Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,361)

Search Parameters:
Keywords = resonant circuits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2058 KB  
Article
Inductive Displacement Sensor Operating in an LC Oscillator System Under High Pressure Conditions—Basic Design Principles
by Janusz Nurkowski and Andrzej Nowakowski
Sensors 2025, 25(19), 6078; https://doi.org/10.3390/s25196078 - 2 Oct 2025
Abstract
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the [...] Read more.
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the pressure chamber, in which it serves as the inductive component. The specimen’s deformation changes the coil’s length and inductance, thereby altering the oscillator’s resonant frequency. Paired with a reference coil, the system achieves strain resolution of ~100 nm at pressures exceeding 400 MPa. Sensor design challenges include both electrical parameters (inductance and resistance of the sensor, capacitance of the resonant circuit) and mechanical parameters (number and diameter of coil turns, their positional stability, wire diameter). The basic requirement is to achieve stable oscillations (i.e., a high Q-factor of the resonant circuit) while maintaining maximum sensor sensitivity. Miniaturization of the sensor and minimizing the tensile force at its mounting points on the specimen are also essential. Improvement of certain sensor parameters often leads to the degradation of others; therefore, the design requires a compromise depending on the specific measurement conditions. This article presents the mathematical interdependencies among key sensor parameters, facilitating optimized sensor design. Full article
(This article belongs to the Topic AI Sensors and Transducers)
Show Figures

Figure 1

31 pages, 16219 KB  
Article
Design, Simulation, Construction and Experimental Validation of a Dual-Frequency Wireless Power Transfer System Based on Resonant Magnetic Coupling
by Marian-Razvan Gliga, Calin Munteanu, Adina Giurgiuman, Claudia Constantinescu, Sergiu Andreica and Claudia Pacurar
Technologies 2025, 13(10), 442; https://doi.org/10.3390/technologies13100442 - 1 Oct 2025
Abstract
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically [...] Read more.
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically coupled resonant coils. Unlike conventional single-frequency systems, the proposed architecture introduces two independently controlled excitation frequencies applied to distinct transistors, enabling improved resonance behavior and enhanced power delivery across a range of coupling conditions. The design process integrates numerical circuit simulations in PSpice and three-dimensional electromagnetic analysis in ANSYS Maxwell 3D, allowing accurate evaluation of coupling coefficient variation, mutual inductance, and magnetic flux distribution as functions of coil geometry and alignment. A sixth-degree polynomial model was derived to characterize the coupling coefficient as a function of coil separation, supporting predictive tuning. Experimental measurements were carried out using a physical prototype driven by both sinusoidal and rectangular control signals under varying load conditions. Results confirm the simulation findings, showing that specific signal periods (e.g., 8 µs, 18 µs, 20 µs, 22 µs) yield optimal induced voltage values, with strong sensitivity to the coupling coefficient. Moreover, the presence of a real load influenced system performance, underscoring the need for adaptive control strategies. The proposed approach demonstrates that dual-frequency excitation can significantly enhance system robustness and efficiency, paving the way for future implementations of self-adaptive WPT systems in embedded, mobile, or biomedical environments. Full article
Show Figures

