah, T. Future Prospects of Microalgae. In The Role of Microalgae in Wastewater Treatment; Springer: Singapore, 2018; p. 129. [Google Scholar]
- Dodangodage, C.A.; Gamage, G.N.; Fernando, K.V.; Kasturiarachchi, J.C.; Perera, T.A.; Rajapakshe, S.D.; Halwatura, R.U. Production of Carbohydrate-Rich Chlorella sp. Biomass Using Clarified Aquaponics Effluent for Bioethanol Feedstock Applications. 2025. Available online: https://www.preprints.org/manuscript/202512.1475 (accessed on 12 December 2025).
- Farré, G.; Gómez-Galera, S.; Naqvi, S.; Bai, C.; Sanahuja, G.; Yuan, D.; Zorrilla-López, U.; Codony, L.; Rojas, E.; Fibla, M. Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2012. [Google Scholar]
- Baganz, G.F.M.; Junge, R.; Portella, M.C.; Goddek, S.; Keesman, K.J.; Baganz, D.; Staaks, G.; Shaw, C.; Lohrberg, F.; Kloas, W. The aquaponic principle—It is all about coupling. Rev. Aquac. 2022, 14, 252–264. [Google Scholar] [CrossRef]
- Okomoda, V.T.; Oladimeji, S.A.; Solomon, S.G.; Olufeagba, S.O.; Ogah, S.I.; Ikhwanuddin, M. Aquaponics production system: A review of historical perspective, opportunities, and challenges of its adoption. Food Sci. Nutr. 2023, 11, 1157–1165. [Google Scholar] [CrossRef]
- Zhu, Z.; Yogev, U.; Gross, A.; Keesman, K.J. Environmental assessment of industrial aquaponics in arid zones using an integrated dynamic model. Inf. Process. Agric. 2025, 12, 260–277. [Google Scholar] [CrossRef]
- Behr, L.M.; Hu, A.H.; Heck, P. Assessing the environmental impact and advantages of a commercial aquaponic system in Taiwan through life cycle assessment. Aquaculture 2024, 595, 741589. [Google Scholar] [CrossRef]
- Al Tawaha, A.R.; Megat Wahab, P.E.; Jaafar, H.Z.E. Optimizing nutrient availability in decoupled recirculating aquaponic systems for enhanced plant productivity: A mini review. Nitrogen 2025, 6, 3. [Google Scholar] [CrossRef]
- Kushwaha, J.; Priyadarsini, M.; Rani, J.; Pandey, K.P.; Dhoble, A.S. Aquaponic trends, configurations, operational parameters, and microbial dynamics: A concise review. Environ. Dev. Sustain. 2025, 27, 213–246. [Google Scholar]
- Goddek, S.; Espinal, C.A.; Delaide, B.; Jijakli, M.H.; Schmautz, Z.; Wuertz, S.; Keesman, K.J. Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water 2016, 8, 303. [Google Scholar] [CrossRef]
- Zhanga, H.; Gaoa, Y.; Liua, J.; Lina, Z.; Leeb, C.T.; Hashimb, H.; Wuc, W.-M.; Lia, C. Recovery of nutrients from fish sludge as liquid fertilizer to enhance sustainability of aquaponics: A review. Chem. Eng. 2021, 83, 55–60. [Google Scholar]
- Wongkiew, S.; Hu, Z.; Chandran, K.; Lee, J.W.; Khanal, S.K. Nitrogen transformations in aquaponic systems: A review. Aquac. Eng. 2017, 76, 9–19. [Google Scholar] [CrossRef]
- Akinnawo, S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. In Environmental Challenges; Elsevier: Amsterdam, The Netherlands, 2023; Volume 12. [Google Scholar] [CrossRef]
- Benner, P.; Meier, L.; Pfeffer, A.; Krüger, K.; Oropeza Vargas, J.E.; Weuster-Botz, D. Lab-scale photobioreactor systems: Principles, applications, and scalability. Bioprocess Biosyst. Eng. 2022, 45, 791–813. [Google Scholar] [CrossRef]
- Hariz, H.B.; Takriff, M.S.; Ba-Abbad, M.M.; Mohd Yasin, N.H.; Mohd Hakim, N.I.N. CO2 fixation capability of Chlorella sp. and its use in treating agricultural wastewater. J. Appl. Phycol. 2018, 30, 3017–3027. [Google Scholar] [CrossRef]
- Anila, M.; Daramola, O. Applications, technologies, and evaluation methods in smart aquaponics: A systematic literature review. Artif. Intell. Rev. 2025, 58, 25. [Google Scholar] [CrossRef]
- Lesk, C.; Anderson, W.; Rigden, A.; Coast, O.; Jägermeyr, J.; McDermid, S.; Davis, K.F.; Konar, M. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 2022, 3, 872–889. [Google Scholar] [CrossRef]
- Yildiz, H.Y.; Robaina, L.; Pirhonen, J.; Mente, E.; Domínguez, D.; Parisi, G. Fish welfare in aquaponic systems: Its relation to water quality with an emphasis on feed and faeces―A review. Water 2017, 9, 13. [Google Scholar] [CrossRef]
- Goh, P.S.; Lau, W.J.; Ismail, A.F.; Samawati, Z.; Liang, Y.Y.; Kanakaraju, D. Microalgae-enabled wastewater treatment: A sustainable strategy for bioremediation of pesticides. Water 2022, 15, 70. [Google Scholar] [CrossRef]
