Syngas Production and Heavy Metals Distribution During the Gasification of Biomass from Phytoremediation Poplar Prunings: A Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Biomass Characterization
2.2. Gasification of the Biomass
Gasifier Operating Conditions
3. Results
3.1. Experimental Biomass Characterization
3.2. Initial Feedstock and Operational Parameters
3.3. Gasification Test Results
3.4. Heavy Metals and Mineral Content
3.4.1. Metals Concentrations in Biomass
3.4.2. Metals Concentrations in Syngas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciliberti, C.; Biundo, A.; Albergo, R.; Agrimi, G.; Braccio, G.; De Bari, I.; Pisano, I. Syngas Derived from Lignocellulosic Biomass Gasification as an Alternative Resource for Innovative Bioprocesses. Processes 2020, 8, 1567. [Google Scholar] [CrossRef]
- Mignogna, D.; Ceci, P.; Cafaro, C.; Corazzi, G.; Avino, P. Production of Biogas and Biomethane as Renewable Energy Sources: A Review. Appl. Sci. 2023, 13, 10219. [Google Scholar] [CrossRef]
- Khlifi, S.; Pozzobon, V.; Lajili, M. A Comprehensive Review of Syngas Production, Fuel Properties, and Operational Parameters for Biomass Conversion. Energies 2024, 17, 3646. [Google Scholar] [CrossRef]
- Mignogna, D.; Szabó, M.; Ceci, P.; Avino, P. Biomass Energy and Biofuels: Perspective, Potentials, and Challenges in the Energy Transition. Sustainability 2024, 16, 7036. [Google Scholar] [CrossRef]
- Khalid, H.; Amin, F.R.; Gao, L.; Chen, L.; Chen, W.; Javed, S.; Li, D. Syngas Conversion to Biofuels and Biochemicals: A Review of Process Engineering and Mechanisms. Sustain. Energy Fuels 2024, 8, 9–28. [Google Scholar] [CrossRef]
- Schmid, J.C.; Benedikt, F.; Fuchs, J.; Mauerhofer, A.M.; Müller, S.; Hofbauer, H. Syngas for Biorefineries from Thermochemical Gasification of Lignocellulosic Fuels and Residues—5 Years’ Experience with an Advanced Dual Fluidized Bed Gasifier Design. Biomass Convers. Biorefin. 2021, 11, 2405–2442. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, T.; Hou, B.; Yang, H.; Hu, N.; Zhang, M. A Comprehensive Review of Biomass Gasification Characteristics in Fluidized Bed Reactors: Progress, Challenges, and Future Directions. Fluids 2025, 10, 147. [Google Scholar] [CrossRef]
- Safarian, S. Performance Analysis of Sustainable Technologies for Biochar Production: A Comprehensive Review. Energy Rep. 2023, 9, 4574–4593. [Google Scholar] [CrossRef]
- Gallucci, F.; Paris, E.; Palma, A.; Vincenti, B.; Carnevale, M.; Ancona, V.; Borello, D. Fluidized Bed Gasification of Biomass from Plant-Assisted Bioremediation: Fate of Contaminants. Sustain. Energy Technol. Assess. 2022, 53, 102458. [Google Scholar] [CrossRef]
- Ancona, V.; Barra Caracciolo, A.; Campanale, C.; De Caprariis, B.; Grenni, P.; Uricchio, V.F.; Borello, D. Gasification Treatment of Poplar Biomass Produced in a Contaminated Area Restored Using Plant Assisted Bioremediation. J. Environ. Manag. 2019, 239, 137–141. [Google Scholar] [CrossRef]