Figure 1

27 pages, 20226 KB  
Article
Mitigation of Switching Ringing of GaN HEMT Based on RC Snubbers
by Xi Liu, Hui Li, Jinshu Lin, Chen Song, Honglang Zhang, Yuxiang Xue and Hengbin Zhang
Aerospace 2025, 12(10), 885; https://doi.org/10.3390/aerospace12100885 - 30 Sep 2025
Abstract
Gallium nitride high electron mobility transistors (GaN HEMTs), characterized by their extremely high switching speeds and superior high-frequency performance, have demonstrated significant advantages, and gained extensive applications in fields such as aerospace and high-power-density power supplies. However, their unique internal architecture renders these [...] Read more.
Gallium nitride high electron mobility transistors (GaN HEMTs), characterized by their extremely high switching speeds and superior high-frequency performance, have demonstrated significant advantages, and gained extensive applications in fields such as aerospace and high-power-density power supplies. However, their unique internal architecture renders these devices highly sensitive to circuit parasitic parameters. Conventional circuit design methodologies often induce severe issues such as overshoot and high-frequency oscillations, which significantly constrain the realization of their high-frequency performance. To solve this problem, this paper investigates the nonlinear dynamic behavior of GaN HEMTs during switching transients by establishing an equivalent impedance model. Based on this model, a detailed analysis is implemented to elucidate the mechanism by which RC Snubber circuits influence the system’s resonance frequency and the amplitude at the resonant frequency. Through this analysis, an optimal RC Snubber circuit parameter is derived, enabling effective suppression of high-frequency oscillations during the switching transient of GaN HEMT. Experimental results demonstrate that the proposed design achieves a maximum reduction of 40% in voltage overshoot, shortens the ringing time to one-twentieth of the original value, and suppresses noise by 20 dB in the high-frequency range of 20 MHz to 30 MHz, thereby significantly enhancing the stability and reliability of circuit operation. Additionally, considering the heat dissipation requirements in high power density scenarios, this work optimizes the layout of devices, and heat sinks to maintain operational temperatures within safe limits, further mitigating the impact of parasitic parameters on overall system performance. Full article
(This article belongs to the Section Aeronautics)
14 pages, 2495 KB  
Article
Research on a Feedthrough Suppression Scheme for MEMS Gyroscopes Based on Mixed-Frequency Excitation Signals
by Xuhui Chen, Zhenzhen Pei, Chenchao Zhu, Jiaye Hu, Hongjie Lei, Yidian Wang and Hongsheng Li
Micromachines 2025, 16(10), 1120; https://doi.org/10.3390/mi16101120 - 30 Sep 2025
Abstract
Feedthrough interference is inevitably introduced in MEMS gyroscopes due to non-ideal factors such as circuit layout design and fabrication processes, exerting non-negligible impacts on gyroscope performance. This study proposes a feedthrough suppression scheme for MEMS gyroscopes based on mixed-frequency excitation signals. Leveraging the [...] Read more.
Feedthrough interference is inevitably introduced in MEMS gyroscopes due to non-ideal factors such as circuit layout design and fabrication processes, exerting non-negligible impacts on gyroscope performance. This study proposes a feedthrough suppression scheme for MEMS gyroscopes based on mixed-frequency excitation signals. Leveraging the quadratic relationship between excitation voltage and electrostatic force in capacitive resonators, the resonator is excited with a modulated signal at a non-resonant frequency while sensing vibration signals at the resonant frequency. This approach achieves linear excitation without requiring backend demodulation circuits, effectively separating desired signals from feedthrough interference in the frequency domain. A mixed-frequency excitation-based measurement and control system for MEMS gyroscopes is constructed. The influence of mismatch phenomena under non-ideal conditions on the control system is analyzed with corresponding solutions provided. Simulations and experiments validate the scheme’s effectiveness, demonstrating feedthrough suppression through both amplitude-frequency characteristics and scale factor perspectives. Test results confirm the scheme eliminates the zero introduced by feedthrough interference in the gyroscope’s amplitude-frequency response curve and reduces force-to-rebalanced detection scale factor fluctuations caused by frequency split variations by a factor of 21. Under this scheme, the gyroscope achieves zero-bias stability of 0.3118 °/h and angle random walk of 0.2443 °/h/√Hz. Full article
Show Figures