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef] [PubMed]
- Siringi, J.O.; Turoop, L.; Njonge, F. Growth and biochemical response of Nile tilapia (Oreochromis niloticus) to spirulina (Arthrospira platensis) enhanced aquaponic system. Aquaculture 2021, 544, 737134. [Google Scholar] [CrossRef]
- da Silva Ferreira, V.; Sant’Anna, C. The effect of physicochemical conditions and nutrient sources on maximizing the growth and lipid productivity of green microalgae. Phycol. Res. 2017, 65, 3–13. [Google Scholar] [CrossRef]
- Kim, K.; Kim, Z.-H.; Park, H.; Lee, Y.; Kim, K.; Kang, S.; Lim, S.-M.; Lee, C.-G. Enhancing microalgal biomass productivity in floating photobioreactors with semi-permeable membranes grafted with 4-hydroxyphenethyl bromide. Macromol. Res. 2020, 28, 145–151. [Google Scholar] [CrossRef]
- Kim, Z.-H.; Park, H.; Ryu, Y.-J.; Shin, D.-W.; Hong, S.-J.; Tran, H.-L.; Lim, S.-M.; Lee, C.-G. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 2015, 27, 1763–1773. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Ngo, H.H.; Guo, W.; Nguyen, T.M.H.; Liu, Y.; Liu, Y.; Nguyen, D.D.; Chang, S.W. A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment. Sci. Total Environ. 2019, 651, 1549–1568. [Google Scholar] [CrossRef]
- Benà, E.; Giacò, P.; Demaria, S.; Marchesini, R.; Melis, M.; Zanotti, G.; Baldisserotto, C.; Pancaldi, S. Winter Season Outdoor Cultivation of an Autochthonous Chlorella-Strain in a Pilot-Scale Prototype for Urban Wastewater Treatment. Water 2024, 16, 2635. [Google Scholar] [CrossRef]
- Yadav, D.K.; Singh, A.; Agrawal, V.; Yadav, N. Algal Biomass: A Natural Resource of High-Value Biomolecules. In Bioprospecting of Plant Biodiversity for Industrial Molecules; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 303–334. [Google Scholar]
- Haldar, N.; Supraja, K.V.; Anamika Achhoda, M.; Mayank, M.; Sharma, M.; Thakur, N.; Mohanty, A.; Meena, S.S.; Rout, P.R. Production of value-added products using microalgae: A zero-waste biorefinery approach. In Biotechnological Advances in Biorefinery; Springer: New York, NY, USA, 2024; pp. 97–126. [Google Scholar]
- Tejido-Nuñez, Y.; Aymerich, E.; Sancho, L.; Refardt, D. Treatment of aquaculture effluent with Chlorella vulgaris and Tetradesmus obliquus: The effect of pretreatment on microalgae growth and nutrient removal efficiency. Ecol. Eng. 2019, 136, 1–9. [Google Scholar] [CrossRef]
- Tan, C.H.; Tan, X.; Ho, S.H.; Lam, S.S.; Show, P.L.; Nguyen, T.H.P. Conceptual design of a hybrid thin layer cascade photobioreactor for microalgal biodiesel synthesis. Int. J. Energy Res. 2020, 44, 9757–9771. [Google Scholar] [CrossRef]
- Koller, M. Design of closed photobioreactors for algal cultivation. In Algal Biorefineries: Volume 2: Products and Refinery Design; Springer International Publishing: New York, NY, USA, 2015; pp. 133–186. [Google Scholar] [CrossRef]
- Rahman, A.; Agrawal, S.; Nawaz, T.; Pan, S.; Selvaratnam, T. A review of algae-based produced water treatment for biomass and biofuel production. Water 2020, 12, 2351. [Google Scholar] [CrossRef]
- Penloglou, G.; Pavlou, A.; Kiparissides, C. Recent Advancements in Photo-Bioreactors for Microalgae Cultivation: A Brief Overview. Processes 2024, 12, 1104. [Google Scholar] [CrossRef]
- Qin, L.; Alam, M.A.; Wang, Z. Open pond culture systems and photobioreactors for microalgal biofuel production. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Springer: Singapore, 2019; pp. 45–74. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Aditya, L.; Vu, H.P.; Johir, A.H.; Bennar, L.; Ralph, P.; Hoang, N.B.; Zdarta, J.; Nghiem, L.D. Nutrient Removal by Algae-Based Wastewater Treatment. Curr. Pollut. Rep. 2022, 8, 369–383. [Google Scholar] [CrossRef]
- Amini, M.; Amini Khoei, Z.; Erfanifar, E. Nitrate (NO3−) and phosphate (PO43−) removal from aqueous solutions by microalgae Dunaliella salina. Biocatal. Agric. Biotechnol. 2019, 19, 101097. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; Van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef]