- Tőzsér, D.; Horváth, R.; Simon, E.; Magura, T. Heavy Metal Uptake by Plant Parts of Populus Species: A Meta-Analysis. Environ. Sci. Pollut. Res. 2023, 30, 69416–69430. [Google Scholar] [CrossRef]
- Littlewood, J.; Guo, M.; Boerjan, W.; Murphy, R.J. Bioethanol from Poplar: A Commercially Viable Alternative to Fossil Fuel in the European Union. Biotechnol. Biofuels 2014, 7, 113. [Google Scholar] [CrossRef]
- Gallucci, F.; Palma, A.; Vincenti, B.; Carnevale, M.; Paris, E.; Ancona, V.; Migliarese Caputi, M.V.; Borello, D. Fluidized Bed Gasification of Biomass from Plant Assisted Bioremediation (PABR): Lab-Scale Assessment of the Effect of Different Catalytic Bed Material on Emissions. Fuel 2022, 322, 124214. [Google Scholar] [CrossRef]
- Vonk, G.; Piriou, B.; Felipe Dos Santos, P.; Wolbert, D.; Vaïtilingom, G. Comparative Analysis of Wood and Solid Recovered Fuels Gasification in a Downdraft Fixed Bed Reactor. Waste Manag. 2019, 85, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Di Lonardo, S.; Capuana, M.; Arnetoli, M.; Gabbrielli, R.; Gonnelli, C. Exploring the Metal Phytoremediation Potential of Three Populus alba L. clones using an in vitro screening. Iron. Sci. Pollut. Res. 2011, 18, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Edgar, V.-N.; Fabián, F.-L.; Mario, P.-C.J.; Ileana, V.-R. Coupling Plant Biomass Derived from Phytoremediation of Potential Toxic-Metal-Polluted Soils to Bioenergy Production and High-Value by-Products—A Review. Appl. Sci. 2021, 11, 2982. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, M.; Raheem, A.; Wang, F.; Wei, J.; Xu, D.; Song, X.; Bao, W.; Huang, A.; Zhang, S.; et al. Syngas Production from Biomass Gasification: Influences of Feedstock Properties, Reactor Type, and Reaction Parameters. ACS Omega 2023, 8, 31620–31631. [Google Scholar] [CrossRef]
- Schuetzle, D.; Schuetzle, R.; Kent Hoekman, S.; Zielinska, B. The Effect of Oxygen on Formation of Syngas Contaminants during the Thermochemical Conversion of Biomass. Int. J. Energy Environ. Eng. 2015, 6, 405–417. [Google Scholar] [CrossRef]
- Rapagná, S.; Provendier, H.; Petit, C.; Kiennemann, A.; Foscolo, P.U. Development of Catalysts Suitable for Hydrogen or Syn-Gas Production from Biomass Gasification. Biomass Bioenergy 2002, 22, 377–388. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; Chacón-Pérez, Y.; Cardona-Alzate, C.A. Evaluation of Biogas and Syngas as Energy Vectors for Heat and Power Generation Using Lignocellulosic Biomass as Raw Material. Electron. J. Biotechnol. 2018, 33, 52–62. [Google Scholar] [CrossRef]
- Skoulou, V.K.; Zabaniotou, A.A. Co-Gasification of Crude Glycerol with Lignocellulosic Biomass for Enhanced Syngas Production. J. Anal. Appl. Pyrolysis 2013, 99, 110–116. [Google Scholar] [CrossRef]
- Esteves, B.; Sen, U.; Pereira, H. Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis. Energies 2023, 16, 4226. [Google Scholar] [CrossRef]
- García Martín, J.F.; Cuevas, M.; Feng, C.-H.; Álvarez Mateos, P.; Torres García, M.; Sánchez, S. Energetic Valorisation of Olive Biomass: Olive-Tree Pruning, Olive Stones and Pomaces. Processes 2020, 8, 511. [Google Scholar] [CrossRef]