Figure 1

17 pages, 2641 KB  
Article
Research on Soft-Switching Power Amplifier for Electromagnetic Bearings
by Hongfeng Deng, Minzhu Zhou, Zhiyong Huang, Qiqing Chen, Xu Xu, Ping Lai and Liangliang Chen
Electronics 2025, 14(19), 3858; https://doi.org/10.3390/electronics14193858 - 29 Sep 2025
Abstract
Traditional active magnetic bearing power amplifiers usually adopt hard-switching circuit topologies with simple structures and strong practicability. However, such topologies suffer from high switching losses and easy generation of current noise. To address these issues, this paper proposes a soft-switching power amplifier topology [...] Read more.
Traditional active magnetic bearing power amplifiers usually adopt hard-switching circuit topologies with simple structures and strong practicability. However, such topologies suffer from high switching losses and easy generation of current noise. To address these issues, this paper proposes a soft-switching power amplifier topology for active magnetic bearings. By employing soft-switching technology, zero-voltage notches are generated through an auxiliary resonant circuit, enabling the switching transistor s to turn on and off at the zero-voltage notch moment, thereby reducing switching losses and improving system efficiency. The working principle of the soft-switching power amplifier topology is analyzed in detail, and the proposed scheme is verified through system simulation and experiments. Results show that the soft-switching power amplifier can effectively reduce switching losses and current noise, while its dynamic performance and operating bandwidth are comparable to those of traditional hard-switching power amplifiers. With an output current of 3 A, the efficiency of the soft-switching power amplifier can be enhanced by 10%. Full article
Show Figures

Figure 1

19 pages, 6387 KB  
Article
Design and In Vivo Measurement of Miniaturized High-Efficient Implantable Antennas for Leadless Cardiac Pacemaker
by Xiao Fang, Zhengji Li, Mehrab Ramzan, Niels Neumann and Dirk Plettemeier
Appl. Sci. 2025, 15(19), 10495; https://doi.org/10.3390/app151910495 - 28 Sep 2025
Abstract
Deeply implanted biomedical devices like leadless pacemakers require an antenna with minimal volume and high radiation efficiency to ensure reliable in-body communication and long operational time within the human body. This paper introduces a novel implantable antenna designed to significantly reduce the spatial [...] Read more.
Deeply implanted biomedical devices like leadless pacemakers require an antenna with minimal volume and high radiation efficiency to ensure reliable in-body communication and long operational time within the human body. This paper introduces a novel implantable antenna designed to significantly reduce the spatial requirements within an implantable capsule while maintaining high radiation efficiency in lossy media like heart tissue. The design principles of the proposed antenna are outlined, followed by antenna parameters and an equivalent circuit study that demonstrates how to fine-tune the antenna’s resonant frequency. The radiation characteristics of the antenna are thoroughly investigated, revealing a radiation efficiency of up to 28% at the Medical Implant Communication System (MICS) band and 56% at the 2.4 GHz ISM band. The transmission efficiency between two deeply implanted antennas within heart tissue has been improved by more than 15 dB compared to the current state of the art. The radiation and transmission performance of the proposed antennas has been validated through comprehensive simulations using anatomical human body models, phantom measurements, and in vivo animal experiments, confirming their superior radiation performance. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

16 pages, 5890 KB  
Article
Wideband Multi-Layered Dielectric Resonator Antenna with Small Form Factor for 5G Millimeter-Wave Mobile Applications
by Sung Yong An and Boumseock Kim
Electronics 2025, 14(19), 3756; https://doi.org/10.3390/electronics14193756 - 23 Sep 2025
Viewed by 88
Abstract
A ceramic-based wideband capacitive-fed patch-loaded multi-layered rectangular dielectric resonator antenna (CFPL-ML-RDRA) with a compact form factor is proposed in this paper. The proposed antenna is composed of two ceramic substrates and a polymer as an adhesive. A capacitive-fed metallic patch structure is located [...] Read more.
A ceramic-based wideband capacitive-fed patch-loaded multi-layered rectangular dielectric resonator antenna (CFPL-ML-RDRA) with a compact form factor is proposed in this paper. The proposed antenna is composed of two ceramic substrates and a polymer as an adhesive. A capacitive-fed metallic patch structure is located on the top side of the bottom ceramic substrate. This novel structure generates two distinct resonant modes: the fundamental resonant mode of the RDRA and a hybrid resonant mode, which was confirmed through electric field (E-field) analysis and parametric studies. By merging these two resonant modes, the proposed antenna achieves a wide impedance bandwidth of 5.5 GHz, sufficient to cover the fifth-generation (5G) millimeter-wave (mmWave) frequency bands n257, n258, and n261 (5.25 GHz), while reducing the height of the DRA by 38.5% compared to the conventional probe-fed RDRA (PF-RDRA). Additionally, the 4 dBi realized gain bandwidth of the proposed CFPL-ML-RDRA is 5.4 GHz, which is 28.6% broader than that of the conventional PF-RDRA. To experimentally verify the antenna’s performance, the CFPL-ML-RDRA mounted on a test printed circuit board with a small ground size of 3.2 × 3.2 mm2 was fabricated and characterized. The measured data align well with the simulated data. Furthermore, excellent antenna array performance was achieved based on array simulations. Therefore, the proposed antenna structure is well-suited for 5G mmWave mobile applications. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

