Bioactive Potential of Rheum cordatum Losinsk. Leaf Extracts: Phytochemical Insights from Supercritical CO2, Subcritical Ethanol and Ultrasound-Assisted Extractions
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction Methods
2.2.1. Ultrasound-Assisted Extraction (UAE)
2.2.2. Subcritical Ethanol Extraction (Sc)
2.2.3. Supercritical CO2 Extraction (ScCO2)
2.3. Phytochemical Analysis by LC-MS/MS
2.4. Antioxidant Activity Assays
2.4.1. DPPH Radical Scavenging Assay
2.4.2. ABTS Radical Scavenging Assay
2.4.3. Total Phenolic Content (TPC)
2.5. Antimicrobial Activity
2.5.1. Microorganism Cultivation
2.5.2. Agar Well Diffusion Assay
2.5.3. Determination of MIC and MBC
2.6. Biofilm Inhibition Assay
3. Results
3.1. Extraction Yield and Efficiency
3.2. Phytochemical Profiling by LC-MS/MS
3.3. Antioxidant Activity
3.4. Antibacterial and Antibiofilm Activity of Rheum cordatum Losinsk. Leaf Extracts
3.4.1. Inhibition Zone Assay
3.4.2. Minimum Inhibitory and Bactericidal Concentrations (MICs/MBCs)
3.4.3. Biofilm Inhibition Concentration
4. Discussion
4.1. Phytochemical Composition and the Impact of Extraction Methods
4.2. Antioxidant Activity
4.3. Antimicrobial and Antibiofilm Activities of the Extracts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiang, H.; Zuo, J.; Guo, F.; Dong, D. What we already know about rhubarb: A comprehensive review. Chin. Med. 2020, 15, 88. [Google Scholar] [CrossRef]
- Gemedzhieva, N.G.; Sayakova, G.M.; Zhumashova, G.T. Обзoр сoвременнoгo сoстoяния изученнoсти казахстанских видoв Rheum L. (Polygonaceae Juss.). Фармация Казахстана 2015, 4, 41–47. Available online: https://elibrary.ru/item.asp?id=36424757 (accessed on 15 May 2024).
- Losina-Losinskaya, A.S. The genus Rheum and its species. Acta Instituti Bot. Acad. Sci. URSS 1936, 1, 5–141. [Google Scholar]
- Sun, Y.; Wang, A.; Wan, D.; Wang, Q.; Liu, J. Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits. Mol. Phylogenetics Evol. 2012, 63, 150–158. [Google Scholar] [CrossRef]
- Zhuang, T.; Gu, X.; Zhou, N.; Ding, L.; Yang, L.; Zhou, M. Hepatoprotection and hepatotoxicity of Chinese herb Rhubarb (Dahuang): How to properly control the “General (Jiang Jun)” in Chinese medical herb. Biomed. Pharmacother. 2020, 127, 110231. [Google Scholar] [CrossRef]
- Su, S.; Wu, J.; Gao, Y.; Luo, Y.; Yang, D.; Wang, P. The pharmacological properties of chrysophanol: Recent advances. Biomed. Pharmacother. 2020, 121, 109610. [Google Scholar] [CrossRef]
- Takayama, K.; Tsutsumi, H.; Ishizu, T.; Okamura, N. The influence of Rhein 8-O-β-D-glucopyranoside on the purgative action of sennoside A from rhubarb in mice. Biol. Pharm. Bull. 2012, 35, 2204–2208. [Google Scholar] [CrossRef]
- Yang, L.; Wan, Y.; Li, W.; Liu, C.; Li, H.-F.; Dong, Z.; Zhu, K.; Jiang, S.; Shang, E.; Qian, D.; et al. Targeting intestinal flora and its metabolism to explore the laxative effects of rhubarb. Appl. Microbiol. Biotechnol. 2022, 106, 1615–1631. [Google Scholar] [CrossRef]
- Shan, S.; Tu, J.; Nie, P.; Yan, X. Bioinformatics analysis on molecular mechanism of Rheum officinale in treatment of jaundice. AIP Conf. Proc. 2017, 1794, 050001. [Google Scholar] [CrossRef]