- Guedes, A.C.; Amaro, H.M.; Pereira, R.D.; Malcata, F.X. Effects of temperature and pH on growth and antioxidant content of the microalga Scenedesmus obliquus. Biotechnol. Prog. 2011, 27, 1218–1224. [Google Scholar] [CrossRef]
- Lupatini, A.L.; Colla, L.M.; Canan, C.; Colla, E. Potential application of microalga Spirulina platensis as a protein source. J. Sci. Food Agric. 2017, 97, 724–732. [Google Scholar]
- Seyfabadi, J.; Ramezanpour, Z.; Amini Khoeyi, Z. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J. Appl. Phycol. 2011, 23, 721–726. [Google Scholar]
- Thakur, M.; Hurburgh, C.R. Quality of US soybean meal compared to the quality of soybean meal from other origins. J. Am. Oil Chem. Soc. 2007, 84, 835–843. [Google Scholar] [CrossRef]
- Gerde, J.A.; Wang, T.; Yao, L.; Jung, S.; Johnson, L.A.; Lamsal, B. Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass. Algal Res. 2013, 2, 145–153. [Google Scholar] [CrossRef]
- McKuin, B.; Kapuscinski, A.R.; Sarker, P.K.; Cheek, N.; Lim, J.; Sabarsky, M. Comparative life cycle assessment of marine microalgae, Nannochloropsis sp. and fishmeal for sustainable protein ingredients in aquaculture feeds. Elementa 2023, 11, 387–398. [Google Scholar] [CrossRef]
- Chu, H.; Ren, L.; Yang, L.; Chen, J.; Zhou, X.; Zhang, Y. Metabolomics reveals a lipid accumulation mechanism involving carbon allocation in Scenedesmus obliquus under norfloxacin stress. Renew. Energy 2020, 157, 585–592. [Google Scholar] [CrossRef]
- Martínez-Roldán, A.J.; Perales-Vela, H.V.; Cañizares-Villanueva, R.O.; Torzillo, G. Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures. J. Appl. Phycol. 2014, 26, 115–121. [Google Scholar] [CrossRef]
- Ishika, T. Sustainable Cultivation of Marine, Halotolerant and Halophilic Miccroalgae. Ph.D. Thesis, Murdoch University, Perth, WA, Australia, 2017. [Google Scholar]
- Sui, Y.; de Souza Celente, G.; Navarro, L.B.; Garcia-Trinanes, P.; Harvey, P.J. Phosphorus and sulphur affecting the growth, nutrient uptake and amino acids composition in Dunaliella salina. Process Biochem. 2025, 153, 276–283. [Google Scholar] [CrossRef]
- Xu, Y.; Ibrahim, I.M.; Wosu, C.I.; Ben-Amotz, A.; Harvey, P.J. Potential of new isolates of dunaliella salina for natural β-carotene production. Biology 2018, 7, 14. [Google Scholar] [CrossRef]
- Álvarez-Gil, M.; Blanco-Vieites, M.; Suárez-Montes, D.; Casado-Bañares, V.; Delgado-Ramallo, J.F.; Rodríguez, E. Revolutionizing Agriculture: Leveraging Hydroponic Greenhouse Wastewater for Sustainable Microalgae-Based Biostimulant Production. Sustainability 2023, 15, 14398. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, L.; Li, S.; Hu, T.; Chu, R.; Mo, F.; Hu, D.; Liu, C.; Li, B. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour. Technol. 2020, 301, 122804. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Y.; Zhang, Q. A review of energy consumption in the acquisition of bio-feedstock for microalgae biofuel production. Sustainability 2021, 13, 8873. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wołejko, E.; Ernazarovna, M.D.; Głowacka, A.; Sokołowska, G.; Wydro, U. Using Algae for Biofuel Production: A Review. Energies 2023, 16, 1758. [Google Scholar] [CrossRef]
- Yun, J.H.; Cho, D.H.; Lee, S.; Heo, J.; Tran, Q.G.; Chang, Y.K.; Kim, H.S. Hybrid operation of photobioreactor and wastewater-fed open raceway ponds enhances the dominance of target algal species and algal biomass production. Algal Res. 2018, 29, 319–329. [Google Scholar] [CrossRef]
- Cui, X.; Yang, J.; Cui, M.; Zhang, W.; Zhao, J. Comparative experiments of two novel tubular photobioreactors with an inner aerated tube for microalgal cultivation: Enhanced mass transfer and improved biomass yield. Algal Res. 2021, 58, 102364. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, J.; Wu, J. Optimization of tubular microalgal photobioreactors with spiral ribs under single-sided and double-sided illuminations. Processes 2019, 7, 619. [Google Scholar] [CrossRef]
- Mink, A.; Schediwy, K.; Posten, C.; Nirschl, H.; Simonis, S.; Krause, M.J. Comprehensive Computational Model for Coupled Fluid Flow, Mass Transfer, and Light Supply in Tubular Photobioreactors Equipped with Glass Sponges. Energies 2022, 15, 7671. [Google Scholar] [CrossRef]