12 pages, 4087 KB  
Article
Dual-Band Planar Microwave Solid Complex Dielectric Constant Sensor System Based on E-Interdigital Structure
by Haoyang Shi, Xuchun Zhang, Lin Huang, Kun Wang and Zanyang Wang
Sensors 2025, 25(18), 5789; https://doi.org/10.3390/s25185789 - 17 Sep 2025
Viewed by 230
Abstract
This paper introduces a dual-band planar microwave sensor system for measuring the complex dielectric constant of solid material. The sensor system comprises three constituent parts: the sensing probe, the circuit module and the broadband coupler. The sensing probe is composed of a host [...] Read more.
This paper introduces a dual-band planar microwave sensor system for measuring the complex dielectric constant of solid material. The sensor system comprises three constituent parts: the sensing probe, the circuit module and the broadband coupler. The sensing probe is composed of a host part and a sensing area. The host part is composed of a microstrip line, which facilitates system integration with other planar microwave components. The sensing area comprises two pairs of E-interdigital structures, which were originally developed from the interdigital capacitor. This configuration manifests two resonant frequency points, specifically 3 GHz and 3.92 GHz. Consequently, any environmental effects exhibit equivalent variation at both resonant frequency points, thereby substantiating the efficacy of the proposed sensor system for differential operation, which has the capacity to mitigate the impact of environmental conditions. The circuit module comprises a controller, two detectors and a signal generator, which facilitate the generation and processing of radio frequency signals within the system. The function of the broadband coupler is to differentiate between the incident signal and the reflected signal. The operating principle is predicated on the variation in the resonant frequency and peak attenuation with respect to the complex dielectric constant of the material under test (MUT). In order to validate the effectiveness of the proposed sensor system, a prototype is fabricated and tested. The proposed sensor system is distinguished by its high sensitivity and low cost. The apparatus is capable of performing measurements independently and without the necessity for auxiliary equipment. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

12 pages, 2524 KB  
Article
The Design of a Dual-Band 4-Port Magnetic Resonant Wireless Power Transfer Coupler: Theoretical Analysis of Losses and Interference for Biomedical Wearable Applications
by Hong-Guk Bae and Sang-Wook Park
Electronics 2025, 14(18), 3637; https://doi.org/10.3390/electronics14183637 - 14 Sep 2025
Viewed by 213
Abstract
This study analyzes cross-band interference and losses in a compact dual-frequency 4-port inductive coupler operating at 6.78 MHz and 13.56 MHz for Magnetic Resonant Wireless Power Transfer (MR-WPT) using an equivalent circuit model fitted to 3D full wave analysis and empirical measurements. The [...] Read more.
This study analyzes cross-band interference and losses in a compact dual-frequency 4-port inductive coupler operating at 6.78 MHz and 13.56 MHz for Magnetic Resonant Wireless Power Transfer (MR-WPT) using an equivalent circuit model fitted to 3D full wave analysis and empirical measurements. The model is first matched to idealized 3D model results to establish baseline parameters and then theoretically analyzed in relation to measured S-parameters to reflect empirical losses. This approach achieves accurate theoretical interpretation, with errors remaining below 5%. The results show consistent transmission coefficients, with the model most closely matching the measurements. Power loss and efficiency comparisons indicate that the model accurately captures deviations, with its performance positioned between the 3D full wave analysis and measured results. Cross-band interference remains below −20 dB, and the maximum measured efficiency reaches 71.18%. Full article
Show Figures