- Liu, S.; Shu, L.; Yang, J.; Liu, Y.; Zhang, S.; Wang, N.; Shi, Z. Rhein exhibits anti-inflammatory effects in chronic atrophic gastritis via Nrf2 and MAPK signaling. Turk. J. Gastroenterol. 2023, 34, 525–532. [Google Scholar] [CrossRef]
- Chen, H.; Gong, Y.; Huang, Z.; Zhao, G.; Chen, Z.; Zen, Y.; Li, H.; Hu, Y. Efficacy and safety of Chinese herbal medicine Qirui Weishu capsule in treating chronic non-atrophic gastritis: A multicentre, double-blind, randomized controlled trial. J. Ethnopharmacol. 2022, 293, 115270. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, F.; Li, A.; He, Z.; Qu, C.; He, C.; Ma, X.; Zhan, H. The progress and prospect of natural components in rhubarb (Rheum ribes L.) in the treatment of renal fibrosis. Front. Pharmacol. 2022, 13, 919967. [Google Scholar] [CrossRef]
- Liudvytska, O.; Bandyszewska, M.; Skirecki, T.; Krzyżanowska-Kowalczyk, J.; Kowalczyk, M.; Kolodziejczyk-Czepas, J. Anti-inflammatory and antioxidant actions of extracts from Rheum rhaponticum and Rheum rhabarbarum in human blood plasma and cells in vitro. Biomed. Pharmacother. 2023, 165, 115111. [Google Scholar] [CrossRef]
- Liudvytska, O.; Ponczek, M.B.; Ciesielski, O.; Krzyżanowska-Kowalczyk, J.; Kowalczyk, M.; Balcerczyk, A.; Kolodziejczyk-Czepas, J. Rheum rhaponticum and Rheum rhabarbarum extracts as modulators of endothelial cell inflammatory response. Nutrients 2023, 15, 949. [Google Scholar] [CrossRef]
- Lee, H.-H.; Yu, J.-K.; Moon, Y.-S. Antioxidant and anti-inflammatory activities of different parts of rhubarb (Rheum rhabarbarum) compared with Da Huang root (R. officinale). Korean J. Food Preserv. 2022, 29, 186–195. [Google Scholar] [CrossRef]
- Yang, W.-T.; Ke, C.-Y.; Wu, W.-T.; Tseng, Y.-H.; Lee, R.-P. Antimicrobial and anti-inflammatory potential of Angelica dahurica and Rheum officinale extract accelerates wound healing in Staphylococcus aureus-infected mice. Sci. Rep. 2020, 10, 5523. [Google Scholar] [CrossRef]
- Amirkhosravi, A.; Mehrabani, M.; Fooladi, S.; Norouzmahani, M.-E.; Vasei, S.; Mir, Y.; Malekoladi, Z.; Faramarz, S.; Nematollahi, M.H.; Mehrabani, M. Rheum khorasanicum hydroalcoholic root extract induces cell death in human colorectal adenocarcinoma: An in vitro and in silico study. Ann. Pharm. francaises 2024, 82, 685–697. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Li, R.; Zhao, R.; Zhang, M.; Wei, S.; Ran, D.; Jin, W.; Wu, C. A network pharmacology approach to investigate the anticancer mechanism and potential active ingredients of Rheum palmatum L. against lung cancer via induction of apoptosis. Front. Pharmacol. 2020, 11, 528308. [Google Scholar] [CrossRef]
- Noori, S.; Kiasat, A.R.; Kolahi, M.; Mirzajani, R.; Nejad, S.M.S. Determination of secondary metabolites including curcumin in Rheum ribes L. and surveying of its antioxidant and anticancer activity. J. Saudi Chem. Soc. 2022, 26, 101479. [Google Scholar] [CrossRef]
- Yildirim, M.; Değirmenci, U.; Akkapulu, M.; Berköz, M. The Effect of Rheum ribes L. Extract on Oxidative Stress in Heart Tissue of Diabetic Rats. CAB Abstracts. 2020. Available online: https://www.cabidigitallibrary.org/doi/10.5555/20210064275 (accessed on 4 February 2025).