- Al-Farraji, A.; Marsh, R.; Steer, J. A Comparison of the Pyrolysis of Olive Kernel Biomass in Fluidised and Fixed Bed Conditions. Waste Biomass Valorization 2017, 8, 1273–1284. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M. Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland. Energies 2020, 13, 1495. [Google Scholar] [CrossRef]
- Sandeep, K.; Dasappa, S. Oxy-Steam Gasification of Biomass for Hydrogen Rich Syngas Production Using Downdraft Reactor Configuration: Oxy-Steam Gasification of Biomass for Hydrogen Rich Syngas Production. Int. J. Energy Res. 2014, 38, 174–188. [Google Scholar] [CrossRef]
- Iribarren, D.; Susmozas, A.; Petrakopoulou, F.; Dufour, J. Environmental and Exergetic Evaluation of Hydrogen Production via Lignocellulosic Biomass Gasification. J. Clean. Prod. 2014, 69, 165–175. [Google Scholar] [CrossRef]
- Tarifa, P.; Ramirez Reina, T.; González-Castaño, M.; Arellano-García, H. Catalytic Upgrading of Biomass-Gasification Mixtures Using Ni-Fe/MgAl2O4 as a Bifunctional Catalyst. Energy Fuels 2022, 36, 8267–8273. [Google Scholar] [CrossRef]
- Ayodele, B.V.; Mustapa, S.I.; Tuan Abdullah, T.A.R.B.; Salleh, S.F. A Mini-Review on Hydrogen-Rich Syngas Production by Thermo-Catalytic and Bioconversion of Biomass and Its Environmental Implications. Front. Energy Res. 2019, 7, 118. [Google Scholar] [CrossRef]
- Elsaddik, M.; Nzihou, A.; Delmas, G.-H.; Delmas, M. Renewable and High-Purity Hydrogen from Lignocellulosic Biomass in a Biorefinery Approach. Sci. Rep. 2024, 14, 150. [Google Scholar] [CrossRef] [PubMed]
- Santana, H.E.P.; Jesus, M.; Santos, J.; Rodrigues, A.C.; Pires, P.; Ruzene, D.S.; Silva, I.P.; Silva, D.P. Lignocellulosic Biomass Gasification: Perspectives, Challenges, and Methods for Tar Elimination. Sustainability 2025, 17, 1888. [Google Scholar] [CrossRef]
- Raheem, A.; He, Q.; Mangi, F.H.; Areeprasert, C.; Ding, L.; Yu, G. Roles of Heavy Metals during Pyrolysis and Gasification of Metal-Contaminated Waste Biomass: A Review. Energy Fuels 2022, 36, 2351–2368. [Google Scholar] [CrossRef]
- Giudicianni, P.; Gargiulo, V.; Grottola, C.M.; Alfè, M.; Ferreiro, A.I.; Mendes, M.A.A.; Fagnano, M.; Ragucci, R. Inherent Metal Elements in Biomass Pyrolysis: A Review. Energy Fuels 2021, 35, 5407–5478. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-429-19112-1. [Google Scholar]
- Liang, Z.; Zeng, H.; Kong, J. Contrasting Responses and Phytoremediation Potential of Two Poplar Species to Combined Strontium and Diesel Oil Stress. Plants 2023, 12, 2145. [Google Scholar] [CrossRef]
- Wang, W.; Lemaire, R.; Bensakhria, A.; Luart, D. Review on the Catalytic Effects of Alkali and Alkaline Earth Metals (AAEMs) Including Sodium, Potassium, Calcium and Magnesium on the Pyrolysis of Lignocellulosic Biomass and on the Co-Pyrolysis of Coal with Biomass. J. Anal. Appl. Pyrolysis 2022, 163, 105479. [Google Scholar] [CrossRef]
- Yu, J.; Guo, Q.; Gong, Y.; Ding, L.; Wang, J.; Yu, G. A Review of the Effects of Alkali and Alkaline Earth Metal Species on Biomass Gasification. Fuel Process. Technol. 2021, 214, 106723. [Google Scholar] [CrossRef]
