Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,142)

Search Parameters:
Keywords = relative vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4485 KB  
Article
Analysis of Multi-Source Vibration Characteristics of No-Tillage Planter Based on Field Operation Condition
by Dong He, Hongwen Li, Jinshuo Bi, Yingbo Wang, Caiyun Lu, Chao Wang, Zhengyang Wu and Rongrong Li
Agriculture 2025, 15(17), 1840; https://doi.org/10.3390/agriculture15171840 - 29 Aug 2025
Abstract
Field surface fluctuations and crop residues can induce significant random vibrations of no-tillage planters, which may negatively affect seed implantation stability and crop yield. At present, it is difficult to understand the extent to which the working components of a no-tillage planter affect [...] Read more.
Field surface fluctuations and crop residues can induce significant random vibrations of no-tillage planters, which may negatively affect seed implantation stability and crop yield. At present, it is difficult to understand the extent to which the working components of a no-tillage planter affect its vibration, and how to reduce the influence of vibration on the quality of the no-tillage seeding is a critical problem. The main factors affecting the vibration of no-tillage planters were studied by tractor engine vibration source impact analysis experiments, no-tillage planter structural vibration source experiments, and light and heavy no-tillage configuration vibration source analysis experiments. The results show that the effects of the ground wheels, the fertilizing and stubble breaking and cleaning devices, the packer wheels, and the power output shaft gradually diminish. The resonant frequencies of the tractor–no-tillage planter system were 68.36 Hz and 67.38 Hz. Furthermore, this study provided a relative assessment of the correlation between planter downforce and its vibration intensity. To sum up, the multi-source vibration impact analysis method proposed an effective method for studying the contribution of individual components to the overall vibration behavior of no-tillage planters. It provides a theoretical basis for the optimization design of the vibration damping system. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 8705 KB  
Article
Research on Blade Asynchronous Vibration Parameter Identification for Large-Scale Centrifugal Compressor Based on Improved MUSIC Algorithm
by Zhenfang Fan, Yongtao Shen, Yupeng Du, Jinying Huang and Siyuan Liu
Sensors 2025, 25(17), 5351; https://doi.org/10.3390/s25175351 - 29 Aug 2025
Abstract
Blade tip timing (BTT) is a core technique for investigating the blade vibration of large-scale centrifugal compressors, and identifying the parameters of blade asynchronous vibration is crucial for implementing blade condition monitoring based on the BTT technique. In this study, the multiple signal [...] Read more.
Blade tip timing (BTT) is a core technique for investigating the blade vibration of large-scale centrifugal compressors, and identifying the parameters of blade asynchronous vibration is crucial for implementing blade condition monitoring based on the BTT technique. In this study, the multiple signal classification (MUSIC) algorithm and the estimating signal parameters via rotational invariance techniques (ESPRIT) algorithm were first applied separately to identify the asynchronous vibration parameters of centrifugal compressor blades, with their advantages and disadvantages discussed. Subsequently, based on the frequency distribution characteristics in the ESPRIT results, the concept of “frequency distribution rate” was proposed. Finally, the results of the MUSIC algorithm were weighted by the frequency distribution rate, and an improved MUSIC algorithm was proposed. This enhanced confidence in the real frequency in the MUSIC algorithm results. Compared with the strain gauge method, the maximum relative error of the improved algorithm is 0.23%. The improved MUSIC algorithm improves the accuracy of parameter identification for blade asynchronous vibration, which holds great significance for the industrial application of the BTT technique. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 7494 KB  
Article
The Vortex-Induced Vibration Characteristics of the Water-Conveying Truss Pipeline Cable-Stayed Bridge
by Haoxin Guo, Shiqi Tian and Jiawu Li
Appl. Sci. 2025, 15(17), 9437; https://doi.org/10.3390/app15179437 - 28 Aug 2025
Abstract
This study investigated the vortex-induced vibration (VIV) characteristics of a proposed water-conveying truss pipeline cable-stayed bridge through wind tunnel tests. The experimental results indicated that both vertical bending and torsional VIV responses decreased as the wind attack angle increased. The vertical bending VIV [...] Read more.
This study investigated the vortex-induced vibration (VIV) characteristics of a proposed water-conveying truss pipeline cable-stayed bridge through wind tunnel tests. The experimental results indicated that both vertical bending and torsional VIV responses decreased as the wind attack angle increased. The vertical bending VIV behavior of the bridge was significantly influenced by the lateral spacing and relative height of the pipelines. Adjustments to these geometric parameters markedly affected the structural VIV response. Furthermore, computational fluid dynamics (CFD) was employed to analyze the flow field around the truss pipeline bridge. The results revealed that changes in the lateral spacing and relative height of the pipelines primarily altered the VIV performance by modifying vorticity distribution, separation point position, and other critical flow field parameters around the truss section. These findings underscore the importance of considering the effects of geometric parameters on VIV during the design of the truss section in pipeline bridges. Full article
Show Figures