- Agarwal, S.K.; Singh, S.S.; Lakshmi, V.; Verma, S.; Kumar, S. Chemistry and pharmacology of rhubarb (Rheum species): A review. J. Sci. Ind. Res. 2001, 60, 1–9. [Google Scholar]
- Cao, Y.-J.; Pu, Z.-J.; Tang, Y.-P.; Shen, J.; Chen, Y.-Y.; Kang, A.; Zhou, G.-S.; Duan, J.-A. Advances in bioactive constituents, pharmacology and clinical applications of rhubarb. Chin. Med. 2017, 12, 36. [Google Scholar] [CrossRef]
- Байтенoв, М.С. Флoра Казахстана в 2-х тoмах. Тoм 2. Рoдoвoй кoмплекс флoры. Алматы Ғылым 2001. [Google Scholar]
- Sumbembayev, A.A.; Lagus, O.A.; Nowak, S. Seed morphometry of Rheum L. (Polygonaceae) species from Kazakhstan and its implications in taxonomy and species identification. Biodiversitas J. Biol. Divers. 2023, 24, 1467–1475. [Google Scholar] [CrossRef]
- Abdulina, S.A. Checklist of Vascular Plants of Kazakhstan; Ministry of Science, Academy of Sciences of the Republic of Kazakhstan, Institute of Botany and Phytointroduction: Almaty, Kazakhstan, 1999. [Google Scholar]
- Committee for Forestry and Wildlife of the Ministry of Agriculture of the Republic of Kazakhstan. The Red Book of Kazakhstan, 2nd ed.; revised and supplemented; Committee for Forestry and Wildlife of the Ministry of Agriculture of the Republic of Kazakhstan: Astana, Kazakhstan, 2014; Volume 2. [Google Scholar]
- Zhumashova, G.; Kukula-Koch, W.; Koch, W.; Baj, T.; Sayakova, G.; Shukirbekova, A.; Głowniak, K.; Sakipova, Z. Phytochemical and antioxidant studies on a rare Rheum cordatum Losinsk. species from Kazakhstan. Oxidative Med. Cell Longev. 2019, 2019, 5465463. [Google Scholar] [CrossRef]
- Amangeldinova, M.; Ersatır, M.; Necip, A.; Yilmaz, M.A.; Cimentepe, M.; Kudrina, N.; Terletskaya, N.V.; Cimentepe, O.O.; Yildirim, M. Simultaneous quantitative screening of 53 phytochemicals from Rheum tataricum L. roots: A comparative study of supercritical CO2, subcritical ethanol, and ultrasound-assisted extraction. Front. Plant Sci. 2024, 15, 1513875. [Google Scholar] [CrossRef]
- Amangeldinova, M.; Ersatır, M.; Necip, A.; Cimentepe, M.; Kudrina, N.; Terletskaya, N.; Cimentepe, O.O.; Cakır, O.; Yilmaz, M.A.; Yildirim, M. Green extraction strategies and bioactivity of Rheum cordatum Losinsk: Antioxidant, antimicrobial, and molecular docking insights. Plants 2025, 14, 1071. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Rodríguez De Luna, S.L.; Ramírez-Garza, R.E.; Serna-Saldívar, S.O. Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Nolasco-González, Y.; Chacón-López, M.A.; Ortiz-Basurto, R.I.; Aguilera-Aguirre, S.; González-Aguilar, G.A.; Rodríguez-Aguayo, C.; Navarro-Cortez, M.C.; García-Galindo, H.S.; García-Magaña, M.d.L.; Meza-Espinoza, L.; et al. Annona muricata leaves as a source of bioactive compounds: Extraction and quantification using ultrasound. Horticulturae 2022, 8, 560. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Beccaro, G.L.; Zunin, P.; Pittaluga, A.; Boggia, R. Pulsed ultrasound-assisted extraction as an alternative method to conventional maceration for the extraction of the polyphenolic fraction of Ribes nigrum buds: A new category of food supplements proposed by the FINNOVER Project. Foods 2019, 8, 466. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Taher, Z.M.; Rahmat, Z.; Chua, L.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Villacís-Chiriboga, J.; Voorspoels, S.; Uyttebroek, M.; Ruales, J.; Van Camp, J.; Vera, E.; Elst, K. Supercritical CO2 extraction of bioactive compounds from mango (Mangifera indica L.) peel and pulp. Foods 2021, 10, 2201. [Google Scholar] [CrossRef]
