Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,829)

Search Parameters:
Keywords = relative species abundance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3615 KiB  
Article
Identification of Suitable Habitats for Threatened Elasmobranch Species in the OSPAR Maritime Area
by Moritz Mercker, Miriam Müller, Thorsten Werner and Janos Hennicke
Fishes 2025, 10(8), 393; https://doi.org/10.3390/fishes10080393 (registering DOI) - 7 Aug 2025
Abstract
Protecting threatened elasmobranch species despite limited data on their distribution and abundance is a critical challenge, particularly in the context of increasing human impacts on marine ecosystems. In the northeastern Atlantic, species such as the leafscale gulper shark, Portuguese dogfish, spurdog, and spotted [...] Read more.
Protecting threatened elasmobranch species despite limited data on their distribution and abundance is a critical challenge, particularly in the context of increasing human impacts on marine ecosystems. In the northeastern Atlantic, species such as the leafscale gulper shark, Portuguese dogfish, spurdog, and spotted ray are facing pressures from overfishing, bycatch, habitat degradation, and climate change. The OSPAR Commission has listed these species as threatened and/or declining and aims to protect them by reliably identifying suitable habitats and integrating these areas into Marine Protected Areas (MPAs). In this study, we present a spatial modelling framework using regression-based approaches to identify suitable habitats for these four species. Results show that suitable habitats of the spotted ray (25.8%) and spurdog (18.8%) are relatively well represented within existing MPAs, while those of the deep-water sharks are underrepresented (6.0% for leafscale gulper shark, and 6.8% for Portuguese dogfish). Our findings highlight the need for additional MPAs in deep-sea continental slope areas, particularly west and northwest of Scotland and Ireland. Such expansions would support OSPAR’s goal to protect 30% of its maritime area by 2030 and could benefit broader deep-sea biodiversity, including other vulnerable demersal species and benthic communities. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation of Fishes)
Show Figures

Figure 1

21 pages, 10626 KiB  
Article
Comparative Metabolomic Analysis Reveals Tissue- and Species-Specific Differences in the Abundance of Dammarane-Type Ginsenosides in Three Panax Species
by Shu He, Ying Gong, Shuangfei Deng, Yaquan Dou, Junmin Wang, Hoang Van Sam, Xingliang Chen, Xiahong He and Rui Shi
Horticulturae 2025, 11(8), 916; https://doi.org/10.3390/horticulturae11080916 (registering DOI) - 5 Aug 2025
Abstract
The genus Panax contains traditional herbs that have been widely used in traditional medicine. The active constituents, collectively known as ginsenosides, are well characterized in the most representative species, P. notoginseng. However, the major bioactive chemical constituents of P. stipuleanatus together with [...] Read more.
The genus Panax contains traditional herbs that have been widely used in traditional medicine. The active constituents, collectively known as ginsenosides, are well characterized in the most representative species, P. notoginseng. However, the major bioactive chemical constituents of P. stipuleanatus together with P. vietnamensis are relatively less studied. In this study, an untargeted metabolomic analysis was performed in P. notoginseng, P. stipuleanatus, and P. vietnamensis using root and leaf organs. Further metabolomic differences in P. stipuleanatus were compared with those of the two most prevalent species. The analysis results revealed tissue-specific qualitative and quantitative metabolic differences in each species. Several differentially accumulated metabolites were enriched in the biosynthesis of secondary metabolites, including the biosynthesis of ginsenosides I. The ginsenosides Rb1, Rf, Rg1, Rh1, Rh8, and notoginsenosides E, M, and N had a higher abundance level in the roots of both P. notoginseng and P. vietnamensis. In P. stipuleanatus, the accumulation of potentially important ginsenosides is mainly found in the leaf. In particular, the dammarane-type ginsenosides Rb3, Rb1, Mx, and F2 as well as the notoginsenosides A, Fe, Fa, Fd, L, and N were identified to have a higher accumulation in the leaf. The strong positive correlation network of different ginsenosides probably enhanced secondary metabolism in each species. The comparative analysis revealed a significant differential accumulation of metabolites in the leaves of both species. The various compounds of dammarane-type ginsenoside, such as Rb1, Rg1, Rg6, Rh8, Rh10, Rh14, and majoroside F2, had a significantly higher concentration level in the leaves of P. stipuleanatus. In addition, several notoginsenoside compounds such as A, R1, Fe, Fd, and Ft1 showed a higher abundance in the leaf. These results show that the abundance level of major ginsenosides is significant in P. stipuleanatus and provides an important platform to improve the ginsenoside quality of Panax species. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