- Trubetskaya, A. Reactivity Effects of Inorganic Content in Biomass Gasification: A Review. Energies 2022, 15, 3137. [Google Scholar] [CrossRef]
- Ding, L.; Cheng, M.-H.; Lin, Y.; Lin, K.-T.; Sale, K.L.; Sun, N.; Donohoe, B.S.; Ray, A.E.; Li, C. Understanding the Impacts of Inorganic Species in Woody Biomass for Preprocessing and Pyrolysis–A Review. Energy 2025, 322, 135697. [Google Scholar] [CrossRef]
- Krutul, D.; Szadkowski, J.; Antczak, A.; Drożdżek, M.; Radomski, A.; Karpiński, S. The Concentration of Selected Heavy Metals in Poplar Wood Biomass and Liquid Fraction Obtained after High Temperature Pretreatment. Wood Res. 2021, 66, 39–48. [Google Scholar] [CrossRef]
- Laureysens, I.; Blust, R.; De Temmerman, L.; Lemmens, C.; Ceulemans, R. Clonal Variation in Heavy Metal Accumulation and Biomass Production in a Poplar Coppice Culture: I. Seasonal Variation in Leaf, Wood and Bark Concentrations. Environ. Pollut. 2004, 131, 485–494. [Google Scholar] [CrossRef]
- Pudasainee, D.; Paur, H.-R.; Fleck, S.; Seifert, H. Trace Metals Emission in Syngas from Biomass Gasification. Fuel Process. Technol. 2014, 120, 54–60. [Google Scholar] [CrossRef]
- Yan, M.; Liu, S.; Zhang, H.; Zheng, R.; Cui, J.; Wang, D.; Rahim, D.A.; Kanchanatip, E. Syngas Production and Heavy Metal Dynamics during Supercritical Water Gasification of Sewage Sludge. Front. Environ. Sci. Eng. 2024, 18, 149. [Google Scholar] [CrossRef]
- Duan, L.; Li, L. Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed; Springer Nature Singapore: Singapore, 2023; ISBN 978-981-19-9126-4. [Google Scholar]
- Aghaalikhani, A.; Savuto, E.; Di Carlo, A.; Borello, D. Poplar from Phytoremediation as a Renewable Energy Source: Gasification Properties and Pollution Analysis. Energy Procedia 2017, 142, 924–931. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.; Ma, Y.; Zhang, X.; Lyu, W.; Chen, M. Stabilization of Heavy Metals in Biochar Derived from Plants in Antimony Mining Area and Its Environmental Implications. Environ. Pollut. 2022, 300, 118902. [Google Scholar] [CrossRef] [PubMed]



| Property | Value |
|---|---|
| Moisture (%) | 6.6 |
| Ash (%) | 3.53 |
| Carbon (%) | 36.7 |
| Hydrogen (%) | 3.96 |
| Nitrogen (%) | 0.82 |
| Sulfur (%) | 0.66 |
| Oxygen (%) | 57.86 * |
| HHV (Mj kg−1) | 15.16 |
| LHV (Mj kg−1) | 14.34 |
| Parameter | Value |
|---|---|
| Total biomass (kg) | 190 |
| Briquette moisture (% wt) | 6.8 |
| Ash content (% wt, dry) | 8.6 |
| Test duration (h) | 4 |
| Biomass feed rate (kg h−1) | 47.5 |
| Parameter | Value |
|---|---|
| Ash/Char (kg) | 13.88 |
| Condensates (kg) | 2.68 |
| CH4 (% vol) | 4.74 |
| CO (% vol) | 16.68 |
| CO2 (% vol) | 10.79 |
| H2 | 14.58 |
| O2 | 4.26 |
| N2 | 48.95 |
| Syngas average temperature (°C) | 40.8 |
| Syngas density (kg m−3) | 0.99 |
| Syngas density (kg Nm−3) | 1.14 |
| Syngas mass flow (kg h−1) | 97.56 |
| Syngas volumetric flow (Nm3 h−1) | 85.62 |
| Syngas yield (Nm3 kg−1 biomass) | 1.79 |
| Biochar yield (g biochar kg−1 biomass) | 73.05 |