- da Costa, F.M.; Ortega, T.L.C.; Arvelos, S.; Traczynski, M.R.; Silva, E.; Cardozo-Filho, L.; Eponina, H.C.; Watanabe, E.O. Evaluation of supercritical carbon dioxide extraction to obtain bioactive compounds from Vernonia amygdalina Delile leaves. Chem. Ind. Chem. Eng. Q. 2020, 26, 113–124. [Google Scholar] [CrossRef]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Atwi-Ghaddar, S.; Zerwette, L.; Destandau, E.; Lesellier, E. Supercritical fluid extraction (SFE) of polar compounds from Camellia sinensis leaves: Use of ethanol/water as a green polarity modifier. Molecules 2023, 28, 5485. [Google Scholar] [CrossRef]
- Čulina, P.; Balbino, S.; Jokić, S.; Dragović-Uzelac, V.; Pedisić, S. Efficiency of supercritical CO2 and ultrasound-assisted extraction techniques for isolation of bioactive molecules from sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) berry oils and cakes. Processes 2024, 12, 698. [Google Scholar] [CrossRef]
- Argun, M.E.; Öztürk, A.; Argun, M.Ş. Comparison of different extraction methods on the recovery efficiencies of valuable components from orange peels. Turk. J. Agric. Food Sci. Technol. 2023, 11, 2417–2425. [Google Scholar] [CrossRef]
- Gould, K. Antibiotics: From prehistory to the present day. J. Antimicrob. Chemother. 2016, 71, 572–575. [Google Scholar] [CrossRef]
- Muteeb, G.; Rehman, T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Yilmaz, M.A. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind. Crops Prod. 2020, 149, 112347. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Necip, A.; Işik, M. Bioactivities of Hypericum perforatum L. and Equisetum arvense L. fractions obtained with different solvents. Int. J. Life Sci. Biotechnol. 2019, 2, 221–230. [Google Scholar] [CrossRef]
- Necip, A.; Işık, M.; Güzel, A.; Takım, K.; Kaygısız, F. Nicotiana rustica L.’nin bazı önemli metabolik enzimleri üzerindeki inhibisyon etkisi, LC-MS/MS analizi, antioksidan özellikleri. KSU J. Agric. Nat. 2021, 24, 930–938. [Google Scholar] [CrossRef]
- Necip, A.; Durgun, M. Antioxidant properties, total phenolic content and LC-MS/MS analysis of Mentha pulegium, Lepidium draba and Centaurea solstitialis. J. Inst. Sci. Technol. 2022, 12, 2375–2385. [Google Scholar] [CrossRef]
- Yildirim, M.; Cimentepe, M.; Dogan, K.; Necip, A.; Amangeldinova, M.; Dellal, Ö.; Poyraz, S. Thymoquinone-loaded pHEMA cryogel membranes for superior control of Staphylococcus aureus infections. Russ. J. Gen. Chem. 2024, 94, 3079–3089. [Google Scholar] [CrossRef]
- Holder, I.A.; Boyce, S.T. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns 1994, 20, 426–429. [Google Scholar] [CrossRef]