Figure 1

17 pages, 1059 KB  
Article
Three-View Relative Pose Estimation Under Planar Motion Constraints
by Ziqin Dai, Weimin Lv and Liang Liu
Vision 2025, 9(3), 72; https://doi.org/10.3390/vision9030072 - 25 Aug 2025
Viewed by 202
Abstract
Vision-based relative pose estimation serves as a core technology for high-precision localization in autonomous vehicles and mobile platforms. To overcome the limitations of conventional three-view pose estimation methods that rely heavily on dense feature matching and incur high computational costs, this paper proposes [...] Read more.
Vision-based relative pose estimation serves as a core technology for high-precision localization in autonomous vehicles and mobile platforms. To overcome the limitations of conventional three-view pose estimation methods that rely heavily on dense feature matching and incur high computational costs, this paper proposes an efficient three-point correspondence algorithm based on planar motion constraints. The method constructs trifocal tensor constraint equations and develops a linearized three-point solution framework, enabling rapid relative pose estimation using merely three corresponding points in three views. In simulation experiments, we systematically analyzed the robustness of the algorithm under complex conditions that included image noise, angular deviation, and vibration. The method was further validated in real-world scenarios using the KITTI public dataset. Experimental results demonstrate that under the condition of satisfying the planar motion assumption, the proposed method achieves significantly improved computational efficiency compared with traditional methods (including general three-view methods, two-view planar motion estimation methods, and classical two-view methods), with the single-solution time reduced by more than 80% compared to general three-view methods. In the public dataset, our algorithm achieves a median rotation estimation error of less than 0.0545 degrees and maintains a translation estimation error of less than 2.1319 degrees. The proposed method exhibits higher computational efficiency and better numerical stability compared to conventional algorithms. This research provides an effective pose estimation solution with real-time performance and high accuracy for planar motion platforms such as autonomous vehicles and indoor mobile robots, demonstrating substantial engineering application value. Full article
Show Figures

Figure 1

10 pages, 3033 KB  
Proceeding Paper
Fourier Transform Infrared Spectroscopy-Based Detection of Amoxicillin and Ampicillin for Advancing Antibiotic Monitoring with Optical Techniques
by Vinicius Pereira Anjos, Maria Renata Valente Brandão Freire, Raffaele Stasi, Daniela Fátima Teixeira Silva and Denise Maria Zezell
Med. Sci. Forum 2025, 35(1), 7; https://doi.org/10.3390/msf2025035007 - 21 Aug 2025
Viewed by 1016
Abstract
Introduction: Amoxicillin and Ampicillin are among the most widely used antibiotics for treating bacterial infections. While traditional drug monitoring methods often face challenges relative to accuracy and analysis speed, optical-based techniques offer a promising alternative. Fourier Transform Infrared Spectroscopy (FTIR), a well-established tool, [...] Read more.
Introduction: Amoxicillin and Ampicillin are among the most widely used antibiotics for treating bacterial infections. While traditional drug monitoring methods often face challenges relative to accuracy and analysis speed, optical-based techniques offer a promising alternative. Fourier Transform Infrared Spectroscopy (FTIR), a well-established tool, is particularly suited for this purpose. As their molecular structures and characteristic infrared absorption features are very similar, they could be difficult to differentiate using FTIR spectroscopy. Hence, chemometric analysis is important to overcome this challenge. This study introduces a novel approach to the standard methods of antibiotic detection and monitoring, leveraging the capabilities of vibrational spectroscopy and helping in antimicrobial stewardship. Attenuated Total Reflection (ATR)–FTIR is carried out with chemometric tools to investigate Amoxicillin and Ampicillin over different degradation processes. Principal Component Analysis (PCA) was used in the fingerprint region to detect differences between the studied antibiotics. Additionally, absorbance intensity in the fingerprint region was monitored to assess the degradation of each antibiotic over time. To achieve this, the area under the curve was calculated and subjected to inferential statistical tests for both intragroup (the degradation of the same antibiotic) and intergroup (degradation within the same time interval, comparing the two antibiotics) comparisons. All analyses were performed in OriginLab and using Python in the Google Colab and Orange environments. For the calculations of the limit of detection (LoD), the method based on the calibration curve was used. Through the experiments, it was possible to identify the fingerprints of each antibiotic and statistically separate them, despite both belonging to the same class of antibiotics, where the spectral peaks appear in the same region. For degradation, all tests were conducted with a significance level of α = 5%. In this investigation, our results show several quantification characteristics with a detection limit of 96.76 mM for Ampicillin and 66.01 mM for Amoxicillin using the peak intensity. This research demonstrates that FTIR spectroscopy is effective for antibiotic detection and has the potential to be further developed into a monitoring protocol. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

