Biochar-Mediated Effects on Changes in Soil Quality and Microbial Communities
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Collection
2.2. Incubation Experiment
2.3. Soil Properties
2.4. DNA Extraction and High Through-Put Sequencing
2.5. Bioinformatic Analyses of 16S rRNA Gene Sequences
2.6. Statistical Analyses
3. Results
3.1. Soil Chemical Properties
3.2. Bacterial α-Diversity
3.3. Bacterial Community Composition
3.4. Bacterial β-Diversity
4. Discussion
4.1. Effects of Combined Biochar Fertilization on Soil Chemical Properties
4.2. Effects of Biochar Combined Fertilization on Bacterial α-Diversity
4.3. Effects of Biochar Combined Fertilization on Bacterial Community Composition
4.4. Effects of Combined Biochar Fertilization on OTU-Level Bacterial β-Diversity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Richness | Diversity | |||||
---|---|---|---|---|---|---|
Treatments | Sequence Number | OTUs | Coverage | ACE | Chao1 | Shannon |
CK | 18,782 ± 1290 c | 3930 ± 90 e | 0.87 ± 0.02 a | 13,139 ± 236 d | 9986 ± 758 c | 6.93 ± 0.04 c |
B | 26,024 ± 2292 bc | 6573 ± 379 ab | 0.88 ± 0.01 a | 20,108 ± 290 b | 12,438 ± 535 b | 7.37 ± 0.14 ab |
S | 35,053 ± 3458 a | 4943 ± 221 d | 0.90 ± 0.01 a | 13,143 ± 194 d | 9461 ± 210 c | 7.18 ± 0.05 abc |
M | 31,172 ± 1638 ab | 6255 ± 191 bc | 0.90 ± 0.00 a | 16,403 ± 481 c | 11,932 ± 266 b | 7.29 ± 0.10 abc |
BS | 25,362 ± 3858 bc | 5336 ± 469 cd | 0.87 ± 0.02 a | 16,715 ± 672 c | 11,218 ± 604 bc | 7.12 ± 0.10 bc |
BM | 28,181 ± 2846 ab | 7421 ± 320 a | 0.84± 0.04 a | 36,981 ± 740 a | 21,044 ± 789 a | 7.51 ± 0.19 a |
ANOVA p-values | 0.07 | 0.0004 | 0.54 | <0.0001 | <0.0001 | 0.10 |
References
- Deshoux, M.; Sadet-Bourgeteau, S.; Gentil, S.; Prévost-Bouré, N.C. Effects of biochar on soil microbial communities: A meta-analysis. Sci. Total Environ. 2023, 902, 166079. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, Z.Y.; Bolan, N.S.; Wang, H.L.; Wang, Y.J.; Chen, W.F. Visualizing the development trend and research frontiers of biochar in 2020: A scientometric perspective. Biochar 2021, 3, 419–436. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Beiyuan, J.; Gupta, S.; Hou, D.; Karakoti, A.; Joseph, S.; Jung, S.; Kim, K.H.; Kirkham, M.B.; et al. Multifunctional applications of biochar beyond carbon storage. Int. Mater. Rev. 2022, 67, 150–200. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Ajibade, F.O.; Atakpa, E.O.; Abdulaha-Al Baquy, M.; Mia, S.; Odii, E.C.; Xu, R. Reduction of heavy metal uptake from polluted soils and associated health risks through biochar amendment: A critical synthesis. J. Hazard. Mater. Adv. 2022, 6, 100086. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, H.; Chu, M.; Zhang, C.; Tang, J.; Chang, S.X.; Mašek, O.; Ok, Y.S. Biochar affects greenhouse gas emissions in various environments: A critical review. Land Degrad. Dev. 2022, 33, 3327–3342. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
- Suddick, E.C.; Six, J. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci. Total Environ. 2013, 465, 298–307. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Li, S.; Fan, W.; Xu, G.; Cao, Y.; Zhao, X.; Hao, S.; Deng, B.; Ren, S.; Hu, S. Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome. Front. Microbiol. 2023, 14, 1117355. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jin, P.H.; Wang, H.; Hu, T.L.; Lin, X.W.; Xie, Z.B. Ecoenzymatic stoichiometry reveals stronger microbial carbon and nitrogen limitation in biochar amendment soils: A meta-analysis. Sci. Total Environ. 2022, 838, 156532. [Google Scholar] [CrossRef] [PubMed]
- Thies, J.E.; Rillig, M.C. Characteristics of biochar: Biological properties. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2012; pp. 117–138. [Google Scholar]