- Chaieb, K.; Kouidhi, B.; Jrah, H.; Mahdouani, K.; Bakhrouf, A. Antibacterial activity of thymoquinone, an active principle of Nigella sativa, and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med. 2011, 11, 29. [Google Scholar] [CrossRef]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 162. [Google Scholar] [CrossRef]
- Sun, L.; Gu, X.; Hu, D.; Zhou, Z.; Wang, G. Anti-aging mechanism and rheological properties of lignin, quercetin, and gallic acid as antioxidants in asphalt. Constr. Build. Mater. 2023, 369, 130560. [Google Scholar] [CrossRef]
- Xiang, Z.; Guan, H.; Zhao, X.; Xie, Q.; Xie, Z.; Cai, F.; Dang, R.; Li, M.; Wang, C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res. Int. 2024, 180, 114068. [Google Scholar] [CrossRef]
- Dai, L.-X.; Li, J.-C.; Miao, X.-L.; Guo, X.; Shang, X.-F.; Wang, W.-W.; Li, B.; Wang, Y.; Pan, H.; Zhang, J.-Y. Ultrasound-assisted extraction of five anthraquinones from Rheum palmatum water extract residues and the antimicrobial activities. Ind. Crops Prod. 2021, 162, 113288. [Google Scholar] [CrossRef]
- Tan, L.; Ji, T.; Jiang, G.; Hu, F. Simultaneous identification and quantification of five flavonoids in the seeds of Rheum palmatum L. by using accelerated solvent extraction and HPLC–PDA–ESI/MSⁿ. Arab. J. Chem. 2019, 12, 1345–1352. [Google Scholar] [CrossRef]
- Ali, Y.A.; Ahmed, O.M.; Soliman, H.A.; Abdel-Gabbar, M.; Al-Dossari, M.; El-Gawaad, N.S.A.; El-Nahass, E.-S.; Ahmed, N.A.; El Sayed, S.M. Rutin and hesperidin alleviate paclitaxel-induced nephrocardiotoxicity in Wistar rats via suppressing the oxidative stress and enhancing the antioxidant defense mechanisms. Evidence-Based Complement. Altern. Med. 2023, 2023, 5068304. [Google Scholar] [CrossRef]
- Khorasanian, A.S.; Fateh, S.T.; Gholami, F.; Rasaei, N.; Gerami, H.; Khayyatzadeh, S.S.; Shiraseb, F.; Asbaghi, O. The effects of hesperidin supplementation on cardiovascular risk factors in adults: A systematic review and dose–response meta-analysis. Front. Nutr. 2023, 10, 1177708. [Google Scholar] [CrossRef]
- Berköz, M.; Yıldırım, M.; Krośniak, M.; Francik, R.; Rdiye, A. Antioxidant activity of different extracts from stalk part of rhubarb (Rheum rhabarbarum L.). Van Sağlık Bilim. Derg. 2018, 11, 15–20. [Google Scholar]
- Önem, E.; Sarısu, H.C.; İbrahim, B. The effect of Rheum ribes L. extracts on bacterial communication and antibacterial activity. Süleyman Demirel Üniversitesi Sağlık Bilim. Derg. 2020, 11, 436–442. [Google Scholar]
No | Class | Analytes | UAE-M-1h | UAE-M-4h | UAE-E-1h | UAE-E-4h | Sc-60 | Sc-80 | ScCO2-100 | ScCO2-150 |
---|---|---|---|---|---|---|---|---|---|---|
1 | Organic acid | Quinic acid | 513 | 3310 | 257 | 1621 | 2575 | 3676 | 60 | 289 |
Fumaric aid | N.D. | 224 | N.D. | 210 | 240 | N.D. | N.D. | N.D. | ||
Aconitic acid | N.D. | N.D. | N.D. | 912 | 21 | 3463 | N.D. | N.D. | ||
2 | Phenolic acid | Gallic acid | 7619 | 17,977 | 12,759 | 30,705 | 17,398 | 4094 | 11,250 | 17,304 |
Protocatechuic acid | 102 | 282 | 207 | 3539 | 282 | 3461 | 307 | 430 | ||
4-OH Benzoic acid | N.D. | N.D. | N.D. | 334 | N.D. | 282 | N.D. | N.D. | ||
Caffeic acid | 28 | 53 | 38 | 612 | 57 | 60 | 102 | 131 | ||