- Mohler, D.T.; Wilson, M.H.; Fan, Z.; Groppo, J.G.; Crocker, M. Beneficial reuse of industrial CO2 emissions using a microalgae photobioreactor: Waste heat utilization assessment. Energies 2019, 12, 2634. [Google Scholar] [CrossRef]
- Talaei, M.; Mahdavinejad, M.; Azari, R. Thermal and energy performance of algae bioreactive façades: A review. J. Build. Eng. 2020, 28, 101011. [Google Scholar] [CrossRef]
- Johnson, T.J.; Katuwal, S.; Anderson, G.A.; Gu, L.; Zhou, R.; Gibbons, W.R. Photobioreactor cultivation strategies for microalgae and cyanobacteria. Biotechnol. Prog. 2018, 34, 811–827. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Parlevliet, D.A.; Laird, D.W.; Alameh, K.; Moheimani, N.R. Light management technologies for increasing algal photobioreactor efficiency. Algal Res. 2019, 39, 101433. [Google Scholar] [CrossRef]
- Borella, L.; Sforza, E.; Bertucco, A. An internally LED illuminated photobioreactor to increase energy conversion efficiency: Design and operation. Energy Convers. Manag. 2022, 270, 116224. [Google Scholar] [CrossRef]
- Sukačová, K.; Lošák, P.; Brummer, V.; Máša, V.; Vícha, D.; Zavřel, T. Perspective design of algae photobioreactor for greenhouses—A comparative study. Energies 2021, 14, 1338. [Google Scholar] [CrossRef]
- Gabrielyan, D.A.; Gabel, B.V.; Sinetova, M.A.; Gabrielian, A.K.; Markelova, A.G.; Shcherbakova, N.V.; Los, D.A. Optimization of CO2 Supply for the Intensive Cultivation of Chlorella sorokiniana IPPAS C-1 in the Laboratory and Pilot-Scale Flat-Panel Photobioreactors. Life 2022, 12, 1469. [Google Scholar] [CrossRef]
- Khalekuzzaman, M.; Alamgir, M.; Islam, M.B.; Hasan, M. A simplistic approach of algal biofuels production from wastewater using a Hybrid Anaerobic Baffled Reactor and Photobioreactor (HABR-PBR) System. PLoS ONE 2019, 14, e0225458. [Google Scholar] [CrossRef]
- Li, M.J.; Tong, Z.X.; Zhou, Z.J.; Huang, D.; Wang, R.L. A numerical model coupling bubble flow, light transfer, cell motion and growth kinetics for real timescale microalgae cultivation and its applications in flat plate photobioreactors. Algal Res. 2019, 44, 101727. [Google Scholar] [CrossRef]
- Zampieri, R.M.; Touloupakis, E.; Faraloni, C.; Moia, I.C. Comparison of Photofermentative Hydrogen Production in Cylindrical Photobioreactors Using Different Mixing Systems. Microorganisms 2025, 13, 1386. [Google Scholar] [CrossRef] [PubMed]
- Villalba, M.R.; Cervera, R.; Sánchez, J. Green Solutions for Urban Sustainability: Photobioreactors for Algae Cultivation on Façades and Artificial Trees. Buildings 2023, 13, 1541. [Google Scholar] [CrossRef]
- Zabochnicka, M.; Krzywonos, M.; Romanowska-Duda, Z.; Szufa, S.; Darkalt, A.; Mubashar, M. Algal Biomass Utilization toward Circular Economy. Life 2022, 12, 1480. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Świca, I.; Kazimierowicz, J. Algae Biomass as a Potential Source of Liquid Fuels. Phycology 2021, 1, 105–118. [Google Scholar] [CrossRef]
- Ajeng, A.A.; Rosli, N.S.M.; Abdullah, R.; Yaacob, J.S.; Qi, N.C.; Loke, S.P. Resource recovery from hydroponic wastewaters using microalgae-based biorefineries: A circular bioeconomy perspective. J. Biotechnol. 2022, 360, 11–22. [Google Scholar] [CrossRef]
- Yousif, Y.I.D.; Mohamed, E.S.; El-Gendy, A.S. Using chlorella vulgaris for nutrient removal from hydroponic wastewater: Experimental investigation and economic assessment. Water Sci. Technol. 2022, 85, 3240–3258. [Google Scholar] [CrossRef]
- Leflay, H.; Okurowska, K.; Pandhal, J.; Brown, S. Pathways to economic viability: A pilot scale and techno-economic assessment for algal bioremediation of challenging waste streams. Environ. Sci. Water Res. Technol. 2020, 6, 3400–3414. [Google Scholar] [CrossRef]
- Clippinger, J.; Davis, R. Techno-Economic Analysis for the Production of Algal Biomass via Closed Photobioreactors: Future Cost Potential Evaluated Across a Range of Cultivation System Designs; NREL: Golden, CO, USA, 2019. Available online: www.nrel.gov/publications (accessed on 20 September 2019).