14 pages, 3622 KiB  
Article
Environmental DNA Metabarcoding as a Tool for Fast Fish Assessment in Post-Cleanup Activities: Example from Two Urban Lakes in Zagreb, Croatia
by Matej Vucić, Thomas Baudry, Dušan Jelić, Ana Galov, Željko Pavlinec, Lana Jelić, Biljana Janev Hutinec, Göran Klobučar, Goran Slivšek and Frédéric Grandjean
Fishes 2025, 10(8), 375; https://doi.org/10.3390/fishes10080375 - 4 Aug 2025
Viewed by 30
Abstract
This study evaluated the effectiveness of eDNA metabarcoding in assessing fish communities in two urban lakes (First Lake and Second Lake) in Zagreb, Croatia, following IAS removal. Water samples were collected in April and June 2024 and analyzed using MiFish primers targeting the [...] Read more.
This study evaluated the effectiveness of eDNA metabarcoding in assessing fish communities in two urban lakes (First Lake and Second Lake) in Zagreb, Croatia, following IAS removal. Water samples were collected in April and June 2024 and analyzed using MiFish primers targeting the 12S rRNA gene. The results indicated that the cleanup efforts were largely successful, as several IAS previously recorded in these lakes were not detected (Ameiurus melas, Lepomis gibbosus, and Hypophthalmichthys spp.). However, some others persisted in low relative abundances, such as grass carp (Ctenopharyngodon idella), topmouth gudgeon (Pseudorasbora parva), and prussian/crucian carp (Carassius sp.). Species composition differed between lakes, with common carp (Cyprinus carpio) dominating Maksimir First Lake, while chub (Squalius cephalus) was prevalent in Maksimir Second Lake. Unexpected eDNA signals from salmonid and exotic species suggest potential input from upstream sources, human activity, or the nearby Zoo Garden. These findings underscore the utility of eDNA metabarcoding in biodiversity monitoring and highlight the need for continuous surveillance and adaptive management strategies to ensure long-term IAS control. Full article
Show Figures

Figure 1

17 pages, 3099 KiB  
Article
Assessment of Fish Community Structure and Invasion Risk in Xinglin Bay, China
by Shilong Feng, Xu Wang, Liangmin Huang, Jiaqiao Wang, Lin Lin, Jun Li, Guangjie Dai, Qianwen Cai, Haoqi Xu, Yapeng Hui and Fenfen Ji
Biology 2025, 14(8), 988; https://doi.org/10.3390/biology14080988 (registering DOI) - 4 Aug 2025
Viewed by 164
Abstract
A total of 32 fish species were detected in Xinglin Bay using a combination of environmental DNA metabarcoding (eDNA) and traditional morphological survey methods (TSM), covering eight orders, fifteen families, and twenty-six genera. The dominant order was Perciformes, accounting for 43.75% of the [...] Read more.
A total of 32 fish species were detected in Xinglin Bay using a combination of environmental DNA metabarcoding (eDNA) and traditional morphological survey methods (TSM), covering eight orders, fifteen families, and twenty-six genera. The dominant order was Perciformes, accounting for 43.75% of the total species. Among the identified species, there were ten non-native fish species. Compared with the TSM, the eDNA detected 13 additional fish species, including two additional non-native fish species—Gambusia affinis (Baird and Girard, 1853) and Micropterus salmoides (Lacepède, 1802). In addition, the relative abundance of fish from both methods revealed that tilapia was overwhelmingly dominant, accounting for 80.75% and 75.68%, respectively. Furthermore, the AS-ISK assessment revealed that all non-native fish species were classified as medium or high-risk, with five identified as high-risk species, four of which belong to tilapia. These findings demonstrated that tilapia are the dominant and high-risk invasive species in Xinglin Bay and should be prioritized for management. Population reduction through targeted harvesting of tilapia is recommended as the primary control strategy. Additionally, the study highlights the effectiveness of eDNA in monitoring fish community structure in brackish ecosystems. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Figure 1