26 pages, 3225 KB  
Review
A Review on Comfort of Pedestrian Bridges Under Human-Induced Vibrations and Tuned Mass Damper Control Technologies
by Shoukun Zhang, Baijin Wu, Yong Tang, Han Zhang, Zheng Xu, Guoqiang Li and Shuang Lu
Materials 2025, 18(16), 3903; https://doi.org/10.3390/ma18163903 - 21 Aug 2025
Viewed by 450
Abstract
With the development of urban infrastructure construction, while pedestrian bridges meet traffic functions the issue of their comfort has become a core consideration in structural design. This is because the long-span lightweight structures, with their large flexibility and low fundamental frequencies, are also [...] Read more.
With the development of urban infrastructure construction, while pedestrian bridges meet traffic functions the issue of their comfort has become a core consideration in structural design. This is because the long-span lightweight structures, with their large flexibility and low fundamental frequencies, are also vulnerable to human-induced vibrations. Pedestrian load modellings include the deterministic time-domain model, which is widely adopted in codes due to its simplicity, the random model that takes into account individual variability, and the frequency-domain model. The deterministic time-domain model has abundant parameter determination results and has become relatively mature, while the latter two, although more rigorous, have relatively lagging development. Numerous studies have shown that acceleration limits are the main indicators for comfort assessment. Vertical vibrations are controlled by amplitude constraints, while for the lateral vibrations the “lateral lock-in” that can cause dynamic instability needs to be evaluated with particular emphasis. When comfort exceeds an acceptable degree, a prevalent countermeasure is to attach a Tuned Mass Damper (TMD) or Multiple Tuned Mass Damper (MTMD) system to the structure—the latter demonstrates stronger robustness when dealing with random pedestrian loads. Full article
Show Figures

Figure 1

21 pages, 2405 KB  
Article
Dynamical Characterization of Plates Containing Plane Cracks with Functional Gradient Materials
by Gen Liu, An Xi, Yunchao Qi and Wenju Han
Materials 2025, 18(16), 3868; https://doi.org/10.3390/ma18163868 - 18 Aug 2025
Viewed by 269
Abstract
This study develops a vibration model for functionally graded material (FGM) plates with embedded planar cracks. Based on thin plate theory and von Kármán-type geometric nonlinear strain assumptions, the kinetic and potential energies of each region are derived. Displacement field trial functions are [...] Read more.
This study develops a vibration model for functionally graded material (FGM) plates with embedded planar cracks. Based on thin plate theory and von Kármán-type geometric nonlinear strain assumptions, the kinetic and potential energies of each region are derived. Displacement field trial functions are constructed according to boundary conditions, and the Ritz method is employed to determine natural frequencies and vibration modes under small deformation conditions. The investigation focuses on how crack parameters and material gradient coefficients affect vibration characteristics in exponentially graded FGM plates. The results show that natural frequencies decrease with increasing crack length, while crack presence alters nodal line patterns and mode symmetry. During free vibration, the upper and lower surfaces of the crack region exhibit relative displacement. Material gradient effects induce thickness–direction asymmetry, causing non-uniform displacements between the plate’s upper and lower sections. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 2424 KB  
Article
Predicting Vehicle-Engine-Radiated Noise Based on Bench Test and Machine Learning
by Ruijun Liu, Yingqi Yin, Yuming Peng and Xu Zheng
Machines 2025, 13(8), 724; https://doi.org/10.3390/machines13080724 - 15 Aug 2025
Viewed by 283
Abstract
As engines trend toward miniaturization, lightweight design, and higher power density, noise issues have become increasingly prominent, necessitating precise radiated noise prediction for effective noise control. This study develops a machine learning model based on surface vibration test data, which enhances the efficiency [...] Read more.
As engines trend toward miniaturization, lightweight design, and higher power density, noise issues have become increasingly prominent, necessitating precise radiated noise prediction for effective noise control. This study develops a machine learning model based on surface vibration test data, which enhances the efficiency of engine noise prediction and has the potential to serve as an alternative to traditional high-cost engine noise test methods. Experiments were conducted on a four-cylinder, four-stroke diesel engine, collecting surface vibration and radiated noise data under full-load conditions (1600–3000 r/min). Five prediction models were developed using support vector regression (SVR, including linear, polynomial, and radial basis function kernels), random forest regression, and multilayer perceptron, suitable for non-anechoic environments. The models were trained on time-domain and frequency-domain vibration data, with performance evaluated using the maximum absolute error, mean absolute error, and median absolute error. The results show that polynomial kernel SVR performs best in time domain modelling, with an average relative error of 0.10 and a prediction accuracy of up to 90%, which is 16% higher than that of MLP; the model does not require Fourier transform and principal component analysis, and the computational overhead is low, but it needs to collect data from multiple measurement points. The linear kernel SVR works best in frequency domain modelling, with an average relative error of 0.18 and a prediction accuracy of about 82%, which is suitable for single-point measurement scenarios with moderate accuracy requirements. Analysis of measurement points indicates optimal performance using data from the engine top between cylinders 3 and 4. This approach reduces reliance on costly anechoic facilities, providing practical value for noise control and design optimization. Full article
(This article belongs to the Special Issue Intelligent Applications in Mechanical Engineering)
Show Figures