- Liang, B.; Lehmann, J.; Sohi, S.P.; Thies, J.E.; O’Neill, B.; Trujillo, L.; Gaunt, J.; Solomon, D.; Grossman, J.; Neves, E.G.; et al. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Garcia, M.; Förster, B.; Zech, W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 2008, 51, 359–366. [Google Scholar] [CrossRef]
- O’Neill, B.; Grossman, J.; Tsai, M.; Gomes, J.E.; Lehmann, J.; Peterson, J.; Neves, E.; Thies, J.E. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb. Ecol. 2009, 58, 23–35. [Google Scholar] [CrossRef]
- Steinbeiss, S.; Gleixner, G.; Antonietti, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 2009, 41, 1301–1310. [Google Scholar] [CrossRef]
- Rillig, M.C.; Wagner, M.; Salem, M.; Antunes, P.M.; George, C.; Ramke, H.G.; Titirici, M.M.; Antonietti, M. Material derived from hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 2010, 45, 238–242. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Wu, L.; Di, H.; He, Y.; Xu, J. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil. Environ. Pollut. 2012, 161, 121–127. [Google Scholar] [CrossRef]
- Hammond, J.; Shackley, S.; Sohi, S.; Brownsort, P. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 2011, 39, 2646–2655. [Google Scholar] [CrossRef]
- Zimmerman, A.R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.; Liang, G.; Sun, J.; Wang, X.; Zhou, W. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 2012, 173, 330–338. [Google Scholar] [CrossRef]
- Kalembasa, S.J.; Jenkinson, D.S. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J. Sci. Food Agric. 1973, 24, 1085–1090. [Google Scholar] [CrossRef]
- Roberts, T.L.; Ross, W.J.; Norman, R.J.; Slaton, N.A.; Wilson, C.E., Jr. Predicting nitrogen fertilizer needs for rice in Arkansas using alkaline hydrolyzable-nitrogen. Soil Sci. Soc. Am. J. 2011, 75, 1161–1171. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; SSSA: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Zhong, W.; Gu, T.; Wang, W.; Zhang, B.; Lin, X.; Huang, Q.; Shen, W. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 2010, 326, 511–522. [Google Scholar] [CrossRef]
- Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 6. [Google Scholar] [CrossRef]
- Bodenhausen, N.; Horton, M.W.; Bergelson, J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 2013, 8, e56329. [Google Scholar] [CrossRef]
- Yousuf, B.; Sanadhya, P.; Keshri, J.; Jha, B. Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol. 2012, 12, 150. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Luo, X.; Wang, Z.; Xing, B. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Sci. Total Environ. 2018, 610, 951–960. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Prayogo, C.; Jones, J.E.; Baeyens, J.; Bending, G.D. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol. Fertil. Soils 2014, 50, 695–702. [Google Scholar] [CrossRef]
- Yan, S.; Wang, P.; Cai, X.; Wang, C.; Van Zwieten, L.; Wang, H.; Yin, Q.; Liu, G.; Ren, T. Biochar-based fertilizer enhanced tobacco yield and quality by improving soil quality and soil microbial community. Environ. Technol. Innov. 2025, 37, 103964. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Withanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Liang, A.; Li, Y.; Song, Q.; Li, X.; Li, D.; Hou, N. Insight into the soil aggregate-mediated restoration mechanism of degraded black soil via biochar addition: Emphasizing the driving role of core microbial communities and nutrient cycling. Environ. Res. 2023, 228, 115895. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, W.; Liang, G.; Wang, X.; Sun, J.; He, P.; Li, L. Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS ONE 2015, 10, e0124096. [Google Scholar] [CrossRef]
- Xu, W.; Xu, H.; Delgado-Baquerizo, M.; Gundale, M.J.; Zou, X.; Ruan, H. Global meta-analysis reveals positive effects of biochar on soil microbial diversity. Geoderma 2023, 436, 116528. [Google Scholar] [CrossRef]