Figure 1

53 pages, 2691 KB  
Review
Heterogeneous Integration Technology Drives the Evolution of Co-Packaged Optics
by Han Gao, Wanyi Yan, Dan Zhang and Daquan Yu
Micromachines 2025, 16(9), 1037; https://doi.org/10.3390/mi16091037 - 10 Sep 2025
Viewed by 989
Abstract
The rapid growth of artificial intelligence (AI), data centers, and high-performance computing (HPC) has increased the demand for large bandwidth, high energy efficiency, and high-density optical interconnects. Co-packaged optics (CPO) technology offers a promising solution by integrating photonic integrated circuits (PICs) directly within [...] Read more.
The rapid growth of artificial intelligence (AI), data centers, and high-performance computing (HPC) has increased the demand for large bandwidth, high energy efficiency, and high-density optical interconnects. Co-packaged optics (CPO) technology offers a promising solution by integrating photonic integrated circuits (PICs) directly within or close to electronic integrated circuit (EIC) packages. This paper explores the evolution of CPO performance from various perspectives, including fan-out wafer level packaging (FOWLP), through-silicon via (TSV)-based packaging, through-glass via (TGV)-based packaging, femtosecond laser direct writing waveguides, ion-exchange glass waveguides, and optical coupling. Micro ring resonators (MRRs) are a high-density integration solution due to their compact size, excellent energy efficiency, and compatibility with CMOS processes. However, traditional thermal tuning methods face limitations such as high static power consumption and severe thermal crosstalk. To address these issues, non-volatile neuromorphic photonics has made breakthroughs using phase-change materials (PCMs). By combining the integrated storage and computing capabilities of photonic memory with the efficient optoelectronic interconnects of CPO, this deep integration is expected to work synergistically to overcome material, integration, and architectural challenges, driving the development of a new generation of computing hardware with high energy efficiency, low latency, and large bandwidth. Full article
(This article belongs to the Special Issue Emerging Packaging and Interconnection Technology, Second Edition)
Show Figures

Figure 1

15 pages, 4009 KB  
Article
Design and Theoretical Analysis of a Hexagonal-Stacked MISO Electric Resonant Coupling Wireless Power Transfer Coupler
by Hong-Guk Bae and Sang-Wook Park
Electronics 2025, 14(17), 3568; https://doi.org/10.3390/electronics14173568 - 8 Sep 2025
Viewed by 375
Abstract
This study presents the design of an optimal Electric Resonant Coupling Wireless Power Transfer (ER-WPT) coupler intended for multiple-input multiple-output (MIMO) systems. The proposed coupler features a hexagonal-stacked structure optimized for electric field coupling and consists of three transmitters and one receiver. Analysis [...] Read more.
This study presents the design of an optimal Electric Resonant Coupling Wireless Power Transfer (ER-WPT) coupler intended for multiple-input multiple-output (MIMO) systems. The proposed coupler features a hexagonal-stacked structure optimized for electric field coupling and consists of three transmitters and one receiver. Analysis of the electromagnetic characteristics in this 3-to-1 configuration can be extended to larger arrays. Theoretical analysis based on a practical equivalent circuit (PEC) model, which incorporates loss elements from measurement, is validated through comparison with 3D full-wave simulations and experimental results. Across three representative receiver positions, the summed transmission coefficient of the MISO structure reaches up to 0.90, while the PEC model agrees with measurements within a maximum deviation of 0.09, confirming high accuracy. Furthermore, the proposed structure demonstrates stable resonance characteristics near 6.78 MHz with reduced frequency shifts under different receiver positions. The key contributions of this work are the proposal of an efficient hexagonal-stacked MISO ER-WPT coupler and a validated equivalent circuit modeling approach that reflects real-world losses, providing a reliable basis for future multi-transmitter/multi-receiver Wireless Power Transfer systems. Full article
Show Figures