Syringic acid | N.D. | N.D. | N.D. | 298 | N.D. | N.D. | 129 | N.D. | ||
p-Coumaric acid | 20 | 64 | 43 | 179 | 50 | 35 | 122 | 130 | ||
Ferulic acid | N.D. | N.D. | N.D. | 126 | N.D. | N.D. | N.D. | 66 | ||
Salicylic acid | N.D. | N.D. | N.D. | 65 | N.D. | 29 | N.D. | N.D. | ||
3 | Phenolic aldehyde | Protocatechuic aldehyde | N.D. | 10 | 13 | 40 | 8 | 49 | N.D. | 12 |
4 | Tannin | Tannic acid | 388 | 638 | 93 | 93 | 427 | 58 | 52 | 59 |
5 | Flavanols | Epigallocatechin gallate | 846 | 1378 | 1670 | N.D. | 1899 | N.D. | N.D. | 2293 |
Epicatechin gallate | 2689 | 7546 | 4584 | N.D. | 6846 | N.D. | 195 | 5465 | ||
6 | Flavonol glycoside | Rutin | 8476 | 19,095 | 13,691 | 9317 | 20,471 | 1530 | 2990 | 21,932 |
isoquercitrin | 582 | 994 | 1089 | 638 | 974 | 121 | 333 | 1135 | ||
7 | Flavanone glycoside | Hesperidin | 5877 | 13,635 | 10,265 | 6724 | 13,779 | 1176 | 1957 | 14,975 |
8 | Flavonoid glycoside | Astragalin | 184 | 125 | 309 | 87 | 140 | N.D. | 93 | 245 |
Nicotiflorin | 1667 | 1693 | 2876 | 1003 | 1834 | 134 | 674 | 2622 | ||
9 | Flavonol | Quercetin | 117 | 303 | 290 | 150 | 223 | 40 | 278 | 425 |
Kaempferol | N.D. | 9 | 13 | N.D. | 8 | N.D. | 21 | 22 | ||
10 | Flavonone | Naringenin | 5 | 6 | 8 | 7 | 6 | 2 | 14 | 26 |
11 | Flavone | Luteolin | N.D. | 5 | 5 | 8 | 4 | N.D. | 5 | 8 |
Apigenin | N.D. | N.D. | N.D. | 7 | N.D. | N.D. | N.D. | 4 | ||
Chrysin | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 17 | 42 | ||
Acacetin | N.D. | N.D. | N.D. | 219 | N.D. | N.D. | 3 | 4 | ||
12 | Biflavonoid | Amentoflavone | N.D. | N.D. | N.D. | 7 | N.D. | N.D. | N.D. | N.D. |
13 | Internal standards | Ferulic acid-D3-IS | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
Rutin-D3-IS | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||
Quercetin-D3-IS | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
Samples | DPPH (IC50 mg/mL) | R2 | ABTS (IC50 mg/mL) | R2 | Total Phenolic (mg GAE/g) |
---|---|---|---|---|---|
BHA * | 0.0023 | 0.994 | 0.0021 ± 0.001 | 0.981 | - |
BHT * | 0.0038 | 0.961 | 0.0034 ± 0.001 | 0.993 | - |
Trolox * | 0.0076 | 0.991 | 0.0041 ± 0.002 | 0.998 | - |
UAE-M-1h | 0.0872 ± 0.003 | 0.99 | 0.0684 ± 0.0021 | 0.99 | 78 ± 3 |
UAE-M-4h | 0.0472 ± 0.003 | 0.982 | 0.0612 ± 0.0023 | 0.981 | 100 ± 2 |
UAE-E-1h | 0.0772 ± 0.003 | 0.995 | 0.0673 ± 0.0025 | 0.992 | 82 ± 2 |
UAE-E-4h | 0.0570 ± 0.004 | 0.989 | 0.0645 ± 0.003 | 0.985 | 95 ± 2 |
Sc-60 | 0.0379 ± 0.003 | 0.993 | 0.0521 ± 0.0021 | 0.992 | 125 ± 3 |
Sc-80 | 0.1042 ± 0.001 | 0.982 | 0.0792 ± 0.0029 | 0.988 | 52 ± 4 |
ScCO2-100 | 0.0972 ± 0.003 | 0.983 | 0.0682 ± 0.0024 | 0.990 | 68 ± 3 |
ScCO2-150 | 0.0132 ± 0.002 | 0.99 | 0.0462 ± 0.0033 | 0.985 | 140 ± 5 |
UAE-M-1h | UAE-M-4h | UAE-E- 1h | UAE-E-4h | Sc-60 | Sc-80 | ScCO2-100 | ScCO2-150 | |
---|---|---|---|---|---|---|---|---|
E. feacalis | 10.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.9 | 13.9 |
B. spizizenii | 9 | 0.0 | 0.0 | 0.0 | 9.7 | 0.0 | 14.6 | 21.3 |
K. pneumonia | 8.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.1 | 16.8 |
P. aeruginosa | 11.6 | 10.9 | 0.0 | 9 | 0.0 | 0.0 | 17.4 | 17.8 |
E. coli | 8.8 | 0.0 | 0.0 | 9.6 | 11.4 | 10.3 | 0.0 | 0.0 |