- Jangid, K.; Williams, M.A.; Franzluebbers, A.J.; Sanderlin, J.S.; Reeves, J.H.; Jenkins, M.B.; Endale, D.M.; Coleman, D.C.; Whitman, W.B. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol. Biochem. 2008, 40, 2843–2853. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Yang, T.; Liu, Y.; Zheng, T.; Zheng, C. Effects of biochar carried microbial agent on compost quality, greenhouse gas emission and bacterial community during sheep manure composting. Biochar 2023, 5, 3. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Nemergut, D.R.; Townsend, A.R.; Sattin, S.R.; Freeman, K.R.; Fierer, N.; Neff, J.C.; Bowman, W.D.; Schadt, C.W.; Weintrabu, M.N.; Schmidt, S.K. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: Implications for carbon and nitrogen cycling. Environ. Microbiol. 2008, 10, 3093–3105. [Google Scholar] [CrossRef]
- Ali, N.; Khan, S.; Yao, H.; Wang, J. Biochars reduced the bioaccessibility and (bio) uptake of organochlorine pesticides and changed the microbial community dynamics in agricultural soils. Chemosphere 2019, 224, 805–815. [Google Scholar] [CrossRef]
- Fazi, S.; Amalfitano, S.; Pernthaler, J.; Puddu, A. Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environ. Microbiol. 2005, 7, 1633–1640. [Google Scholar] [CrossRef]
- Kirchman, D.L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 2002, 39, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.T.; Robeson, M.S.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Wessén, E.; Nyberg, K.; Jansson, J.K.; Hallin, S. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl. Soil Ecol. 2010, 45, 193–200. [Google Scholar] [CrossRef]
- Dimitriu, P.A.; Grayston, S.J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 2010, 59, 563–573. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, B.Y.; Song, J.; Weon, H.Y. Effects of PCR cycle number and DNA polymerase type on the 16S rRNA gene pyrosequencing analysis of bacterial communities. J. Microbiol. 2012, 50, 1071–1074. [Google Scholar] [CrossRef]
- Nielsen, S.; Minchin, T.; Kimber, S.; van Zwieten, L.; Gilbert, J.; Munroe, P.; Joseph, S.; Thomas, T. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agric. Ecosyst. Environ. 2014, 191, 73–82. [Google Scholar] [CrossRef]
- Feng, W.; Guan, T.; Wang, X.Y.; Zhu, Y.J.; Guo, T.C. Effects of combined application of biogas slurry and chemical fertilizer on winter wheat rhizosphere soil microorganisms and enzyme activities. Yingyong Shengtai Xuebao 2011, 22, 1007. [Google Scholar]
- Gupta, R.S.; Mok, A. Phylogenomics and signature proteins for the alpha proteobacteria and its main groups. BMC Microbiol. 2007, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Torn, M.S.; Bird, J.A. Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol. Biochem. 2012, 51, 115–124. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota–a review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Wang, X.; Riaz, M.; Babar, S.; Eldesouki, Z.; Liu, B.; Xia, H.; Li, Y.X.; Wang, J.Y.; Xia, X.X.; Jiang, C.C. Alterations in the composition and metabolite profiles of the saline-alkali soil microbial community through biochar application. J. Environ. Manag. 2024, 352, 120033. [Google Scholar] [CrossRef]
- Carson, J.K.; Campbell, L.; Rooney, D.; Clipson, N.; Gleeson, D.B. Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol. Ecol. 2009, 67, 381–388. [Google Scholar] [CrossRef]
- Jenkins, J.R.; Viger, M.; Arnold, E.C.; Harris, Z.M.; Ventura, M.; Miglietta, F.; Girardin, C.; Edwards, R.J.; Rumpel, F.; Fornasier, F.; et al. Biochar alters the soil microbiome and soil function: Results of next-generation amplicon sequencing across Europe. GCB Bioenergy 2017, 9, 591–612. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Jiang, H.; Sun, D.; Yang, F. Insight into the correlation between biochar amendment and shifts in bacterial community 4 years after a single incorporation in soybean-and maize-planted soils in northeastern China. Can. J. Microbiol. 2019, 65, 353–364. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Wallace, H.M.; Xu, C.Y.; Zwieten, L.V.; Weng, Z.H.; Xu, Z.H.; Che, R.X.; Tahmasbian, I.; Hu, H.W.; Bai, S.H. The effects of short term, long term and reapplication of biochar on soil bacteria. Sci. Total Environ. 2018, 636, 142–151. [Google Scholar] [CrossRef]