15 pages, 1685 KiB  
Article
Wildfires and Palm Species Response in a Terra Firme Amazonian Social Forest
by Tinayra T. A. Costa, Vynicius B. Oliveira, Maria Fabíola Barros, Fernando W. C. Andrade, Marcelo Tabarelli and Ima C. G. Vieira
Forests 2025, 16(8), 1271; https://doi.org/10.3390/f16081271 - 3 Aug 2025
Viewed by 186
Abstract
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during [...] Read more.
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during wildfires. Palms (≥50 cm height) were recorded once in 2023–2024, across four habitat classes: terra firme old-growth stands, regenerating forest stands associated with slash-and-burn agriculture, old-growth stands burned once and twice, and active cassava fields, in the Tapajós-Arapiuns Extractive Reserve, in the eastern Brazilian Amazon. The flammability of palm leaf litter and forest litter were also examined to assess the potential connections between palm proliferation and wildfires. A total of 10 palm species were recorded in this social forest (including slash-and-burn agriculture and resulting successional mosaics), with positive, negative, and neutral responses to land use. Species richness did not differ among forest habitats, but absolute palm abundance was greatest in disturbed habitats. Only Attalea spectabilis Mart. (curuá) exhibited increased relative abundance across disturbed habitats, including active cassava field. Attalea spectabilis accounted for almost 43% of all stems in the old-growth forest, 89% in regenerating forests, 90% in burned forests, and 79% in crop fields. Disturbed habitats supported a five-to-ten-fold increment in curuá leaves as a measure of habitat flammability. Although curuá litter exhibited lower flame temperature and height, its lower carbon and higher volatile content is expected to be more sensitive to fire ignition and promote the spread of wildfires. The conversion of old-growth forests into social forests promotes the establishment of palm-dominated forests, increasing the potential for a forest transition further fueled by wildfires, with effects on forest resilience and social reproduction still to be understood. Full article
(This article belongs to the Special Issue Ecosystem-Disturbance Interactions in Forests)
Show Figures

Figure 1

14 pages, 2128 KiB  
Article
Correlation Measures in Metagenomic Data: The Blessing of Dimensionality
by Alessandro Fuschi, Alessandra Merlotti, Thi Dong Binh Tran, Hoan Nguyen, George M. Weinstock and Daniel Remondini
Appl. Sci. 2025, 15(15), 8602; https://doi.org/10.3390/app15158602 (registering DOI) - 2 Aug 2025
Viewed by 174
Abstract
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the [...] Read more.
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the quantification of microbial taxa and their dynamics. In the study of bacterial abundances, it is becoming more relevant to consider their relationship, to embed these data in the framework of network theory, allowing characterization of features like node relevance, pathways, and community structure. In this study, we address the primary biases encountered in reconstructing networks through correlation measures, particularly in light of the compositional nature of the data, within-sample diversity, and the presence of a high number of unobserved species. These factors can lead to inaccurate correlation estimates. To tackle these challenges, we employ simulated data to demonstrate how many of these issues can be mitigated by applying typical transformations designed for compositional data. These transformations enable the use of straightforward measures like Pearson’s correlation to correctly identify positive and negative relationships among relative abundances, especially in high-dimensional data, without having any need for further corrections. However, some challenges persist, such as addressing data sparsity, as neglecting this aspect can result in an underestimation of negative correlations. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Data Analysis)
Show Figures