- Béchet, Q.; Shilton, A.; Guieysse, B. Full-scale validation of a model of algal productivity. Environ. Sci. Technol. 2014, 48, 13826–13833. [Google Scholar] [CrossRef]
- Dębowski, M.; Świca, I.; Kazimierowicz, J.; Zieliński, M. Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations. Energies 2023, 16, 81. [Google Scholar] [CrossRef]
- Kohlheb, N.; van Afferden, M.; Lara, E.; Arbib, Z.; Conthe, M.; Poitzsch, C.; Marquardt, T.; Becker, M.-Y. Assessing the life-cycle sustainability of algae and bacteria-based wastewater treatment systems: High-rate algae pond and sequencing batch reactor. J. Environ. Manag. 2020, 264, 110459. [Google Scholar]
- Cruce, J.R.; Quinn, J.C. Economic Viability of Multiple Algal Biorefining Pathways and the Impact of Public Policies. 2018. Available online: https://www.elsevier.com/open-access/userlicense/1.0/ (accessed on 28 October 2018).
- Mousavi, S.; Damizia, M.; Hamidi, R.; De Filippis, P.; de Caprariis, B. Techno-economic assessment of gasoline production from Fe-assisted lignocellulosic biomass hydrothermal liquefaction process with minimized waste stream. Energy Convers. Manag. 2024, 320, 118982. [Google Scholar] [CrossRef]
- Thomassen, G.; Egiguren Vila, U.; Van Dael, M.; Lemmens, B.; Van Passel, S. A techno-economic assessment of an algal-based biorefinery. Clean Technol. Environ. Policy 2016, 18, 1849–1862. [Google Scholar] [CrossRef]
- Pizzera, A.; Bellucci, M.; Marazzi, F.; Mezzanotte, V.; Parati, K.; Ficara, E. Piggery Wastewater Treatment with Algae-Bacteria Consortia: Pilot-Scale 2 Validation and Techno-Economic Evaluation at Farm Level 3 4 S. 2022. Available online: https://ssrn.com/abstract=4028802 (accessed on 26 March 2022).
- Busnel, A.; Samhat, K.; Gérard, E.; Kazbar, A.; Marec, H.; Dechandol, E.; Le Gouic, B.; Hauser, J.-L.; Pruvost, J. Development and validation of a screening system for characterizing and modeling biomass production from cyanobacteria and microalgae: Application to Arthrospira platensis and Haematococcus pluvialis. Algal Res. 2021, 58, 102386. [Google Scholar] [CrossRef]
- Diatin, I.; Shafruddin, D.; Hude, N.; Sholihah, M.; Mutsmir, I. Production performance and financial feasibility analysis of farming catfish (Clarias gariepinus) utilizing water exchange system, aquaponic, and biofloc technology. J. Saudi Soc. Agric. Sci. 2021, 20, 344–351. [Google Scholar] [CrossRef]
- Thaotumpitak, V. Prevalence and Molecular Characteristics of Antimicrobial Resistance of Aeromonas hydrophila, Salmonella spp., Vibrio cholerae, Fecal Coliform, and Escherichia coli in Hybrid Red Tilapia and Cultured Water. 2021. Available online: https://digital.car.chula.ac.th/chulaetd/4952 (accessed on 1 December 2021).