Figure 1

17 pages, 4809 KB  
Article
Analysis of the Vibration Characteristics of a Moving Tracked Vehicle Considering the Powertrain Magnetorheological Damping System
by Yu Tao, Xue Rui, Feifei Liu, Jinyu Shan and Jianshu Zhang
Appl. Sci. 2025, 15(16), 8997; https://doi.org/10.3390/app15168997 - 14 Aug 2025
Viewed by 222
Abstract
With the increasing requirements for speed and travel distance in tracked vehicles on various terrains and the increasing mass ratio of powertrains, the vibration problem of high-power powertrains becomes a critical challenge. In this paper, in order to reflect on the vibration transmission [...] Read more.
With the increasing requirements for speed and travel distance in tracked vehicles on various terrains and the increasing mass ratio of powertrains, the vibration problem of high-power powertrains becomes a critical challenge. In this paper, in order to reflect on the vibration transmission relationship between the powertrain and the complex carrier, the magnetorheological damping system of a powertrain is studied in a whole vehicle model. The transfer matrix and equations of each component, including the magnetorheological mount, are derived by the Rui Method. Then, the electromechanical coupling multibody dynamic model of the vehicle–powertrain magnetorheological damping system is established. Consequently, the fast solution of vehicle–powertrain vibration characteristics under various road excitations is realized. The dynamic and static coupling characteristics of the powertrain system and the factors affecting its performance are analyzed in a moving vehicle. The simulation results indicate that the vibration reduction performance is the worst in the X-direction, whereas the vibration reduction performance is the best in the Y-direction. Under the E-class road condition at 10 m/s, the RMS acceleration reduction in the powertrain is 41.63% in the Y-direction relative to the chassis. Both the resonant frequency of the powertrain and chassis are 86.93 Hz in the Y-direction. Finally, the accuracy of the results is verified by simulation and driving experiments. The research results can provide theoretical guidance for the design and optimization of the powertrain mount of a tracked vehicle. Moreover, it provides a new technical means of studying the vibration characteristics of a complex multibody system. The simulation results demonstrate notable directional variations in the vibration attenuation performance of the powertrain damping system. Specifically, the X-direction shows the poorest vibration attenuation, whereas the Y-direction exhibits the best damping characteristics. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