Figure 1

18 pages, 7115 KB  
Article
Inductive Sensor Characteristics for Conductivity Measurement of Non-Ferromagnetic Metals Based on Single-Layer Solenoid
by Huan Wang, Ziyi Han, Yongjian Chen, Shuyu Li, Haoran Li, Hao Shen and Chunlong Xu
Sensors 2025, 25(17), 5566; https://doi.org/10.3390/s25175566 - 6 Sep 2025
Viewed by 974
Abstract
For the measurement of electrical conductivity of metal materials, the traditional contact measurement method has a limited test range and requires periodic electronic calibration. In order to overcome the above shortcomings, this paper takes the inductive response of an RLC circuit driven by [...] Read more.
For the measurement of electrical conductivity of metal materials, the traditional contact measurement method has a limited test range and requires periodic electronic calibration. In order to overcome the above shortcomings, this paper takes the inductive response of an RLC circuit driven by alternating sources as the research object and proposes a non-contact method for conductivity measurement of non-ferromagnetic metals engaged by a single-layer solenoid sensor. The effect of the circuit parameters on the inductive sensor characteristics has been described with different resonant modes, and the electric conductivities of different metals can be theoretically calculated based on eddy current. Moreover, the Comsol Multiphysics software is used to conduct finite element analysis to compare the experimental results and the simulation, which is consistent with the theoretical analysis. The measured accuracy of the inductive sensor is verified to be higher than 91% in parallel resonance, which exhibits higher stability and precision than that of series mode. The implementation of this project will provide the theoretical basis and data reference for the detection of electromagnetic properties of unknown metals and has a wide range of applications in non-destructive testing, engineering construction detection, and other fields. Full article
Show Figures

Figure 1

23 pages, 10389 KB  
Article
Full-Bridge T-Type Three-Level LLC Resonant Converter with Wide Output Voltage Range
by Kangjia Zhang, Kun Zhao, Xiaoxiao Yang, Muyang Liu and Zhigang Yao
Energies 2025, 18(17), 4613; https://doi.org/10.3390/en18174613 - 30 Aug 2025
Viewed by 579
Abstract
Traditional LLC resonant converters face significant challenges in wide-output-voltage-applications, such as limited voltage gain, efficiency degradation under wide-gain range, and increased complexity in magnetic component design. For example, in electric vehicle charging power modules, achieving wide output voltage typically relies on changing the [...] Read more.
Traditional LLC resonant converters face significant challenges in wide-output-voltage-applications, such as limited voltage gain, efficiency degradation under wide-gain range, and increased complexity in magnetic component design. For example, in electric vehicle charging power modules, achieving wide output voltage typically relies on changing the transformer turns ratio or switching the series-parallel circuit configuration via relays, which prevents real-time dynamic adjustment. To overcome these limitations, this paper proposes a wide-gain-range control method based on a full-bridge T-type three-level LLC resonant converter, capable of achieving a voltage gain range exceeding six times. By integrating a T-type three-level bridge arm with PWM modulation and employing a variable-topology and variable-frequency control strategy, the proposed method achieves synergistic optimization for wide-output-voltage-applications. PWM modulation enables wide-range voltage output by dynamically adjusting both the converter topology and switching frequency. Finally, the proposed method is validated through circuit simulations and experimental results based on a full-bridge T-type three-level LLC converter prototype, demonstrating its effectiveness and feasibility. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters)
Show Figures