Figure 1

22 pages, 2868 KiB  
Article
Impact of Heat Stress on Rumen Fermentation Patterns and Microbiota Diversity and Its Association with Thermotolerance in Indigenous Goats
by Mullakkalparambil Velayudhan Silpa, Veerasamy Sejian, Chinnasamy Devaraj, Artabandhu Sahoo and Raghavendra Bhatta
Fermentation 2025, 11(8), 450; https://doi.org/10.3390/fermentation11080450 - 1 Aug 2025
Viewed by 163
Abstract
Goats are considered to be the ideal climate-resilient animal species in the tropics. Fewer studies are documented assessing the heat stress response of caprine ruminal microbiota, which can also be a crucial indicator of the resilience and/or adaptability of animals. This study was [...] Read more.
Goats are considered to be the ideal climate-resilient animal species in the tropics. Fewer studies are documented assessing the heat stress response of caprine ruminal microbiota, which can also be a crucial indicator of the resilience and/or adaptability of animals. This study was conducted to comparatively assess the heat stress responses of two indigenous goat breeds, Nandidurga and Bidri, based on changes associated with the rumen fermentation pattern and distribution pattern of rumen microbiota. A total of 24 adult animals were randomly allocated into four groups of six animals each, NC (n = 6; Nandidurga control), NHS (n = 6; Nandidurga heat stress), BC (n = 6; Bidri control) and BHS (n = 6; Bidri heat stress). The animals were reared in climate chambers for a duration of 45 days wherein the NC and BC animals were maintained under thermoneutral temperature while the NHS and BHS animals were subjected to simulated heat stress. Heat stress was observed to significantly reduce the rumen ammonia, extracellular CMCase, intracellular carboxy methyl cellulase (CMCase) and total CMCase both in Nandidurga and Bidri goats. In addition to this, a significant reduction in acetate, propionate and total volatile fatty acids (VFAs) was observed in Nandidurga goats. The V3–V4 16s rRNA sequencing further revealed a significant alteration in the rumen microbiota in heat-stressed Nandidurga and Bidri goats. While both the breeds exhibited nearly similar responses in the rumen microbial abundance levels due to heat stress, breed-specific differences were also observed. Furthermore, the LEFSe analysis revealed a significant alteration in the abundances of microbes at the genus level, which were observed to be relatively greater in Bidri goats than Nandidurga goats. Furthermore, these alterations were predicted to impair the functional pathways, especially pathways associated with metabolism. This study therefore provided an insight into the rumen microbial dynamics in heat-stressed goats. Though both the breeds exhibited excellent resilience to the subjected heat stress, there were relatively less ruminal alterations in Nandidurga goats than in Bidri goats. Full article
(This article belongs to the Special Issue Research Progress of Rumen Fermentation)
Show Figures