33 pages, 7645 KB  
Article
Evaluation of Rail Corrugation and Roughness Using In-Service Tramway Bogie Frame Vibrations: Addressing Challenges and Perspectives
by Krešimir Burnać, Ivo Haladin and Katarina Vranešić
Infrastructures 2025, 10(8), 209; https://doi.org/10.3390/infrastructures10080209 - 12 Aug 2025
Viewed by 254
Abstract
Rail corrugation and roughness represent typical irregularities on railway and tramway tracks, which cause increased dynamic forces, high-frequency vibrations, reduced riding comfort, shorter track lifespan, higher maintenance costs, and increased noise levels. Roughness and corrugation can be measured by evaluating the unevenness of [...] Read more.
Rail corrugation and roughness represent typical irregularities on railway and tramway tracks, which cause increased dynamic forces, high-frequency vibrations, reduced riding comfort, shorter track lifespan, higher maintenance costs, and increased noise levels. Roughness and corrugation can be measured by evaluating the unevenness of the rail longitudinal running surface, which can be conducted using handheld devices or trolleys (directly on the track). Alternatively, vehicle or track-based indirect methods offer practical solutions for determining the condition of the rail running surface. This paper presents a methodology for rail corrugation and roughness evaluation, using bogie frame vibration data from an instrumented in-service tramway vehicle operating on Zagreb’s tramway network. Furthermore, it investigates the effects of various factors on the evaluation method, including wheel roughness, lateral positioning, signal processing methods, horizontal geometry, wheel–rail contact force, and tramway vehicle vibroacoustic characteristics. It was concluded that a simplified methodology that did not include transfer functions or wheel roughness measurements yielded relatively good results for evaluating rail corrugation and roughness across several wavelength bands. To improve the presented methodology, future research should assess the vehicle’s vibroacoustic characteristics with experimental hammer impact tests, measure the influence of wheel roughness on wheel–rail contact and bogie vibrations, and refine the measurement campaign by increasing test runs, limiting speed variation, and conducting controlled tests. Full article
Show Figures

Figure 1

16 pages, 5156 KB  
Article
Deformation and Stress of a Runner in Large Francis Turbines Under Wide-Load Operating Conditions
by Xin Deng, Hong Hua, Chaoshun Li, Shuman Wei, Zhu Yan, Wanquan Deng, Jiayang Pang, Yufan Xiong, Lihao Li and Xiaobing Liu
Water 2025, 17(16), 2374; https://doi.org/10.3390/w17162374 - 11 Aug 2025
Viewed by 335
Abstract
During partial-load operation, hydroelectric units are frequently subjected to hydraulic vibrations caused by pressure fluctuations within the turbine. These vibrations can result in deformation of the runner blades and, in severe instances, lead to crack formation. Over the years, research efforts have primarily [...] Read more.
During partial-load operation, hydroelectric units are frequently subjected to hydraulic vibrations caused by pressure fluctuations within the turbine. These vibrations can result in deformation of the runner blades and, in severe instances, lead to crack formation. Over the years, research efforts have primarily focused on specific operating conditions, with relatively insufficient attention paid to the study of operational stability under broad-load operation. This study investigates the recurrent occurrence of crack damage in the runner blades of a Francis turbine installed at a major hydropower station. The issue emerges in response to the operational requirements of a modern power system, which mandates wide-load operation across varying heads (154.6 m, 197 m, 229.4 m) and guide vane openings (10%, 25%, 50%, 70%, 100%). To inform the development of optimized operational control strategies, this work examines the deformation and von Mises stress distribution patterns on the runner blades under these wide-load conditions. The findings reveal that the maximum blade deformation predominantly occurs in the mid-section of the trailing edge under most operating scenarios, while the peak von Mises stress consistently appears near the band at the trailing edge. Both peak deformation (1.99 mm) and peak von Mises stress (170.92 MPa) were observed at the maximum head (229.4 m) under 100% guide vane opening. Notably, significant deformation and stress levels were also encountered at openings below 25% under low-head conditions. On the basis of the research results, suggestions for ensuring the safe and stable operation of power station units under wide-load conditions were proposed. Full article
(This article belongs to the Special Issue Advanced Numerical Approaches for Multiphase and Cavitating Flows)
Show Figures