Figure 1

47 pages, 1148 KB  
Review
Burnout and the Brain—A Mechanistic Review of Magnetic Resonance Imaging (MRI) Studies
by James Chmiel and Donata Kurpas
Int. J. Mol. Sci. 2025, 26(17), 8379; https://doi.org/10.3390/ijms26178379 - 28 Aug 2025
Viewed by 1493
Abstract
Occupational burnout is ubiquitous yet still debated as a disease entity. Previous reviews surveyed multiple biomarkers but left their neural substrate unclear. We therefore asked: What, if any, reproducible magnetic-resonance signature characterises burnout? Following PRISMA principles adapted for mechanistic synthesis, two reviewers searched [...] Read more.
Occupational burnout is ubiquitous yet still debated as a disease entity. Previous reviews surveyed multiple biomarkers but left their neural substrate unclear. We therefore asked: What, if any, reproducible magnetic-resonance signature characterises burnout? Following PRISMA principles adapted for mechanistic synthesis, two reviewers searched PubMed, Scopus, Google Scholar, ResearchGate and Cochrane from January 2000 to May 2025 using “MRI/fMRI” AND “burnout”. After duplicate removal and multi-stage screening, 17 clinical studies met predefined inclusion criteria (English language, MRI outcomes, validated burnout diagnosis). In total, ≈1365 participants were scanned, 880 with clinically significant burnout and 470 controls. Uniform Maslach Burnout Inventory thresholds defined cases; most studies matched age and sex, and all excluded primary neurological disease. Structural morphometry (8/17 studies) revealed consistent amygdala enlargement—predominantly in women—and grey-matter loss in dorsolateral/ventromedial prefrontal cortex and striatal caudate–putamen, while hippocampal volume remained unaffected, distinguishing burnout from PTSD or depression. Resting-state and task fMRI (9/17 studies) showed fronto-cortical hyper-activation, weakened amygdala–ACC coupling, and progressive fragmentation of rich-club networks, collectively indicating compensatory executive overdrive and global inefficiency. Two longitudinal cohorts and several intervention sub-studies demonstrated partial reversal of cortical thinning and limbic hyper-reactivity after mindfulness, exercise, cognitive-behavioural therapy, neurofeedback, or rTMS, underscoring plasticity. Across heterogeneous paradigms and populations, MRI converges on a coherent, sex-modulated but reversible brain-networkopathy that satisfies objective disease criteria. These findings justify early neuro-imaging-based triage, circuit-targeted therapy, and formal nosological recognition of burnout as a mental disorder, with policy ramifications for occupational health and insurance parity. Full article
Show Figures

Figure 1

12 pages, 474 KB  
Article
Intrinsic Temperature and Pressure Compensation of Thin-Film Acoustic Resonators
by Sergiu Cojocaru
Appl. Sci. 2025, 15(17), 9349; https://doi.org/10.3390/app15179349 - 26 Aug 2025
Viewed by 439
Abstract
Stabilization of the resonance frequency in thin-film acoustic devices to variations in environmental conditions is commonly reduced to the passive or active compensation of a single factor (usually temperature) and the isolation or addition of a separate correction circuit for every other factor [...] Read more.
Stabilization of the resonance frequency in thin-film acoustic devices to variations in environmental conditions is commonly reduced to the passive or active compensation of a single factor (usually temperature) and the isolation or addition of a separate correction circuit for every other factor (e.g., pressure and mass loading). In this work, the possibility of dual-factor compensation is proposed, where the response of a multi-layered thin structure to both temperature and ambient pressure variation vanishes due to the choice of intrinsic parameters (materials and thickness ratios). The response functions are derived for the S0 Lamb mode at long wavelengths in an explicit analytical form in terms of bulk material characteristics. It is demonstrated that the dual-factor intrinsic stabilization requires at least a three-layered structure and can be achieved for materials commonly used in temperature-compensated devices (aluminum nitride, fused silica, and aluminum). Identification of the key material characteristics governing the existence of a stability solution can serve for a targeted search of such composites and implementation of new thin-film dual devices. Full article
Show Figures

Figure 1

Back to TopTop