| Theoretical power (kW) | 31.56 |
| Average real power (kW) | 30.17 |
| Power deviation (%) | 4.6 |
| Specific energy production (kWh kg−1) | 0.68 |
| Specific biomass consumption (kg kWh−1) | 1.47 |
| Metals (mg Nm−3) | A+B I | C I |
|---|---|---|
| Li | 0.0007 | - |
| B | 0.0228 | 0.0018 |
| Na | 1.0590 | 0.1235 |
| Mg | 0.4778 | 0.1047 |
| Al | 0.0625 | 0.0403 |
| K | 0.4804 | 0.1259 |
| Ca | 0.3612 | 0.1121 |
| Cr | 0.0019 | 0.0011 |
| Mn | 0.0072 | 0.0013 |
| Fe | 0.0747 | 0.0676 |
| Co | - | - |
| Ni | 0.0012 | 0.0006 |
| Cu | 0.0142 | 0.0019 |
| Zn | 0.0828 | 0.0188 |
| Ga | 0.0011 | 0.0003 |
| Sr | 0.0177 | 0.0023 |
| Ag | - | - |
| Cd | 0.0012 | - |
| Pb | 0.0028 | 0.0015 |
| Bi | - | - |
| mg/kg | Reset Biomass | mg/m3 Theoretical | A+B+C | Δ | % Metals in the Syngas |
|---|---|---|---|---|---|
| Li | <LOQ | 0 | 0.0007 | −0.00072311 | |
| B | 1.88 | 3.357 | 0.025 | 3.332 | 0.734 |
| Na | 303.69 | 543.605 | 1.183 | 542.423 | 0.218 |
| Mg | 731.79 | 1309.902 | 0.583 | 1309.320 | 0.044 |
| Al | <LOQ | 0 | 0.103 | −0.103 | |
| K | 16.93 | 30.310 | 0.606 | 29.703 | 2.00 |
| Ca | 273.66 | 489.846 | 0.473 | 489.373 | 0.097 |
| Cr | 0.36 | 0.642 | 0.003 | 0.639 | 0.469 |
| Mn | <LOQ | 0 | 0.009 | −0.009 | |
| Fe | 57.70 | 103.279 | 0.142 | 103.136 | 0.138 |
| Co | <LOQ | 0 | 0 | 0 | |
| Ni | <LOQ | 0 | 0.002 | −0.002 | |
| Cu | <LOQ | 0 | 0.016 | −0.016 | |
| Zn | 32.22 | 57,674 | 0.102 | 57.572 | 0.176 |
| Ga | <LOQ | 0 | 0.001 | −0.001 | |
| Sr | 169.12 | 302.7244237 | 0.020 | 302.704 | 0.007 |
| Ag | <LOQ | 0 | 0 | 0 | |
| Cd | 0.27 | 0.490 | 0.001 | 0.489 | 0.198 |
| Pb | 0.02 | 0.040 | 0.004 | 0.036 | 10.698 |
| Bi | 0.01 | 0.0114 | 0 | 0.0114 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Paris, E.; Mignogna, D.; Di Fiore, C.; Avino, P.; Borello, D.; Iannitti, L.; Carnevale, M.; Gallucci, F. Syngas Production and Heavy Metals Distribution During the Gasification of Biomass from Phytoremediation Poplar Prunings: A Case Study. Appl. Sci. 2026, 16, 682. https://doi.org/10.3390/app16020682
Paris E, Mignogna D, Di Fiore C, Avino P, Borello D, Iannitti L, Carnevale M, Gallucci F. Syngas Production and Heavy Metals Distribution During the Gasification of Biomass from Phytoremediation Poplar Prunings: A Case Study. Applied Sciences. 2026; 16(2):682. https://doi.org/10.3390/app16020682
Chicago/Turabian StyleParis, Enrico, Debora Mignogna, Cristina Di Fiore, Pasquale Avino, Domenico Borello, Luigi Iannitti, Monica Carnevale, and Francesco Gallucci. 2026. "Syngas Production and Heavy Metals Distribution During the Gasification of Biomass from Phytoremediation Poplar Prunings: A Case Study" Applied Sciences 16, no. 2: 682. https://doi.org/10.3390/app16020682
APA StyleParis, E., Mignogna, D., Di Fiore, C., Avino, P., Borello, D., Iannitti, L., Carnevale, M., & Gallucci, F. (2026). Syngas Production and Heavy Metals Distribution During the Gasification of Biomass from Phytoremediation Poplar Prunings: A Case Study. Applied Sciences, 16(2), 682. https://doi.org/10.3390/app16020682