- Karimi, R.D. The Bacterial Flora of Tilapia (Oleochromis niloticus) and Catfish (Clarias gariepinus) from Earthen Ponds in Sagana Fish Farm and Masinga Dam. Ph.D. Thesis, Kenyatta University, Nairobi, Kenya, 2015. [Google Scholar]
- Filote, C.; Roșca, M.; Hlihor, R.M.; Cozma, P.; Simion, I.M.; Apostol, M.; Gavrilescu, M. Sustainable application of biosorption and bioaccumulation of persistent pollutants in wastewater treatment: Current practice. Processes 2021, 9, 1696. [Google Scholar] [CrossRef]
- Emenike, E.C.; Iwuozor, K.O.; Anidiobi, S.U. Heavy Metal Pollution in Aquaculture: Sources, Impacts and Mitigation Techniques. Biol. Trace Elem. Res. 2022, 200, 4476–4492. [Google Scholar] [CrossRef]
- Bao, R.; Yang, Y.; Chen, H.; Li, Y. Occurrence, distribution and health risk assessment of quinolone residues in cultured fish in southeast China. J. Environ. Sci. Health Part B 2024, 59, 714–724. [Google Scholar] [CrossRef]
- Ahmad, T.; Mehmood, Z.; Ali, M.; Mawa, J.U.; Irshad, M.A. Navigating the nexus: Unraveling the impact of sustainability and the circular economy on food safety. Ital. J. Food Saf. 2025, 14, 12580. [Google Scholar] [CrossRef]
- Theses, D.; Pilone, F.R. DUNE: DigitalUNE The Waste Management of Large-Scale Recirculating Aquaculture Systems and Potential Value-Added Products from the Waste Stream. 2021. Available online: https://dune.une.edu/theses (accessed on 21 August 2021).
- Schipfer, F.; Pfeiffer, A.; Hoefnagels, R. Strategies for the Mobilization and Deployment of Local Low-Value, Heterogeneous Biomass Resources for a Circular Bioeconomy. Energies 2022, 15, 433. [Google Scholar] [CrossRef]
- Susanty, E. Analisis Dampak Pemanfaatan Solar Photovoltaic Menggunakan Skema Performance Based Rental (PBR). JIIP-Jurnal Ilmiah Ilmu Pendidikan 2024, 7, 2729–2737. Available online: http://Jiip.stkipyapisdompu.ac.id (accessed on 3 March 2024).
- Fuentes, J.L.; Garbayo, I.; Cuaresma, M.; Montero, Z.; González-Del-Valle, M.; Vílchez, C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs 2016, 14, 100. [Google Scholar] [CrossRef]


| Parameter | Traditional Agriculture | Aquaponics | Microalgae-Integrated Systems | Reference |
|---|---|---|---|---|
| Water-use efficiency | 50–70% losses | 95–99% recycling | Up to 99% recycling | [12,22,30] |
| Nutrient retention | <50% uptake; high runoff | Internal cycling | >90% N and P removal | [5,32] |
| Land requirement | High; limited in urban areas | Low; vertical use possible | Very low (<2.5 m2/kg protein) | [19,27] |
| Climate resilience | Highly vulnerable | Controlled environment | Controlled environment | [22,29,30] |
| GHG emissions | High | Lower | Potentially carbon-negative | [28,30] |
| Species | Validated Scale | Key Biochemical Value | PBR–IAMS Strengths | IAMS Constraints & Trade-Offs | References |
|---|---|---|---|---|---|
| Tetradesmus obliquus | Lab | Balanced nutrients | Stable growth under variable nutrient loads. | Moderate lipid content limits high-value extraction; limited commercial data. | [69] |
| Chlorella sorokiniana | Lab | Protein > 50% | High-temperature tolerance. | Dense cultures suffer severe light limitation (self-shading) in deep PBRs. | [70] |
| Spirulina (Arthrospira) platensis | Commercial | Protein 60–70% | High protein yield; digestible biomass. | High pH requirement (>9.0) chemically incompatible with tilapia/lettuce (pH ≈ 7.0) unless fully decoupled. | [70,71] |
| Euglena gracilis | Lab | Paramylon | Metabolic flexibility (mixotrophic). | Sensitive to shear stress from pumping; requires gentle airlift mixing. | [71] |
| Botryococcus braunii | Lab | Hydrocarbons | Unique lipid composition for biofuel production. | Extremely slow growth; poor volumetric productivity makes it unviable for rapid nutrient polishing. | [71] |
| Chlorella vulgaris | Commercial | Protein 45–55% | High N/P uptake; broad pH tolerance (6.5–8.5). | Small cell size (<5 µm) creates high harvesting energy costs; prone to grazing in non-sterile effluent. | [72,73] |
| Haematococcus pluvialis | Lab/Pilot | Astaxanthin | High-value nutraceutical product. | Requires nutrient stress (starvation) to produce pigment, contradicting continuous nutrient removal. | [73] |
| Scenedesmus obliquus | Pilot | Protein 50–58%, Lipids | Strong wastewater adaptability; robust growth. | Rigid cell wall requires expensive pre-treatment for digestibility; adhesive wall promotes biofilm fouling. | [74] |
| Species | Validated Scale | Key Biochemical Value | Primary Barrier to Integration with Freshwater IAMS | References |