Figure 1

20 pages, 3604 KiB  
Article
Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems
by Qiuyue Zhao, Xiaolei Cao, Lu Zhang, Xin Hu, Xiaojian Zeng, Yingming Wei, Dongbin Zhang, Xin Xiao, Hui Xi and Sifeng Zhao
Microorganisms 2025, 13(8), 1806; https://doi.org/10.3390/microorganisms13081806 - 1 Aug 2025
Viewed by 205
Abstract
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. [...] Read more.
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili–cotton crop rotation (CR) using high-throughput sequencing technology. CR treatment reduced the alpha diversity indices (including Chao1, Observed_species, and Shannon index) of bacterial communities and had less of an effect on fungal community diversity. Principal component analysis (PCA) revealed distinct compositional differences in bacterial and fungal communities between the treatments. Compared with CC, CR treatment has altered the structure of the soil microbial community. In terms of bacterial communities, the relative abundance of Firmicutes increased from 12.89% to 17.97%, while the Proteobacteria increased by 6.8%. At the genus level, CR treatment significantly enriched beneficial genera such as RB41 (8.19%), Lactobacillus (4.56%), and Bacillus (1.50%) (p < 0.05). In contrast, the relative abundances of Alternaria and Fusarium in the fungal community decreased by 6.62% and 5.34%, respectively (p < 0.05). Venn diagrams and linear discriminant effect size analysis (LEfSe) further indicated that CR facilitated the enrichment of beneficial bacteria, such as Bacillus, whereas CC favored enrichment of pathogens, such as Firmicutes. Fusarium solani MG6 and F. oxysporum LG2 are the primary chili root-rot pathogens. Optimal growth occurs at 25 °C, pH 6: after 5 days, MG6 colonies reach 6.42 ± 0.04 cm, and LG2 5.33 ± 0.02 cm, peaking in sporulation (p < 0.05). In addition, there are significant differences in the utilization spectra of carbon and nitrogen sources between the two strains of fungi, suggesting their different ecological adaptability. Integrated analyses revealed that CR enhanced soil health and reduced the root rot incidence by optimizing the structure of soil microbial communities, increasing the proportion of beneficial bacteria, and suppressing pathogens, providing a scientific basis for microbial-based soil management strategies in chili cultivation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

8 pages, 405 KiB  
Brief Report
Characterization of DNA Viruses in Hindgut Contents of Protaetia brevitarsis Larvae
by Jean Geung Min, Namkyong Min, Binh T. Nguyen, Rochelle A. Flores and Dongjean Yim
Insects 2025, 16(8), 800; https://doi.org/10.3390/insects16080800 - 1 Aug 2025
Viewed by 219
Abstract
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in [...] Read more.
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in animal health and homeostasis. We previously conducted a comparative analysis of the gut microbiota of third-instar larvae of P. brevitarsis obtained from five different farms and found significant differences in the composition of the gut bacterial microbiota between farms. To better understand the gut microbiota, the composition of DNA viruses in the hindgut contents of P. brevitarsis larvae obtained from five farms was investigated using metagenomic sequencing in this study. The β-diversity was significantly different between metagenomic data obtained from the five farms (PERMANOVA, pseudo-F = 46.95, p = 0.002). Family-based taxonomic analysis indicated that the relative abundance of viruses in the gut overall metagenome varied significantly between farms, with viral reads comprising approximately 41.2%, 15.0%, 4.3%, 4.0%, and 1.6% of metagenomic sequences from the farms Tohamsan gumbengi farm (TO), Secomnalagum gumbengi (IS), Gumbengi brothers (BR), Kyungpook farm (KB), and Jhbio (JH), respectively. More than 98% of the DNA viruses in the hindgut were bacteriophages, mainly belonging to the Siphoviridae family. At the species level, Phage Min1, infecting the genus Microbacterium, was detected in all farms, and it was the most abundant bacteriophage in intestinal microbiota, with a prevalence of 0.9% to 29.09%. The detected eukaryotic DNA viruses accounted for 0.01% to 0.06% of the intestinal microbiota and showed little or no relationship with insect viruses. Therefore, they most likely originated from contaminated feed or soil. These results suggest that the condition of substrates used as feed is more important than genetic factors in shaping the intestinal viral microbiota of P. brevitarsis larvae. These results can be used as reference data for understanding the hindgut microbiota of P. brevitarsis larvae and, more generally, the gut virome of insects. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