- Ji, Y.; Cao, Y.; Wang, Y.; Wang, C.; Qin, Z.; Cai, W.; Yang, Y.; Yan, S.; Guo, X. Effects of adding lignocellulose-degrading microbial agents and biochar on nitrogen metabolism and microbial community succession during pig manure composting. Environ. Res. 2023, 239, 117400. [Google Scholar] [CrossRef]
Treatments | pH | SOC (g/kg) | Available N (mg/kg) | Available P (mg/kg) | Available K (mg/kg) |
---|---|---|---|---|---|
CK | 5.13 ± 0.02 d | 8.33 ± 0.65 c | 81.55 ± 0.88 c | 11.05 ± 1.69 e | 142.00 ± 1.00 e |
B | 6.52 ± 0.04 b | 26.17 ± 0.47 a | 86.33 ± 0.23 bc | 25.35 ± 1.59 c | 278.00 ± 1.00 b |
S | 5.50 ± 0.06 c | 13.14 ± 0.16 b | 93.14 ± 2.15 ab | 8.54 ± 0.62 e | 175.00 ± 2.65 d |
M | 6.42 ± 0.01 b | 15.80 ± 2.03 b | 99.53 ± 3.31 a | 55.89 ± 1.36 b | 201.00 ± 2.12 c |
BS | 6.85 ± 0.03 a | 28.27 ± 0.46 a | 89.94 ± 6.36 abc | 17.69 ± 0.26 d | 342.00 ± 6.93 a |
BM | 6.86 ± 0.02 a | 25.53 ± 0.52 a | 81.47 ± 0.98 c | 62.92 ± 2.74 a | 269.00 ± 2.65 b |
pH | SOC | Available P | Available K | OTUs | ACE | Chao1 | |
---|---|---|---|---|---|---|---|
SOC | 0.89 *** | ||||||
Available P | 0.62 ** | ||||||
Available K | 0.88 *** | 0.95 *** | |||||
OTUs | 0.77 ** | 0.64 ** | 0.75 ** | 0.51 * | |||
ACE | 0.62 ** | 0.56 * | 0.74 ** | 0.76 ** | |||
Chao1 | 0.60 ** | 0.50 * | 0.78 *** | 0.77 ** | 0.98 *** | ||
Shannon | 0.55 * | 0.54 * | 0.86 *** | 0.62 ** | 0.62 ** |
Phylum | pH | SOC | Available P | Available K |
---|---|---|---|---|
Bacteroidetes | 0.76 ** | 0.79 *** | 0.84 *** | |
Planctomycetes | 0.47 * | |||
Acidobacteria | −0.77 ** | −0.66 ** | −0.74 ** | |
Nitrospira | 0.84 *** | 0.76 ** | 0.82 *** | |
Proteobacteria | 0.60 ** | 0.52 * | 0.54 * | |
TM7 | −0.87 ** | −0.84 ** | −0.86 ** | |
OD1 | −0.69 ** | −0.57 * | −0.58 * | −0.57 * |
Gemmatimnadetes | 0.66 ** | 0.79 *** | ||
Actinobacteria | −0.89 *** | −0.75 ** | −0.69 ** | −0.68 ** |
pH | SOC | Available N | Available P | Available K | |
---|---|---|---|---|---|
β-proteobacteria | −0.5 * | −0.54 * | 0.57 * | −0.52 * | |
Acidobacteria_Gp1 | −0.9 *** | −0.89 *** | −0.58 * | −0.87 *** | |
Actinobacteria | −0.89 *** | −0.75 ** | −0.69 ** | −0.68 ** | |
Sphingobacteria | 0.68 ** | 0.60 ** | 0.63 ** | ||
Acidobacteria_Gp6 | 0.94 *** | 0.82 *** | 0.68 ** | 0.78 *** | |
α-proteobacteria | 0.58 * | 0.55 * | 0.60 ** | ||
Deltaproteobacteria | 0.48 * | 0.58 * | |||
Spartobacteria | 0.71 ** | 0.60 ** | 0.61 ** | ||
Gemmatimonadetes | 0.66 ** | 0.79 *** | |||
γ-proteobacteria | 0.72 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Wang, M.; Shi, W.; Zhang, Q.; Guo, T.; Li, P.; Han, Y.; Li, H. Biochar-Mediated Effects on Changes in Soil Quality and Microbial Communities. Agronomy 2025, 15, 1861. https://doi.org/10.3390/agronomy15081861
Wu M, Wang M, Shi W, Zhang Q, Guo T, Li P, Han Y, Li H. Biochar-Mediated Effects on Changes in Soil Quality and Microbial Communities. Agronomy. 2025; 15(8):1861. https://doi.org/10.3390/agronomy15081861
Chicago/Turabian StyleWu, Mingyu, Mengyuan Wang, Wenxuan Shi, Qian Zhang, Tengfei Guo, Peipei Li, Yanlai Han, and Hui Li. 2025. "Biochar-Mediated Effects on Changes in Soil Quality and Microbial Communities" Agronomy 15, no. 8: 1861. https://doi.org/10.3390/agronomy15081861
APA StyleWu, M., Wang, M., Shi, W., Zhang, Q., Guo, T., Li, P., Han, Y., & Li, H. (2025). Biochar-Mediated Effects on Changes in Soil Quality and Microbial Communities. Agronomy, 15(8), 1861. https://doi.org/10.3390/agronomy15081861