|---|---|---|---|---|
| Nannochloropsis sp. | Commercial | EPA-rich lipids | Salinity Mismatch: Requires brackish/seawater, lethal to standard hydroponic crops (e.g., lettuce, tomato). | [71,74] |
| Dunaliella salina | Commercial | β-carotene | Hypersaline Requirement: Obligate halophile; cannot grow in freshwater fish effluent. | [70] |
| Tetraselmis suecica | Lab | Carbohydrates | Salinity Dependence: Marine strain; restricted to mariculture-based aquaponics (e.g., seabass, samphire). | [72] |
| Phaeodactylum tricornutum | Pilot | EPA | Silica Requirement: Diatom species requiring silicate dosing, increasing chemical complexity. | [73] |
| Isochrysis galbana | Lab | DHA | Environmental Sensitivity: Requires strict temperature and salinity control; low contamination tolerance. | [72] |
| Chaetoceros muelleri | Lab | Protein 40–50% | Silica & Salinity: Marine diatom; incompatible with freshwater loops. | [72] |
| Reactor Type | Core Design Principle | Performance Strengths | IAMS-Relevant Limitations/Trade-Offs | Reference |
|---|---|---|---|---|
| Open ponds/raceways | Shallow depth (30–50 cm); natural illumination | Low capital cost; simple operation; scalable footprint | High evaporation, contamination risk, poor CO2 transfer, and unstable water quality make direct coupling with fish loops unsuitable without decoupling | [70] |
| Thin-Layer Cascade (TLC) semi-closed | Baffles, shallow flow (3–6 cm), partial enclosure | Enhanced light penetration; reduced evaporation; improved productivity vs. open ponds | CFD-identified dead zones if poorly designed; still sensitive to contamination under open exposure | [70] |
| Low-cost bottle PBR | Small-volume PET reactors with air stones | Ultra-low cost; accessible for pilot or rural IAMS | pH rise, mineral precipitation, and limited scalability restrict long-term operation | [104] |
| Horizontal tubular hybrid | LDPE tubes with paddle-driven flow | Near plug-flow behavior; scalable; improved light use | Biofouling and dead zones in associated open tanks increase maintenance burden | [73] |
| Raceway + thin-layer systems | Combined open systems overview | TLC enables higher areal productivity | Open raceways remain productivity-limited and unsuitable for nutrient polishing alone | [71] |
| Flat-panel/column/tubular PBRs | Short light path; high surface-to-volume ratio | High biomass density; nutrient removal > 90% | Temperature control and capital cost increase with scale | [71] |
| Tubular, helical, VAP systems | Tilted tubes (6–12°) for gas transfer | Improved CO2 dissolution and mixing | Oxygen accumulation and fouling require active control | [74] |
| Hybrid closed–open systems | Closed inoculum PBR feeding open ponds | High inoculum density; reduced contamination risk | Downstream open ponds remain contamination-prone | [93] |
| Tangent Double-Tube PBR (TDTP) | Dual-tube vortex-inducing geometry | 124% productivity increase; reduced shear stress | Structural complexity and fabrication cost limit adoption | [94] |
| Cyclic-flow PBR | Automated pigging for biofilm removal | Sustained light path; mitigates fouling | Mechanical complexity increases maintenance demand | [97] |
| LED-driven PBRs | Artificial spectral control | Highly controlled growth; very high productivity | High CAPEX and energy demand restrict food-focused IAMS unless high-value products are targeted | [92] |
| Sponge-insert tubular PBR | Static mixers for light dilution | Improved radial mixing and photon distribution | Cleaning difficulty and fouling risk | [96] |
| Ribbed tubular PBR | Spiral ribs enhance light–dark cycling | Improved photosynthetic efficiency under dense cultures | Higher pumping energy requirements | [95] |
| Comparative synthesis (Open vs. Closed) | Energy vs. productivity trade-off | Closed PBRs enable IAMS integration | Closed systems trade energy demand for stability and control | [72,91] |
| Optimization Strategy | Design/Operational Parameter | Scientific Mechanism | Implications for IAMS (Cultivation + Nutrient Recovery) | Scalability/Operational Trade-Offs | Reference |
|---|---|---|---|---|---|
| Light path optimization | Culture depth 3–6 cm | Reduces self-shading; improves photon penetration | Stable biomass yield and consistent N/P removal | Requires precise hydraulic control at scale | [70] |
| Light spectral tuning | Red–blue LEDs (450–470/620–680 nm) | Matches chlorophyll absorption peaks | Higher nutrient uptake kinetics; lower energy per biomass | Increased CAPEX and system complexity | [101,102] |