18 pages, 1618 KiB  
Article
Native Grass Enhances Bird, Dragonfly, Butterfly and Plant Biodiversity Relative to Conventional Crops in Midwest, USA
by Steven I. Apfelbaum, Susan M. Lehnhardt, Michael Boston, Lea Daly, Gavin Pinnow, Kris Gillespie and Donald M. Waller
Agriculture 2025, 15(15), 1666; https://doi.org/10.3390/agriculture15151666 - 1 Aug 2025
Viewed by 178
Abstract
Conspicuous declines in native grassland habitats have triggered sharp reductions in grassland birds, dragonflies, butterflies, and native plant populations and diversity. We compared these biotic groups among three crop type treatments: corn, alfalfa, and a perennial native grass, Virginia wild rye, (Elymus [...] Read more.
Conspicuous declines in native grassland habitats have triggered sharp reductions in grassland birds, dragonflies, butterflies, and native plant populations and diversity. We compared these biotic groups among three crop type treatments: corn, alfalfa, and a perennial native grass, Virginia wild rye, (Elymus virginicus L.) or VWR. This crop type had 2-3X higher bird, dragonfly, butterfly and plant species richness, diversity, and faunal abundance relative to alfalfa and corn types. VWR crop fields also support more obligate grassland bird species and higher populations of dragonfly and butterfly species associated with grasslands and wet meadows. In contrast, the corn and alfalfa types support few or no obligatory grassland birds and mostly non-native insects such as the white cabbage looper (Artogeia rapae L.), the common yellow sulfur butterfly (Colias philodice Godart.), and the mobile and migratory common green darner dragonfly (Anax junius Drury.). In sum, the VWR perennial native grass crop type offers a special opportunity to improve the diversity and abundance of grassland bird species, beneficial insect species, and many native plant species within agricultural landscapes. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

17 pages, 1200 KiB  
Article
Biochar-Mediated Effects on Changes in Soil Quality and Microbial Communities
by Mingyu Wu, Mengyuan Wang, Wenxuan Shi, Qian Zhang, Tengfei Guo, Peipei Li, Yanlai Han and Hui Li
Agronomy 2025, 15(8), 1861; https://doi.org/10.3390/agronomy15081861 - 31 Jul 2025
Viewed by 147
Abstract
In a greenhouse experiment, we examined the behavior of biochar in arable soil to demonstrate that these supplements can boost soil carbon storage, as well as to track changes in microbial biomass and identify the microbial communities that use these biochars. In order [...] Read more.
In a greenhouse experiment, we examined the behavior of biochar in arable soil to demonstrate that these supplements can boost soil carbon storage, as well as to track changes in microbial biomass and identify the microbial communities that use these biochars. In order to ascertain if biochar can consistently alter soil microbial activities, we studied the impact of biochar combination treatments on 16S rRNA gene diversity. In soil treated with biochar, there was a rise in the relative abundance of taxa belonging to the phyla Actinobacteria and Gemmatimonadetes, despite the overall diversity decreasing with biochar addition. According to all of these observations, pyrogenic carbon has a major effect on the composition of the soil microbial community and enriches keystone taxa within the parent soil microbial community. Certain species experienced increases throughout the biochar-amended incubation period, despite the total diversity declining following biochar amendments. The phyla Actinobacteria and Gemmatimonadetes increased in the relative abundance of bacteria in soil treated with biochar, according to DNA sequencing of these species. In summary, these findings show that biochar significantly impacts the constitution and composition of the soil microbial community and enriches important taxa within the parent soil microbial community. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 3217 KiB  
Article
Microbiome of the Proximal Small Intestine in Patients with Acute Pancreatitis
by Vladimir V. Kiselev, Stanislav I. Koshechkin, Alexey V. Kurenkov, Vera E. Odintsova, Maria S. Zhigalova, Alekxandr V. Tyakht, Sergey S. Petrikov, Petr A. Yartsev and Ilya V. Dmitriev
Diagnostics 2025, 15(15), 1911; https://doi.org/10.3390/diagnostics15151911 - 30 Jul 2025
Viewed by 263
Abstract
Currently, due to the complexity of obtaining samples, specific features of laboratory processing and analysis of the results, there is a lack of data on the microbial signature of the small intestine in healthy and diseased states of the upper gastrointestinal tract. Objective: [...] Read more.
Currently, due to the complexity of obtaining samples, specific features of laboratory processing and analysis of the results, there is a lack of data on the microbial signature of the small intestine in healthy and diseased states of the upper gastrointestinal tract. Objective: To investigate the characteristics of the small intestinal microbiome in acute pancreatitis of varying severity and to identify correlations with clinical factors. Methods: This study included 30 patients with acute pancreatitis of varying severity treated between 1 January 2019 and 31 December 2021. The composition of the microbiota was analyzed by metagenomic sequencing of the 16S rRNA gene from jejunal samples. Results: The mortality rate in the study group was 23.3%. The small intestinal microbiome was dominated by Streptococcus (median relative abundance 19.2%, interquartile range 6.4–35.1%), Veillonella (3.4%; 0.6–7%), Granulicatella (2.7%; 0.6–5%), Fusobacterium (2.2%; 0.3–5.9%), Prevotella (1.5%; 0.3–8%), Haemophilus (0.9%; 0.2–10%), Gemella (0.8%; 0.2–4.3%), and Lactobacillus (0.2%; 0.1–0.9%). More severe disease was associated with decreased abundance of Neisseria mucosa, Parvimonas micra, and Megasphaera micronuciformis. In contrast, the relative abundance of the genera Streptococcus (species S. rubneri/parasanguinis/australis), Actinomyces, and several genera within the family Enterobacteriaceae was higher in these patients. Conclusions: The state of the microbiota has important prognostic value and correlates with the duration from the onset of the pain syndrome to the time of receiving qualified care in the hospital. Full article
Show Figures