Figure 1

14 pages, 4120 KB  
Article
DEM Parameter Calibration and Experimental Definition for White Tea Granular Systems
by Dapeng Ye, Yuxuan Gao, Yanlin Qi, Hao Wang, Renye Wu and Haiyong Weng
Agronomy 2025, 15(8), 1909; https://doi.org/10.3390/agronomy15081909 - 8 Aug 2025
Viewed by 279
Abstract
During automated packaging of white tea, uneven tea pile thickness leads to reduced weighing accuracy, while traditional experimental methods struggle to reveal the underlying particle flow mechanisms, hindering equipment optimization. Addressing the lack of discrete element method (DEM) parameters for Baihao Yinzhen tea, [...] Read more.
During automated packaging of white tea, uneven tea pile thickness leads to reduced weighing accuracy, while traditional experimental methods struggle to reveal the underlying particle flow mechanisms, hindering equipment optimization. Addressing the lack of discrete element method (DEM) parameters for Baihao Yinzhen tea, this study calibrates its DEM parameters based on the DEM approach, providing input for virtual commissioning of packaging machinery. Through physical experiments, the static friction coefficient (0.546), restitution coefficient (0.326), and rolling friction coefficient (0.133) between tea leaves and steel plates were determined. A three-dimensional DEM model of tea leaves was established using slicing techniques and the multi-sphere aggregation method. The steepest-ascent method and Box–Behnken design were employed to optimize the simulation parameters, resulting in the following optimal parameter combination: inter-particle restitution coefficient (0.16), static friction coefficient (0.14), and rolling friction coefficient (0.15). Validation simulations demonstrated that the mean angle of repose of tea leaves under the optimized parameter combination was 22.51°, with a relative error of only 1.29% compared to the actual experimental result of 22.80°. The calibrated parameters can be directly applied to the simulation of the feeding system in white tea automatic packaging machines, enabling optimization of vibration parameters through prediction of pile behavior, thereby reducing weighing errors. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

26 pages, 8019 KB  
Article
Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters
by Shijie Zhang, Shuangshuang Jia, Yuhao Zhao, Jing Wei and Yanyang Zi
Lubricants 2025, 13(8), 352; https://doi.org/10.3390/lubricants13080352 - 5 Aug 2025
Viewed by 413
Abstract
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and [...] Read more.
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and raceway depends on factors such as contact material, relative sliding velocity, and contact pressure. However, existing traction curve models for CSLBBs typically consider only one or two of these factors, limiting the accuracy and applicability of theoretical predictions. In this study, a novel traction model for CSLBBs is proposed, which incorporates the combined effects of contact material, relative sliding velocity, and contact pressure. Based on this model, a tribo-dynamic framework is developed to investigate the tribological and dynamic behavior of CSLBBs. The model is validated through both theoretical analysis and experimental data. Results show that the inclusion of solid lubricant effects significantly alters the relative sliding and frictional forces between the rolling elements and the raceway. These changes in turn influence the impact dynamics between the rolling elements and the cage, leading to notable variations in the bearing’s vibrational response. The findings may offer valuable insights for the wear resistance and vibration reduction design of CSLBBs. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

23 pages, 5280 KB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 - 2 Aug 2025
Viewed by 338
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

20 pages, 3716 KB  
Article
Modeling and Validation of a Spring-Coupled Two-Pendulum System Under Large Free Nonlinear Oscillations
by Borislav Ganev, Marin B. Marinov, Ivan Kralov and Anastas Ivanov
Machines 2025, 13(8), 660; https://doi.org/10.3390/machines13080660 - 28 Jul 2025
Viewed by 398
Abstract
Studying nonlinear oscillations in mechanical systems is fundamental to understanding complex dynamic behavior in engineering applications. While classical analytical methods remain valuable for systems with limited complexity, they become increasingly inadequate when nonlinearities are strong and geometrically induced, as in the case of [...] Read more.
Studying nonlinear oscillations in mechanical systems is fundamental to understanding complex dynamic behavior in engineering applications. While classical analytical methods remain valuable for systems with limited complexity, they become increasingly inadequate when nonlinearities are strong and geometrically induced, as in the case of large-amplitude oscillations. This paper presents a combined numerical and experimental investigation of a mechanical system composed of two coupled pendulums, exhibiting significant nonlinear behavior due to elastic deformation throughout their motion. A mathematical model of the system was developed using the MatLab/Simulink ver.6.1 environment, considering gravitational, inertial, and nonlinear elastic restoring forces. One of the major challenges in accurately modeling such systems is accurately representing damping, particularly in the absence of dedicated dampers. In this work, damping coefficients were experimentally identified through decrement measurements and incorporated into the simulation model to improve predictive accuracy. The simulation outputs, including angular displacements, velocities, accelerations, and phase trajectories over time, were validated against experimental results obtained via high-precision inertial sensors. The comparison shows a strong correlation between numerical and experimental data, with minimal relative errors in amplitude and frequency. This research represents the first stage of a broader study aimed at analyzing forced and parametrically excited oscillations. Beyond validating the model, the study contributes to the design of a robust experimental framework suitable for further exploration of nonlinear dynamics. The findings have practical implications for the development and control of mechanical systems subject to dynamic loads, with potential applications in automation, vibration analysis, and system diagnostics. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

Back to TopTop