| Light/dark cycle control | Engineered vortices; ribbed flow (2–3 Hz) | Prevents photoinhibition | Sustains productivity under high density | Hydraulic design constraints increase cost | [94,95] |
| Solar pattern optimization | Diurnal light modulation | Aligns photosynthesis with natural rhythms | Reduces pH drift and carbon imbalance | Less effective in high-latitude or indoor systems | [104] |
| Advanced mixing engineering | Sponge inserts; deflectors; marine impellers | Improves radial mixing | Enhanced nutrient uptake with low shear | Cleaning and fouling management required | [96,105,106] |
| Hydrodynamic control | Paddle speed 0–12 rpm | Prevents sedimentation | Uniform nutrient exposure | Energy demand rises with flow velocity | [73] |
| Aeration optimization | 0.2–0.3 vvm CO2–air | Stabilizes pH; improves carbon availability | Boosts N/P assimilation by 20–30% | CO2 supply logistics needed | [103,107] |
| CO2 concentration tuning | 1–5% CO2 or flue gas | Reduces photorespiration | Enables high-rate nutrient removal | Flue gas impurities require pretreatment | [71,72,97] |
| Intermittent aeration | 1 h ON/3 h OFF | Limits pH overshoot | Stabilizes algal–plant competition | Requires automated control systems | [94,104] |
| Nutrient loading control | Regulated daily feed | Maintains balanced N:P ratio | Avoids shock loading | Sensitive to fish biomass fluctuations | [73] |
| Two-stage cultivation | Growth → nutrient stress | Induces lipid/TAG synthesis | Enables biofuel precursor recovery | Reduces continuous nutrient removal efficiency | [71,92] |
| Mixotrophic supply | Organic-carbon wastewater | Dual phototrophic + heterotrophic growth | Faster ammonium removal | Increased bacterial competition and oxygen demand | [73,93] |
| Wastewater integration | Municipal/agro-wastewater | Provides N, P, organic C | Reduces fertilizer inputs | Pathogen and regulatory concerns | [72,93] |
| Biofilm management | Pigging; turbulence; brushing | Restores light path | Maintains long-term performance | Mechanical wear and downtime | [73,97] |
| Temperature regulation | Waste-heat reuse; greenhouse | Maintains metabolic optimum | Extends annual cultivation window | Climate-dependent feasibility | [91,97] |
| Cultivation mode selection | Continuous vs. batch | Controls nutrient availability | Continuous mode aligns with fish nutrient flux | Lower flexibility for product switching | [73] |
| Co-culture strategies | Algae–algae/algae–bacteria | Metabolic complementarity | Improved N/P removal and biomass quality | Community stability difficult to maintain | [72,92,104] |
| Membrane-integrated PBRs | Air-scouring; electrocoagulation | Solid and nutrient polishing | Produces cleaner recirculation water | Membrane fouling and replacement cost | [73,74] |
| Biorefinery integration | Biomass valorization | Converts nutrients into products | Enhances system economics | Market dependence and processing energy | [108,109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dodangodage, C.A.; Kasturiarachchi, J.C.; Wijesekara, I.A.; Perera, T.A.; Rajapakshe, D.; Halwatura, R. Integrated Microalgal–Aquaponic Systems for Enhanced Water Treatment and Food Security: A Critical Review of Recent Advances in Process Integration and Resource Recovery. Phycology 2026, 6, 14. https://doi.org/10.3390/phycology6010014
Dodangodage CA, Kasturiarachchi JC, Wijesekara IA, Perera TA, Rajapakshe D, Halwatura R. Integrated Microalgal–Aquaponic Systems for Enhanced Water Treatment and Food Security: A Critical Review of Recent Advances in Process Integration and Resource Recovery. Phycology. 2026; 6(1):14. https://doi.org/10.3390/phycology6010014
Chicago/Turabian StyleDodangodage, Charith Akalanka, Jagath C. Kasturiarachchi, Induwara Arsith Wijesekara, Thilini A. Perera, Dilan Rajapakshe, and Rangika Halwatura. 2026. "Integrated Microalgal–Aquaponic Systems for Enhanced Water Treatment and Food Security: A Critical Review of Recent Advances in Process Integration and Resource Recovery" Phycology 6, no. 1: 14. https://doi.org/10.3390/phycology6010014
APA StyleDodangodage, C. A., Kasturiarachchi, J. C., Wijesekara, I. A., Perera, T. A., Rajapakshe, D., & Halwatura, R. (2026). Integrated Microalgal–Aquaponic Systems for Enhanced Water Treatment and Food Security: A Critical Review of Recent Advances in Process Integration and Resource Recovery. Phycology, 6(1), 14. https://doi.org/10.3390/phycology6010014