Figure 1

25 pages, 13635 KiB  
Article
Microplastics in Nearshore and Subtidal Sediments in the Salish Sea: Implications for Marine Habitats and Exposure
by Frances K. Eshom-Arzadon, Kaitlyn Conway, Julie Masura and Matthew R. Baker
J. Mar. Sci. Eng. 2025, 13(8), 1441; https://doi.org/10.3390/jmse13081441 - 28 Jul 2025
Viewed by 367
Abstract
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems [...] Read more.
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems and the extent to which this pollutant is accessible to marine taxa. We examined subtidal benthic sediments and beach sediments in critical nearshore habitats for forage fish species—Pacific sand lance (Ammodytes personatus), Pacific herring (Clupea pallasi), and surf smelt (Hypomesus pretiosus)—to quantify microplastic concentrations in the spawning and deep-water habitats of these fish and better understand how microplastics accumulate and distribute in nearshore systems. In the San Juan Islands, we examined an offshore subtidal bedform in a high-flow channel and beach sites of protected and exposed shorelines. We also examined 12 beach sites proximate to urban areas in Puget Sound. Microplastics were found in all samples and at all sample sites. Microfibers were the most abundant, and flakes were present proximate to major shipyards and marinas. Microplastics were significantly elevated in Puget Sound compared to the San Juan Archipelago. Protected beaches had elevated concentrations relative to exposed beaches and subtidal sediments. Microplastics were in higher concentrations in sand and fine-grain sediments, poorly sorted sediments, and artificial sediments. Microplastics were also elevated at sites confirmed as spawning habitats for forage fish. The model results indicate that both current speed and proximate urban populations influence nearshore microplastic concentrations. Our research provides new insights into how microplastics are distributed, deposited, and retained in marine sediments and shorelines, as well as insight into potential exposure in benthic, demersal, and shoreline habitats. Further analyses are required to examine the relative influence of urban populations and shipping lanes and the effects of physical processes such as wave exposure, tidal currents, and shoreline geometry. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Figure 1