S. aureus | 9.3 | 0.0 | 0.0 | 13.5 | 0.0 | 0.0 | 15.0 | 17.1 |
C. albicans | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
C. tropicalis | 8.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.1 |
E. feacalis | B. subtilis | K. pneumoniae | P. aeruginosa | S. aureus | C. tropicalis | E.coli | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MİC | MBC | MİC | MBC | MİC | MBC | MİC | MBC | MİC | MBC | MİC | MBC | MİC | MBC | |
UAE-M-1h | 125 | 1000 | 1000 | >1000 | 500 | >1000 | 250 | >1000 | 1000 | >1000 | 250 | 1000 | 1000 | >1000 |
UAE-M-4h | * | * | * | * | * | * | 250 | 1000 | * | * | * | * | * | * |
UAE- E-1h | * | * | * | * | * | * | * | * | * | * | * | * | * | * |
UAE-E-4h | * | * | * | * | * | * | 500 | >1000 | 500 | >1000 | * | * | 500 | >1000 |
Sc-60 | * | * | 250 | >1000 | * | * | * | * | * | * | * | * | 500 | >1000 |
Sc-80 | * | * | * | * | * | * | * | * | * | * | * | * | 500 | >1000 |
ScCO2-100 | 500 | 1000 | 500 | 1000 | 500 | >1000 | 125 | 500 | 500 | 1000 | * | * | * | * |
ScCO2-150 | 250 | 1000 | 125 | 500 | 250 | 1000 | 125 | 500 | 125 | 500 | 250 | 1000 | * | * |
Extraction | E. feacalis | B. subtilis | K. pneumoniae | P. aeruginosa |
---|---|---|---|---|
UAE-M-1h | 166,107 | 551,236 | 176,198 | 305,814 |
UAE-M-4h | n.d. | n.d. | n.d. | 137,312 |
UAE-E-4h | n.d. | n.d. | n.d. | 134,658 |
Sc-60 | n.d. | 133,915 | n.d. | n.d. |
ScCO2-100 | 220,864 | 188,262 | 263,659 | 165,168 |
ScCO2-150 | 301,420 | 285,871 | 262,642 | 226,610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amangeldinova, M.; Ersatır, M.; Küce Cevik, P.; Yilmaz, M.A.; Cakır, O.; Kudrina, N.; Mussayeva, A.; Kulmanov, T.; Terletskaya, N.; Yildirim, M. Bioactive Potential of Rheum cordatum Losinsk. Leaf Extracts: Phytochemical Insights from Supercritical CO2, Subcritical Ethanol and Ultrasound-Assisted Extractions. Plants 2025, 14, 2314. https://doi.org/10.3390/plants14152314
Amangeldinova M, Ersatır M, Küce Cevik P, Yilmaz MA, Cakır O, Kudrina N, Mussayeva A, Kulmanov T, Terletskaya N, Yildirim M. Bioactive Potential of Rheum cordatum Losinsk. Leaf Extracts: Phytochemical Insights from Supercritical CO2, Subcritical Ethanol and Ultrasound-Assisted Extractions. Plants. 2025; 14(15):2314. https://doi.org/10.3390/plants14152314
Chicago/Turabian StyleAmangeldinova, Madina, Mehmet Ersatır, Pınar Küce Cevik, Mustafa Abdullah Yilmaz, Oguz Cakır, Nataliya Kudrina, Aizhan Mussayeva, Timur Kulmanov, Nina Terletskaya, and Metin Yildirim. 2025. "Bioactive Potential of Rheum cordatum Losinsk. Leaf Extracts: Phytochemical Insights from Supercritical CO2, Subcritical Ethanol and Ultrasound-Assisted Extractions" Plants 14, no. 15: 2314. https://doi.org/10.3390/plants14152314
APA StyleAmangeldinova, M., Ersatır, M., Küce Cevik, P., Yilmaz, M. A., Cakır, O., Kudrina, N., Mussayeva, A., Kulmanov, T., Terletskaya, N., & Yildirim, M. (2025). Bioactive Potential of Rheum cordatum Losinsk. Leaf Extracts: Phytochemical Insights from Supercritical CO2, Subcritical Ethanol and Ultrasound-Assisted Extractions. Plants, 14(15), 2314. https://doi.org/10.3390/plants14152314