18 pages, 4241 KiB  
Article
Distribution Patterns and Assembly Mechanisms of Rhizosphere Soil Microbial Communities in Schisandra sphenanthera Across Altitudinal Gradients
by Weimin Li, Luyao Yang, Xiaofeng Cong, Zhuxin Mao and Yafu Zhou
Biology 2025, 14(8), 944; https://doi.org/10.3390/biology14080944 - 27 Jul 2025
Viewed by 246
Abstract
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 [...] Read more.
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 m (HB3), and 1500 m (HB4). High-throughput sequencing and molecular ecological network analysis were employed to analyze the microbial community composition and species interactions. A null model was applied to elucidate community assembly mechanisms. The results demonstrated that bacterial communities were dominated by Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. The relative abundance of Proteobacteria increased with elevation, while that of Acidobacteriota and Actinobacteriota declined. Fungal communities were primarily composed of Ascomycota and Basidiomycota, with both showing elevated relative abundances at higher altitudes. Diversity indices revealed that HB2 exhibited the highest bacterial Chao, Ace, and Shannon indices but the lowest Simpson index. For fungi, HB3 displayed the highest Chao and Ace indices, whereas HB4 showed the highest Shannon index and the lowest Simpson index. Ecological network analysis indicated stronger bacterial competition at lower elevations and enhanced cooperation at higher elevations, contrasting with fungal communities that exhibited increased competition at higher altitudes. Altitude and soil nutrients were negatively correlated with soil carbon content, while plant nutrients and fungal diversity positively correlated with soil carbon. Null model analysis suggested that deterministic processes dominated bacterial community assembly, whereas stochastic processes governed fungal assembly. These findings highlight significant altitudinal shifts in the microbial community structure and assembly mechanisms in S. sphenanthera rhizosphere soils, driven by the synergistic effects of soil nutrients, plant growth, and fungal diversity. This study provides critical insights into microbial ecology and carbon cycling in alpine ecosystems, offering a scientific basis for ecosystem management and conservation. Full article
(This article belongs to the Section Ecology)
Show Figures

Graphical abstract

19 pages, 1230 KiB  
Article
Bioactive Potential of Rheum cordatum Losinsk. Leaf Extracts: Phytochemical Insights from Supercritical CO2, Subcritical Ethanol and Ultrasound-Assisted Extractions
by Madina Amangeldinova, Mehmet Ersatır, Pınar Küce Cevik, Mustafa Abdullah Yilmaz, Oguz Cakır, Nataliya Kudrina, Aizhan Mussayeva, Timur Kulmanov, Nina Terletskaya and Metin Yildirim
Plants 2025, 14(15), 2314; https://doi.org/10.3390/plants14152314 - 26 Jul 2025
Viewed by 302
Abstract
Rheum cordatum Losinsk is a plant species distributed in Kazakhstan but remains relatively understudied despite its promising biological potential. The present study aimed to explore leaf extracts of R. cordatum by utilizing advanced green extraction technologies including supercritical CO2 (ScCO2), [...] Read more.
Rheum cordatum Losinsk is a plant species distributed in Kazakhstan but remains relatively understudied despite its promising biological potential. The present study aimed to explore leaf extracts of R. cordatum by utilizing advanced green extraction technologies including supercritical CO2 (ScCO2), subcritical ethanol (Sc) and ultrasound-assisted extraction (UAE) to characterize their phytochemical composition and evaluate their antioxidant and antimicrobial activities. A total of 53 phytochemical compounds were identified, with gallic acid (30.71 µg/mg UAE-EtOH-4h), rutin (21.93 µg/mg ScCO2-150) and hesperidin (14.98 µg/mg ScCO2-150) being notably abundant. Among the tested extracts, ScCO2 extraction at 150 bar (ScCO2-150) demonstrated the highest antioxidant activity, exhibiting IC50 values of 0.0132 mg/mL (DPPH) and 0.0462 mg/mL (ABTS), coupled with the highest total phenolic content (140 mg GAE/g). Moreover, the ScCO2-150 extract showed pronounced antimicrobial efficacy, particularly against Bacillus subtilis Pseudomonas aeruginosa and Staphylococcus aureus, with minimum inhibitory concentrations (MIC) ranging from 125 to 250 µg/mL. These findings highlight the considerable potential of R. cordatum leaves as a valuable, abundant and sustainable source of natural antioxidants and antimicrobial agents, with supercritical CO2 extraction presenting substantial advantages in selectively obtaining bioactive phytochemicals. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

Back to TopTop